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Abstract: Treatment of aging rats for 6 months with ladostigil (1 mg/kg/day) prevented a de-
cline in recognition and spatial memory and suppressed the overexpression of gene-encoding pro-
inflammatory cytokines, TNFα, IL1β, and IL6 in the brain and microglial cultures. Primary cultures
of mouse microglia stimulated by lipopolysaccharides (LPS, 0.75 µg/mL) and benzoyl ATPs (BzATP)
were used to determine the concentration of ladostigil that reduces the secretion of these cytokine pro-
teins. Ladostigil (1 × 10−11 M), a concentration compatible with the blood of aging rats in, prevented
memory decline and reduced secretion of IL1β and IL6 by ≈50%. RNA sequencing analysis showed
that BzATP/LPS upregulated 25 genes, including early-growth response protein 1, (Egr1) which
increased in the brain of subjects with neurodegenerative diseases. Ladostigil significantly decreased
Egr1 gene expression and levels of the protein in the nucleus and increased TNF alpha-induced
protein 3 (TNFaIP3), which suppresses cytokine release, in the microglial cytoplasm. Restoration of
the aberrant signaling of these proteins in ATP/LPS-activated microglia in vivo might explain the
prevention by ladostigil of the morphological and inflammatory changes in the brain of aging rats.

Keywords: aging rats; NFκB; NLRP3 inflammasome; P2x7 receptor; primary murine microglia;
RNA-seq

1. Introduction

Microglia are the resident immune cells in the brain. In a healthy adult brain, microglia
have a ramified morphology and long processes [1]. They are involved in the integration
of new neurons into neuronal circuits, which is important for learning, memory, and
cognition [2]. In response to injury, microglia contract their processes, assume an amoeboid
shape, and proliferate and migrate toward the site of injury. ATP, released from injured
neurons, stimulates purinergic receptors on the microglial membrane, triggering an efflux
of K+ that activates the nucleotide-binding oligomerization domain-(NOD)-LRR and pyrin
domain inflammasome (NLRP3) and converts procaspase-1 to caspase-1 [3]. This enables
the processing and secretion of IL1β and other pro-inflammatory cytokines [4].

Microglia have retracted processes in the aging brain [5] in which cell damage results
from a decline in mitochondrial activity and antioxidant defense mechanisms [6,7]. They
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also have higher levels of pro-inflammatory cytokines and express cytokine receptors,
which could contribute to neurodegeneration and memory impairment [8,9].

Basal levels of TNFα are necessary for regulating synaptic transmission and plastic-
ity [10], while IL1β levels are needed to regulate long-term potentiation (LTP) that underlies
learning and memory [11]. However, excess amounts of these cytokines can impair these
cellular processes [12], as demonstrated by the direct injection of IL1β into the brain, which
inhibits hippocampal LTP [13,14]. Also, greater levels of brain IL6 are linked to synapse
loss and deficits in avoidance learning in mice [15].

Oxidative stress and cytokines activate signaling pathways, such as the mitogen-
activated protein kinase (MAPK) family of proteins in immune cells [16]. MAPKs consist
of three main families: extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase
(JNK), and p38 [17]. IL1β activates MAPK p38 and JNK and increases the nuclear factor
kappa-light-chain-enhancer of activated B cells (NFκB) [18], which is strongly associated
with age in mice and humans [19]. NFκB is increased in the brains of subjects with
neurodegenerative diseases [20]. This finding prompted a search for novel therapies to
slow age-related memory impairment by inhibiting the nuclear translocation of NFκB [21].

For this purpose, we developed ladostigil (6-(N-ethyl, N-methyl carbamyloxy)-N
propargyl-1(R)-aminoindan hemitartrate), which significantly reduced the mitochondrial
potential in cells subjected to oxidative–nitrative stress and decreased malonaldehyde, a
measure of oxidative stress, in the cerebral hemispheres of mice, induced by the injection
of a lipopolysaccharide (LPS) [22] (Panarsky, 2012). In primary mouse microglial cultures
activated by LPS, ladostigil reduced the nuclear translocation of NFκB and phosphorylation
of ERK1/2 and p38 and downregulated the gene expression of TNFα, IL6, and IL1β [23].
In addition, when ladostigil was administered at a dose of 1 mg/kg/day for 6 months to
16-month-old rats, it prevented a decline in recognition and spatial memory [24]. It also
suppressed the increase in mRNA of TNFα, IL6, and IL1β induced by aging [23] (Panarsky
et al., 2012) and genes adversely affected by synaptic function in brain regions associated
with learning and memory [25].

