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Abstract: Questions about which reactive oxygen species (ROS) or reactive nitrogen species (RNS) can
escape from the mitochondria and activate signals must be addressed. In this study, two parameters,
the calculated dipole moment (debye, D) and permeability coefficient (Pm) (cm s−1), are listed
for hydrogen peroxide (H2O2), hydroxyl radical (•OH), superoxide (O2

•−), hydroperoxyl radical
(HO2•), nitric oxide (•NO), nitrogen dioxide (•NO2), peroxynitrite (ONOO−), and peroxynitrous acid
(ONOOH) in comparison to those for water (H2O). O2

•− is generated from the mitochondrial electron
transport chain (ETC), and several other ROS and RNS can be generated subsequently. The candidates
which pass through the mitochondrial membrane include ROS with a small number of dipoles, i.e.,
H2O2, HO2•, ONOOH, •OH, and •NO. The results show that the dipole moment of •NO2 is 0.35 D,
indicating permeability; however, •NO2 can be eliminated quickly. The dipole moments of •OH
(1.67 D) and ONOOH (1.77 D) indicate that they might be permeable. This study also suggests that the
mitochondria play a central role in protecting against further oxidative stress in cells. The amounts,
the long half-life, the diffusion distance, the Pm, the one-electron reduction potential, the pKa, and the
rate constants for the reaction with ascorbate and glutathione are listed for various ROS/RNS, •OH,
singlet oxygen (1O2), H2O2, O2

•−, HO2•, •NO, •NO2, ONOO−, and ONOOH, and compared with
those for H2O and oxygen (O2). Molecules with negative electrical charges cannot directly diffuse
through the phospholipid bilayer of the mitochondrial membranes. Short-lived molecules, such as
•OH, would be difficult to contribute to intracellular signaling. Finally, HO2• and ONOOH were
selected as candidates for the ROS/RNS that pass through the mitochondrial membrane.

Keywords: mitochondria; reactive oxygen species; dipole moment; cell signaling; signal transduction;
Nrf2/Keap1

1. Introduction

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) consist of both
radical and nonradical molecules and are reactive species that have different degrees of oxi-
dizing potential in biological systems [1]. Many chronic diseases, such as cancer, alcoholic
liver disease, Crohn’s disease, rheumatoid arthritis, diabetes, muscular dystrophy, cystic
fibrosis, septic shock, premature babies, atherosclerosis, infertility, cataracts, aging, hepati-
tis, ARDS, ischemia, neuronal degeneration, etc., are recognized as oxidative-stress-related
diseases (OSDs) [2]. A major source of ROS in cells is the mitochondria [3]. The electron
transport chain (ETC) consists of Complexes I, II, III, and IV. Oxidative phosphorylation
is the process of the coupling between the ETC and ATP production in Complex V. Mito-
chondrial DNA (mtDNA) encodes 13 proteins inside the mitochondrial matrix, and those
proteins are parts of Complexes I, III, IV, and V. [4]. Overall, 2~3% of electrons leak from the
ETC and oxygen captures them, resulting in the production of superoxide anions (O2

•−).
It is well known that mitochondria are the major site of ATP production, but they also
produce O2

•−, which mainly leaks from Complexes I and III [2]. Impairment of the ETC
caused by chemicals or mtDNA damage can cause an increase in the generation of O2

•−

and subsequent ROS [3]. These impairments are closely related to the cause of OSDs [4,5].
Hydroperoxyl radical (HO2•) is the protonated form of O2

•−, but whether its amount could
be affected by the pH gradient across the mitochondrial inner membrane is uncertain [6].
There is evidence of nitic oxide (•NO) formation in the mitochondria, although whether
mitochondrial nitric oxide synthase (NOS) exists is still controversial [7]. Singlet oxygen
(1O2) can be generated endogenously through different mechanisms [8], but its formation
in the mitochondria has only been addressed in one study [9].

In mammalian cells, there are three superoxide dismutase (SOD) isoenzymes: copper–
zinc SOD (CuZnSOD), or SOD1 [10]; manganese SOD (MnSOD), or SOD2 [11]; and extra-
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cellular SOD (ECSOD), or SOD3 [12]. SOD catalyzes the dismutation of two superoxide
radicals into hydrogen peroxide and oxygen. MnSOD is an enzyme localized in the mito-
chondrial matrix. Okado-Matsumoto and Fridovich showed that CuZnSOD is localized in
the intermembrane space of the mitochondria [13]. It has been recognized that increases
in the generation of ROS from the mitochondria can cause lipid oxidation and apoptosis.
MnSOD could protect against these processes [14].

How do antioxidant systems, which are intracellular defense systems, work? MnSOD
generates one hydrogen peroxide (H2O2) from two superoxide radicals (O2

•−). MnSOD
may also reduce the formation of hydroxyl radicals (•OH) from superoxide (O2

•−) and
hydrogen peroxide (H2O2) through the Haber–Weiss reaction under the catalysis of iron
ions [15–17]. However, H2O2 from MnSOD could be quickly detoxified by mitochondrial
glutathione peroxidase (mtGPx) by reducing it to water [14,18]. This reaction could be
accompanied by glutathione, of which the level for most cells is ~5 mM, an excess amount
for the reaction [14,18]. Furthermore, GPx4 knockout (KO) is known to cause acute renal
failure and death [19,20], suggesting that GPx4 plays an essential role as an antioxidant in
mitochondria. Due to the emergence of the role of nitric oxide (•NO) in OSDs, reactive
nitrogen cascades are sometimes included in reactive oxygen cascades. O2

•− and •NO
can be easily bound and produce peroxynitrite (ONOO–) with k = 5 × 109 M−1 s−1; how-
ever, in the opposite reaction, k = 0.023 s−1 [21]. ONOOH produces •NO2 and •OH with
k = 0.35 s−1, indicating that the decomposition of ONOO– and ONOOH is not straightfor-
ward [21]. Kissner et al. (2003) suggested that, regarding peroxynitrite formation under
physiological conditions, when 10 nM •NO and 10 µM SOD, ONOO– formation/O2

•−

dismutation is 1/125, while with 2 µM •NO and 2 µM SOD, ONOO– formation/ O2
•−

dismutation is 8/1 [22], suggesting that ONOO– formation is dependent on intracellular
•NO concentration.

Mitochondrial ROS (mtROS) might be related to an increase in signal transduction
and may control anti-oxidative-stress-related molecular defense mechanisms. Redox states
could thus represent essential pathways to maintain homeostasis. The importance of this
subject, the mitochondrial ROS come out from mitochondria and initiate the signal transduc-
tion inside cells, has been hypothesized by many researchers [23–33]. The role of mitochon-
drial ROS in initiating signal transductions in the cell cytosol has been the subject of discus-
sion [34]. Indo et al. showed that manganese superoxide dismutase (MnSOD) transfection
decreases the expression levels of GATA 1, 3, 4, and 5, which are nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) regulating genes [34]. The results showed that
MnSOD transfected cells revealed a decrease in expression compared to those in the control.
We previously demonstrated that mtROS causes intracellular signaling, and we published a
paper entitled “Evidence of Nrf2/Keap1 Signaling Regulation by Mitochondrial-Generated
Oxygen Species in RGK1 cells” in a Special Issue of Biomolecules entitled “The Physiological
and Pathological New Function of Mitochondrial ROS and Intraorganellar Cross-Talks” in
2023 (https://www.mdpi.com/journal/biomolecules/special_issues/0XTJ2MAYET, ac-
cessed on 7 November 2023) [35]. They transfected MnSOD gene-contained vectors in a
gastric mucosal tumorized cell line, RGK1 cells. They examined the expression levels of NF-
E2-related factor 2 (Nrf2), Kelch-like ECH-associated protein1 (Keap1), heme oxygenase-1
(HO-1) and 2, MnSOD, glutamate-cysteine ligase (GCL), glutathione S-transferase (GST),
and NAD(P)H Quinone oxidoreductase 1 (NQO1), which are all Nrf2-Keap1 regulating
gens. The results of immunocytochemistry staining showed a decrease in those expressions
in the MnSOD transfected RGK1 cells compared to those in the control. The transfected
MnSOD gene should decrease the mitochondrial ROS levels, so after MnSOD transfection,
all decreased expression was shown, suggesting mtROS levels control the levels of Nrf2-
Keap1 regulating genes. However, the question of which ROS go out from mitochondria
and contribute to intracellular signaling remains unclear.