The aim of the current study was to obtain a better understanding of the mechanism
through which ladostigil reduces cytokine release from microglia. The preparation of such
primary microglial cultures causes the loss of some membrane receptors that are activated in
the intact brain [26]. However, they still retain purinergic receptors for adenosine and ATP,
released in response to neuronal injury [27]. The activation of the (P2x7R) subtype results
in the processing and secretion of TNFα and IL1β in response to LPS [28]. The secretion
of IL1β can be achieved by adding 2′-3′-O-(4-benzoyl benzoyl) adenosine 5′-triphosphate
(BzATP), an agonist of P2x7R [29].

We first looked for the concentrations of ladostigil that would maximally inhibit the
secretion of IL1β, IL6, and TNFα proteins from microglia activated by a combination of
BzATP and LPS. Then, we measured the levels of ladostigil in the blood of the aging rats in
which a dose of 1 mg/kg/day had prevented memory decline to ascertain whether there
was enough of the drug in vivo to have affected cytokine release from microglia. Lastly,
we sought additional information about the cellular processes involved in these actions of
ladostigil, using RNA sequencing (RNA-seq) to perform a detailed analysis of its effect on
gene expression in the microglia.

2. Materials and Methods
2.1. Animals

Male Balb/C mice and Wistar rats purchased from Harlan Laboratories (Jerusalem,
Israel) were used in accordance with the National Research Council’s guide for the care and
use of laboratory animals. The Animal Care and Use Committee of the Hebrew University
approval #MD-19-15710-4 was for the mice, #MD-08-11537-3 was for the rats.
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2.2. Compounds and Reagents

Ladostigil was a gift from Spero Biopharma (Jerusalem, Israel). Dulbecco’s Modified
Eagle Medium/Nutrient Mixture F-12 (DMEM/F12) was used. Gentamycin sulfate and
L-Glutamine were obtained from Biological Industries (Beit-Haemek, Israel) and BzATP,
bovine serum albumin (BSA), and LPS were from Escherichia coli 055:B5, purified by
trichloracetic acid extraction from Sigma-Aldrich Israel Ltd. (Rechovot, Israel).

2.3. Preparation of Microglia

Primary microglia were isolated from the brains of neonatal Balb/C mice, as previously
described [30]. The brains were stripped of their meninges and enzymatically dissociated.
Cells were plated on Poly-L-lysine-coated flasks for one week, re-plated for 1 to 2 h
on bacteriological plates, and non-adherent cells were washed away. Microglia were
propagated by incubation in 20% of the medium, and conditioned by the L-cell line that
produces mouse-CSF. They were identified by morphology and positive immune reactivity
to P2y12, F4/80, complement receptor-3, and Galectin-3/MAC-2 [30].

2.4. Measurement of Cytokines

Cytokines were measured as previously described [31] using ELISA Max deluxe sets
(Biolegend, San Diego, CA, USA) for secreted TNFα and IL6 proteins and ELISA DuoSet
(R&D Systems, Minneapolis, MN, USA) for secreted and cell-associated IL1β, according
to the manufacturer’s instructions. BSA (0.1%) was used to provide the necessary protein
in place of the fetal calf serum used in our previous experiments [23], which was shown
to contain substances that can inhibit cytokine release [32]. We also ascertained that the
concentration of LPS (0.75 µg/mL) given together with BzATP did not affect cell viability
after 3 and 24 h using the MTT assay described by Denizot and Lang [33].

The effect of ladostigil on the secretion of cytokine proteins was measured at concen-
trations of 1 × 10−13 M to 1 × 10−9 M by adding it with BSA to microglia for 2 h before
LPS (0.75 µg/mL) and BzATP (400 µM). Other microglia were treated similarly with the
steroid budesonide as a reference standard at concentrations of 1 × 10−13–1 × 10−11 M.
Measurements of cytokine secretion were made 8 h after the addition of LPS and BzATP.
Since the levels of secreted IL1βTNF were still low, samples were concentrated 2- to 4-fold
by an Amicon ultra-centrifugal filter device (Merck-Millipore, Tullagreen, Carrigtwohill,
Co Cork, Ireland). ELISA was used to quantify the levels of cytokine proteins. Protein
content in the microglia lysate was measured by Bradford, and levels of cytokines were
calculated and presented as pg/µg of microglial protein. Each concentration of ladostigil
was tested in 18–30 replicates for TNFα and IL6 and 13–18 replicates for IL1β.

2.5. Measurement of Ladostigil in Rat Plasma

Measurements were made in 6 male Wistar rats aged 22 months weighing 720–790 gm
in which ladostigil (1 mg/kg/day) had been administered for 6 months in the drinking
water, which prevented the development of learning and memory deficits [24]. The rats
were lightly restrained while blood samples (0.2 µL) were taken from the tail vein between
09:00 and 12:00 into heparinized Eppendorf tubes. At the end of the experiment, blood
samples were also taken by cardiac puncture from some of the rats after terminal anesthesia.
They were centrifuged at 4 ◦C and 20,800 g for 10 min, and the plasma was stored at −80 ◦C
until analysis by liquid chromatography–mass spectroscopy analysis. After precipitating
plasma proteins with methanol, ladostigil was detected by an AB Sciex (Framingham,
MA, USA) Triple Quad™ 5500 mass spectrometer in positive ion mode by electrospray
ionization and a multiple reaction monitoring mode of acquisition using rivastigmine
hemitartarate as an internal standard, as described in Moradov et al. [34].