The plasma membrane consists of both lipids and proteins. The fundamental structure
of the membrane is the phospholipid bilayer, which forms a stable barrier between two
aqueous compartments [36]. Most biologically important solutes require protein carri-

https://www.mdpi.com/journal/biomolecules/special_issues/0XTJ2MAYET
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ers to cross cell membranes, via a process of either passive or active transport. Active
transport requires the cell to expend energy to move the materials, while passive trans-
port can be performed without using cellular energy [37]. Certain substances easily pass
through the membrane through passive diffusion, such as O2 and CO2, along with small
relatively hydrophobic molecules, fatty acids, and alcohols [37]. Mitochondria possess
double membranes, and the inner membrane contains cardiolipin. Cardiolipin is not the
main lipid that forms a phospholipid bilayer but fulfills other functions (e.g., stabilization
of protein complexes), because it contains four fatty acid residues, and is a non-bilayer
forming phospholipid [38,39]. It is known that cardiolipin is oxidized in mitochondria by
X-irradiation [40]. If the ROS are related to cell defense signal transduction, ROS must pass
through the membranes and exist in the cytosol to activate signal transduction. In this study,
in the mitochondria, we study which ROS can pass through the mitochondrial membrane.

In this paper, we try to clarify which ROS are responsible for signal activation in cytosol
through calculations and examination of the literature: •OH, singlet oxygen (1O2), HO2•,
•NO, •NO2, ONOO−, ONOOH. The dipole moments of ROS and RNS are calculated
using density functional theory (DFT) calculations. Possible candidates of ROS which
pass through the mitochondrial membrane and enter the cytosol to activate the signal
transduction pathway are estimated using the calculated dipole moment and experimental
permeability coefficient. In addition, the lifetime of each molecule is listed, and ROS that
escape from the mitochondria and act as initiators to activate signal transduction in the
cytosol are taken into consideration.

2. Materials and Methods
2.1. Theoretical Calculations of Dipole Moments for ROS and RNS

The dipole moments [41] were calculated according to the dipole information (Table 1). The
DFT calculations were performed using Gaussian 09 (Revision A.02, Gaussian, Inc., Walling-
ford, CT, USA) [42]. The calculations were performed on a 32-processor QuantumCubeTM

(Parallel Quantum Solutions, Fayetteville, AR, USA) at the B3LYP/6-311++G(3df,3pd) level
of theory [43–45] with a keyword “polar” to output the molecular polarity (electric dipole
moment in D (debye)) [46]. Graphical outputs of the computational results were generated
using the GaussView software program (ver. 3.09) developed by Semichem, Inc., Shawnee,
KS, USA [47]. The dipole moments were calculated for various ROS and RNS; we calculated
the dipole moments of major ROS and RNS that exist in the mitochondria (Table 1): hy-
droxyl radical (•OH), superoxide (O2

•−), hydroperoxyl radical (HO2•), nitric oxide (•NO),
nitrogen dioxide (•NO2), peroxynitrite (ONOO−), and peroxynitrous acid (ONOOH). We
also listed the number of molecules of water (H2O) and hydrogen peroxide (H2O2).

Table 1. Calculated dipole moment and experimental permeability coefficient of ROS and RNS.

ROS or RNS Calculated Dipole Moment/D Permeability Coefficient/cm s−1

H2O Water 1.89 2.3 × 10−3 [48]

H2O2 Hydrogen peroxide 0.00 (permeable) 6.1 × 10−3, 6.6 × 10−4 [49]

•OH Hydroxyl radical 1.67

O2
•− Superoxide 0 1 × 10−6 (pH 7.3, 25 ◦C) [50]

(7.6 + 0.3) × 10−8 [51]

HO2• Hydroperoxyl radical 2.23 4.9 × 10−4 [51]

•NO Nitric oxide 0.14 (permeable) 93 (20 ◦C) [52]

•NO2 Nitrogen dioxide 0.35 [53] and discussion in the text

ONOO− Peroxynitrite 2.14 Through anion exchanger [54]
8.0 × 10−4 [55]

ONOOH Peroxynitrous acid 1.77 4–13 × 10−4 [56–58]
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2.2. Predictive Performance of Mitochondria-Originating Reactive Oxygen Species

The predictive performance of mitochondria-originating reactive oxygen species in-
cluded the following parameters: the intracellular amount (amount/cell); the half-life;
the diffusion distance (µm); permeability coefficients (Pm) (in cm s−1); the one-electron
reduction potential (Eo) (in V vs. NHE, NHE: normal hydrogen electrode) at pH 7.4; pKa;
and the rate constants for the reaction with ascorbate (AscH−) (k (AscH−)/M−1 s−1) and
glutathione (GSH) (k (GSH)/M−1 s−1) for various ROS and RNS. We focused on ROS gen-
erated from the mitochondrial electron transport chain (mtETC). The ROS studied included
•OH, singlet oxygen (1O2), O2

•−, HO2•, •NO, •NO2, ONOO−, ONOOH, alkoxyl radicals
(RO•), and peroxyl radicals (ROO•). The H2O, oxygen (O2), and H2O2 were also listed.
Those radicals were initiated from O2

•−, starting from electron leakage from the ETC and
then binding with O2. Then, the O2

•− changed form to become other ROS, such as •OH,
singlet oxygen (1O2), HO2•, •NO, •NO2, ONOO−, and ONOOH, in the mitochondria [2].
•OH and •NO2 are constructed by the binding of O2

•− and •NO. This information was
collected from the literature listed in the Table 2 references. To exit the mitochondrial
membrane into the cytosol, the ROS should be present in an appropriate amount and have
a long half-life, long diffusion distance, large Pm and Eo, and relatively small rate constants
for the k (AscH−)/M−1 s−1) and k (GSH)/M−1 s−1).
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Table 2. Predictive performance of mitochondria-originating reactive oxygen species.

ROS or RNS Half-Life Time Amount/Cell Diffusion Distance (µm)
Permeability Coefficients (Pm)

(cm s−1)
Eo ′ ; One-Electron Reduction

Potential (V) at pH 7
pKa k (AscH–)/M−1 s−1 k (GSH)/M−1 s−1

H2O Water —- —- —- 3.3 × 10−3 (EYPC) [59]
−2.87 [60]
−2.87 [61] 15.7 [62] —- —-

O2 Oxygen —- —- —-

12 (DMPC) [59]
125 (DMPC) [59]
114 (DOPC) [59]
157 (POPC) [59]
50 (EYPC: 30% Chol) [59]
38 (RBC human) [59]
21 (CHO cells) [59]
42 (CHO cells) [59]

−0.18 (pH 7) [60]
−0.33 [61]
−0.16 [63]
−0.18 (pH 7, 25 ◦C) [64]

—- —- —-

•OH Peroxynitrous acid

10−9 s [65]
10−9~10−6 s (diffusion-controlled
reactivity) [66]

10−10 s [67]
10−9 s (1 M, 37 ◦C) [68]
10−9 s [69]

—-

3 Å [70]
A large flux of hydroxyl radicals would
be required to inactivate a substantial
fraction of any biological target [70]
0.02 (GSH+) [71]

—-

+2.32 (pH 7) [60]
+2.31 [61]
+2.31 (pH 7, 25 ◦C) [64]
+2.31 [72]
+2.31 (pH 7) [73]

11.9 [62]
11.6 [74]

1.1 × 1010

(pH 7.4) [61]

1.0 × 1010 [72]
1.64 ± 0.01 × 1010 [74]
1 × 109 [75]
8.8 × 109 (pH 1.0) [76]

9.0 × 109 (pH 7.6) [77]

1 × 1010 [78]
1.1 × 1010 (oxidized GSH) [79]
1.4 × 1010 (reduced GSH) [79]
1.4 ± 0.1 × 1010 (pH 7.8) [80]

4.4 ± 0.5 × 1010 (pH 10.6) [80]

2.3 × 1010 [81]
4.4 ± 0.5 × 1010 (pH 10.6) [82]

1O2 Singlet oxygen

10−6 s [65]
10−6 s [67]
10−6 s (solvent, 37 ◦C) [68]
10−5 s [69]
10−9~10−6 s [83]

—- —- —- +0.81 (pH 7, 25 ◦C) [64] —- 3.2 × 108 [83]
1.8 × 108 [84]

9.39 ± 0.07 × 108 [74]

H2O2 Hydrogen peroxide

Stable [65]
Stable)
Stable, decomposed by catalase and
GSH peroxidase and by EDTA and
ADP [68]
Enzymatic [69]
18.1 ± 2.7 min [82]

Physiological condition (prolifera-
tion/differentiation/migration/angiogenesis):
0.001~0.1 µM)
Stress responses/adaptation (e.g.,
NRF2): 0.05~5.0 µM [85]
Inflammation/fibrogenesis/tumor
growth/metastasis: 0.01~10.0 µM [85]
Growth arrest/cell death: 1.0~10.0 µM [85]

1600 (GSH+) [78]

6 × 10−4 (RBC horse) [59]
3 × 10−3 (peroxisome rat liver) [59]

1.2 × 10−2 (RBC rat) [59]
2 × 10−4 (Jurkat T cells) [59]
3.6 × 10−4 (Chara coralina) [59]
1.6 × 10−3 (Escherichia coli) [59]
4 × 10−4 (PC12 cells) [59]
1.6 × 10−3 (HUVEC cells) [59]
1.1 × 10−3 (IMR-90 cells) [59]
4.4 × 10−4 (HeLa cells) [59]

+0.39 (pH 7) [60]
+0.32 [61]
+1.77 [72]
+1.8 [78]
+0.39 (pH 7, 25 ◦C) [86]

11.6 [62]
11.75 (pH
7.2) [78] —-

9 × 10−1 [72]
9 × 10−1 [73]
9 × 10−1 (pH 7.4, 37 ◦C) [78]

8.7 × 10−1 [81]

O2
•− Superoxide

10−6 s [65]
1 s (pH 10) [66]

10−6 s (diffusion-controlled
reactivity) [66]

10−6 s [67]
The lifetime of superoxide in a cellular
environment in water would be
expected to be very short, too short to
permit diffusion for great distances [68]
Enzymatic [69]

3000 ms (10−6 M) [87]
175 ms (10−6 M + SOD 10−9 M) [87]
hours (10−9 M) [87]
175 ms (10−9 M + SOD 10−9 M) [87]
0.175 ms (10−9 M + SOD 10−6 M) [87]

28.4 pM (normal condition)/mitochondria [88]
Formation rate (to 6 µM/s) [88]
MnSOD-catalyzed dismutation

(k = 2 × 109 M−1 s−1) [88]
9.15 × 10−8 pmol
production/s/mitochondria *
690 nM production/s/mitochondria *

5.5 × 104 superoxide molecules
/s/mitochondria *

—-
2.1 × 10−6 (SBPC) [59]
7.6 × 10−8 (EYPC) [59]

+0.94 [72]
+0.94 [73] —-

1 × 105 (pH 7.4) [61]

2.7 × 105 (pH 7.4) [61]

~10 to 103 [72]
2 × 102 [81]
1.1 ± 0.04 × 103 [74]
6.7 × 105 (reduced GSH) (pH
7.8) [89]
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Table 2. Cont.

ROS or RNS Half-Life Time Amount/Cell Diffusion Distance (µm)
Permeability Coefficients (Pm)

(cm s−1)
Eo ′ ; One-Electron Reduction

Potential (V) at pH 7
pKa k (AscH–)/M−1 s−1 k (GSH)/M−1 s−1

HO2• Hydroperoxyl radical

51~422 s (pH 2~10) [90]
HO2• radicals in organic or lipophilic
media could have a longer half-life. The
half-life of superoxide cannot be
calculated unless the concentrations of
SOD and all reactive substrates are
known [67]

9.15 × 10−8 pmol
production/s/mitochondria *
690 nM production/s/mitochondria *

5.5 × 104 superoxide
molecules/s/mitochondria *

—- 4.9 × 10−4 (EYPC) [59]
+1.05 (pH 7) [60]
+1.06 [72]
+1.05 (pH 7, 25 ◦C) [86]

4 [62]
4.8 [89]
4.8 [90]
4.8 [91]

1 × 105 (pH 7.4) [61]

2.7 × 105 (pH 7.4) [61]
—-

•NO Nitric oxide

ms to s depending on the available
concentration of O2, otherwise
stable [66]
Second [67]
1~10 s [69]
445 s [92]
•NO:1200 nM in saline:
binding with Hb:

2 × 105 M−1 s−1 [92]
Seconds [93]

pM~µM [93]
pM~µM in physiological milieu [94]
cGMP-mediated
processes; <1~30 nM [95]
Akt phosphorylation; = 30~100 nM
stabilization of HIF-1α; = 100~300 nM [95]
phosphorylation of p53; > 400 nM [95]
nitrosative stress; 1 µM [95]

—-
73 (EYPC) [59]
66 (EYPC: 30% Chol) [59]
18 (RBC human) [59]

–0.52 (pH 7) [60]
–0.35 [63]
–0.80 [72]
–0.80 [73]

—- —-
Nondetectable [72]
1.0 × 101 [75]

•NO2 Nitrogen dioxide Second [67]
<10 µs [96] Typically 0.2~0.3 µM [96]

0.4 (GSH+) [78]
0.2 in the cytoplasm [96]
<0.8 in blood plasma [96]

~5 (EYPC) [59]

+1.04 (pH 7) [60]
+1.04 [63]
+1.04 [72]
+1.04 [73]

—-

1.8 × 107 [96]
3.5 × 108 [96]
3.54 × 106 (pH 5.4~6.5,
55 ◦C) [97]

3.0 × 107 [72]
2.2 × 107 [75]
3 × 107 [78]
2 × 107 [81]
~2 × 107 [96]

ONOO− Peroxynitrite

0.8 s (pH 7.4) [64]

10−3 s [67]
0.05~1 s [69]
0.8 s (pH 7.4) [98]
0.9 s [98]
Stable [98]
Relatively stable [99]
Less than 1 s (pH 7.4, 37 ◦C) [99]
0.8 s (pH 7.4) [100]

A total peroxynitrite and peroxynitrous acid
concentration that
exceeds 0.1 mM [101]

60 (GSH+) [78]
0.42 [101] —— —- —-

7 × 102 [78]
2.35 ± 0.04 × 102,
25 ◦C [91]

6.6 × 102 (pH 7.4, 25 ◦C) [71]

7.0 × 102 [73]
6.6 × 102 [75]
1.36 × 103 (pH 7.4, 37 ◦C) [78]

2.81 × 102 (pH 5.75, 37 ◦C) [100]

ONOOH Peroxynitrous acid

Fairly stable [67]
0.90 s, 25 ◦C [98]
Less than 1 s at physiological pH and
37 ◦C [99]
0.6 s; 1.13 s−1 in phosphate buffer (pH
7.4, 37 ◦C) [102]

A total peroxynitrite and peroxynitrous acid
concentration that exceeds 0.1 mM [101] —-

8 × 10−4 (DMPC) [59]
1.3 × 10−3 (EYPC) [59]
6.3 × 10−4 (DMPC) [59]
4 × 10−4 (DPPC) [59]

+1.40 [72]

6.8 [86]
6.8 [90]
6.8 [98]
6.8 [103]

—- 6.6 × 102 [72]
1.35 × 103 [81]

RO• Alkoxyl radicals
10−6 s [67]
10−6 s (100 mM) [68]
10−6 s [69]

—- —-
+1.60 [61]
+1.60 [72]
~+1.60 [73]

—- 1.6 × 109(pH 7.4) [61] 2.76 ± 0.15 × 106 [74]

ROO• Peroxyl radicals

Seconds to hours depending on
conditions [66]
17 s [67]
7 s (100 mM, 37 ◦C) [68]
7 s [69]

—- —-
+1.00 [61]
+0.77~1.44 [73]
+1.00 [72]

—- 1-2 × 106 (pH 7.4) [61] —-

Abbreviations: Chol, cholesterol; DLPC, dilauroylphosphatidylcholine; DMPC, dimyristoylphosphatidylcholine; DOPC, dioleoylphosphatidylcholine; DPPC, dipalmi-
toylphosphatidylcholine; EYPC, egg yolk phosphatidylcholine; POPC, palmitoyloleoylphosphatidylcholine; RBC, red blood cell. * Assuming a 70 kg man, O2 con-
sumption/day is estimated as 14.7 mol/day [14,104]. Assuming that 2% of electrons leak from the mitochondrial electron transport chain (ETC) and that these are
trapped by oxygen and made into superoxide, the superoxide production from the ETC is thus estimated as 3402.8 nmol/s. The number of cells/body is estimated as
3.72 × 1013 [105]. Thus, superoxide production is calculated as 5.51 × 107 mol/s/mitochondria. Assuming that the volume of mitochondria is 1.32 × 107 m3, then consider-
ing mitochondrial volume, 1.32 × 10−16 m3, superoxide production is estimated as 6.90 × 102 µmol/s/m3. It is noted that this number is the amount of superoxide produced and that
superoxide is modified by other molecules and enzymes, and thus the amount of superoxide existing in cells is much less.
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3. Results

The results for the calculated dipole moment (in D) and experimental permeability
coefficient (in cm s−1) are listed in Table 1.

Table 2 shows the predictive performance of the mitochondria-originating ROS. The
intracellular amount (amount/cell); the half-life; the diffusion distance (µm); permeability
coefficients (Pm; cm s−1); Eo, the one-electron reduction potential (V vs. NHE) at pH 7.4;
pKa; and the rate constants for the reaction with ascorbate (AscH−) (k (AscH−)/M−1

s−1) and glutathione (GSH) (k (GSH)/M−1 s−1) were examined. For considerations of
reactions of ROS in the mitochondria, we used AscH− and GSH. Finally, we detected the
ONOOH and HO2• for the responsible ROS, which crossed the mitochondrial membrane
and initiated the intracellular signaling in cytosol (Figure 1).
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Figure 1. In the mitochondria, 2~3% of electrons leak from the electron transport chain (ETC), and
then oxygen traps the electrons, turning them into superoxide anions (O2

•−), and subsequently
various ROS are produced: •OH, 1O2, H2O2, O2

•−, HO2•, •NO, •NO2, ONOO−, and ONOOH. In
the intermembrane space, ten times higher amounts of H+ (protons) exist compared to those in the
matrix. Among the ROS, ONOO− and HOO• (HO2•) can couple with H+, and ONOOH and HOO•
are produced and penetrate through the membrane, entering the cytosol to initiate intracellular
signals, such as NF-κB and Nrf2.

4. Discussion

Majima et al. were the first to report that reactive oxygen species (ROS) generated
from the mitochondria promote apoptosis [106], while Itoh et al. described the func-
tion of the Nrf2-Keap1 intercellular signal for the first time [107,108]. A recent study
described that ROS generated from the mitochondria initiates cellular transduction in the
cytosol [34,35]. The further roles of ROS and the subsequent intracellular signals, proteins,
and molecule transport change need to be clarified. The establishment of cellular signal-
ing and metabolism change based on mitochondrial ROS augmentation is in demand.
Thus, studies on the physiological and pathological functions of mitochondrial ROS will
be necessary.

This paper aims to consider the roles of mitochondrial ROS in the activation of in-
tracellular signals. The dipole potential (represented by Ψd) is shown as the potential
difference that arises due to the nonrandom orientation of dipolar residues of the lipids and
associated water molecules within the membrane [109,110]. ROS with a positive or negative
charge cannot escape mitochondria by passive diffusion through phospholipid bilayer due
to their large number of dipoles. The results of the dipole moments (Table 1) show that
H2O2 is permeable (the dipole moment is 0.00 D). The dipole moment of •NO2 was 0.35 D,
indicating permeability. Although the dipole moment of O2

•− is 0.00 D, the negative
charge in O2

•− precludes its penetration into the membrane. ONOO− is non-permeable.
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H2O (with a dipole moment of 1.89 D), •OH (with a dipole moment of 1.67 D), ONOOH
(with a dipole moment of 1.77 D), and HO2• (with a dipole moment of 2.23 D) might
be permeable. The candidates that can escape from the mitochondria include ROS with
small dipole moments, i.e., H2O2, •NO, •NO2, HO2•, ONOOH, •OH, and H2O. It is well
known that •NO2 reacts with urate, ascorbate, and GSH at 107 M−1 s−1 [96]. Therefore, the
reaction of •NO2 with specific targets in the cytoplasm, where GSH is present at µM~mM
levels [111,112], likely occurs with very low frequency [113]. The candidates that can escape
from the mitochondria thus include ROS with small dipole moments, i.e., H2O2, HO2•,
ONOOH, •OH, and •NO.

The reactivity of ROS/RNS should be essential. However, if the molecules disappear in
a short period, there is less chance of the reaction occurring. A greater amount, a long half-
life, a greater diffusion distance, a greater Pm, a greater I, a greater one-electron reduction
potential, a smaller pKa, and greater rate constants for the reaction with ascorbate and GSH
would be preferable for the studied ROS/RNS. Molecules with electrical charges cannot
pass the phospholipid bilayers of mitochondrial membranes [36]. Short-lived molecules,
such as •OH, are difficult to contribute to intracellular signaling due to the characteristics
of the short-lived molecule (Table 2). For signal activation inside the cytosol, again, H2O2,
HO2•, ONOOH, •OH, and •NO can be selected as candidates (Table 2).

It is also essential to consider the conditions that ROS/RNS must overcome to pass
through the mitochondrial membrane to become signaling molecules in the cytosol. The
plasma membrane consists of both lipids and proteins. The fundamental structure of the
membrane is the phospholipid bilayer, which forms a stable barrier between two aqueous
compartments. [36]. Most biologically important solutes require protein carriers to cross
cell membranes via a process of either passive or active transport. Active transport requires
the cell to expend energy to move the materials, while passive transport can be achieved
without using cellular energy [37]. Certain substances easily pass through the membrane via
passive diffusion, such as O2 and CO2, along with small relatively hydrophobic molecules,
fatty acids, and alcohols [37]. In this study, in the mitochondria, we study which ROS can
pass through the mitochondrial membrane.

The ROS produced in the mitochondrial matrix can pass through the two membranes
in the mitochondria and enter into the cytosol in order to initiate intracellular signals.
Lynch and Fridovich (1978) addressed the question of whether superoxide permeates
membranes [114]. The pH of the intermembrane space is lower than that in the matrix due
to proton pumping into the intermembrane space; in the intermembrane space (IMS), the
concentration of protons is about ten times higher than in the matrix [115]. The pH values
obtained were 6.88 ± 0.09 in the IMS, 7.78 ± 0.17 in the matrix, and 7.59 ± 0.01 in the cytosol
using a human endothelial cell line, ECV304. [103]. HO2• and O2

•− are of considerable
importance in oxidation processes, and the pKa of HO2•/O2

•− is 4.8 [62,90]. Therefore,
at the physiological pH, HO2• hardly exists. In addition to covalent, there is also ionic
bonding. There are almost 10 times more protons in the IMS compared to in the matrix.
Thus, it may be possible for H+ to bind anion molecules, leading to protonation [116].
ROS produced in the mitochondria, HOON- and O2

•−, can be easily protonated in the
IMS through ionic bonding. Whereas O2

•− generated in the mitochondrial matrix may
be easily and completely detoxified by mitochondrial SOD, any O2

•− generated on the
outside of the inner membrane will have a longer lifetime and, due to the more acidic
environment there than in the matrix, it is likely that O2

•− will be protonated to HO2• and
react with a phospholipid in the membrane [117]. Which radicals can penetrate through
the mitochondrial membrane? Gus’kova et al. (1984) determined the permeability of the
liposomal membrane for O2

•− and HO2•, being P’O2
•− = (7.6 + 0.3) × 10−8 cm s−1 and

P’HO2• = 4.9 × 10−4 cm s−1, respectively [51]. Cordeiro (2014) described simulations that
showed that molecular oxygen (O2) accumulated at the interior membrane. Superoxide
(O2

•−) radicals and hydrogen peroxide (H2O2) remained in the aqueous phase and could
not enter the membrane. Both hydroxyl (•OH) and hydroperoxyl (HO2•) radicals were
able to penetrate deep into the lipid headgroup region in the membrane [118]. ROS are
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produced in the mitochondria, and to establish which ROS can pass through the membrane,
we needed to establish the interactions between ROS and the lipid membrane. Cordeiro
evaluated HO2, O2

•−, •OH, and H2O2 in terms of the residence times in the phospholipid
headgroup region, reported in units of ns [118]. The results show that HO2 and O2

•− have
residence times of 17.3 and 12.4 ns, respectively, while •OH and H2O2 have residence times
of 3.8 and 1.5 ns, respectively. A longer residence time suggests a higher affinity for the
ROS and phospholipids, and a shorter residence time suggests a lower affinity for the ROS
and phospholipids. O2

•− in the mitochondrial intermembrane space can penetrate the
outer membrane mitochondrial membranes through voltage-dependent anion channels
(VDACs) [114,119]. However, how much O2

•− can penetrate through VDACs is unknown.
It may be possible for HO2• to pass through the membrane without difficulty.

5. Conclusions

As a result, HO2• and ONOOH were found to be the top candidates to initiate
intracellular signaling among the mitochondrial ROS from Tables 1 and 2. Figure 1 shows
the possible ROS that can initiate signal transduction in cells, which are HO2• and ONOOH.
Further experiments to prove that HO2• and ONOOH go out of mitochondria and initiate
signals inside cells will be necessary.
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