2.6. RNA-Seq of Microglia

Ladostigil (1 × 10−10 M) was added to microglia for 2 h before BzATP/LPS, as
described above. Cells were harvested before and 8 h after the addition of BzATP/LPS.
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Total RNA was extracted using the RNeasy Plus Universal Mini Kit (QIAGEN), according
to the manufacturer’s protocol. Total RNA samples (1 µg RNA) were enriched for mRNAs
by pull-down of poly (A). Libraries were prepared using a KAPA Stranded mRNA-Seq Kit,
according to the manufacturer’s protocol, and sequenced using Illumina NextSeq 500 to
generate 85 bp single-end reads (a total of 25–30 million reads per sample).

2.6.1. Bioinformatic Analysis

Next-generation sequencing data underwent quality control using FastQC, version
0.11.9 (accessed on 15 March 2021). They were then preprocessed using Trimmomatic [35]
and aligned to the reference genome GRCm38 with the STAR aligner [36] using default
parameters. Genomic loci were annotated using GENCODE version M25 [37]. Genes with
low expression were filtered out of the dataset by setting a threshold of a minimum of two
counts per million in three samples.

2.6.2. Gene Module Classification

Pair-wise differential analyses were performed on all three BzATP/LPS time points,
and genes with an FDR < 0.01 were considered. Only the genes with an absolute log
fold-change of >0.5 across two consecutive time points were labeled up- or downregulated.

2.7. Immunocytochemistry

For immunocytochemistry, microglia cells were plated on 12 mm round glass cover-
slips in 24-well sterile plates (NUNC A/S, Roskilde, Denmark) in DMEM and low glu/10%
FCS-HI. Non-adherent cells were washed out after 3–4 h. Adherent microglia were incu-
bated overnight in 0.1% BSA/DMEM/F12 and then used in experiments identical to those
carried out for testing cytokine secretion. To study the expression of TNF alpha-induced
protein 3 (TNFaIP3, A20) protein, ladostigil (1 × 10−10 M) was added to the microglia for
2 h before BzATP/LPS, and measurements were made after 8 h. TNFaIP3 was visualized
by immunofluorescence confocal microscopy (Zeiss Confocal LSM 980) using an antibody
against TNFaIP3 (A20; Abcam # 92324). Microglia were fixed for 15 min in 4% methanol-
free formaldehyde, permeabilized for 10 min in 0.1% Triton X100, and blocked for 1 h in
10% FCS in PBS. Anti-TNFaIP3 Ab (diluted 1/200 in PBS/FCS) was added to the microglia
in wet chambers overnight at 4 ◦C. Cy3-labeled secondary Ab goat and anti-rabbit (in
PBS/FCS) were applied for 1 h followed by Alexa Fluor 488phalloidin and Dapi staining.
Randomly sampled microglia were scanned by a confocal microscope at one plane that
ran through the middle of their nuclei. Immunofluorescence levels in the cytoplasm of
Cy3-labeled TNFaIP3 were determined by IMARIS software, Version 10.1. Optical slices
of cells, 1 µm thick, were scanned sequentially and used to produce the shown maximal
intensity projection images (Zeiss Zen 3.3 software). We estimated the concentration of
TNFaIP3 by determining the intensity/unit area to take into account any differences among
the microglia in the volume of their cytoplasm. By sampling all the cells in the same plane
that runs through the center of the cell nucleus, we neutralized any preferential localization
of TNFaIP3 within the cell.

To study the expression of early growth response (EGR) 1 protein, the same protocol was
used as TNFAIP3 protein with some modifications. Ladostigil (1 × 10−10 M) was added to
microglia for 2 h before BzATP/LPS, and measurements were made after 3 h. EGR1 protein
(red) was visualized by immunofluorescence microscopy using a monoclonal antibody against
Egr1 (cell signaling, #4153). Randomly selected low-power fields that were scanned in the
same plane that runs through the center of cell nuclei were used to determine the percentage
of microglia that displayed positive EGR1 protein immunoreactivity in their nuclei.

2.8. Statistics

The cytokine quantification data were analyzed in samples of at least 24 replicates
using one-way analysis of variance (ANOVA) by IBM SPSS Statistics Version 25 followed by
Duncan’s post hoc test. The assumption of the homogeneity of variances was verified using
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the Brown–Forsythe test for equality of group variances. Comparing two experimental
groups, a two-sample t-test was performed. Results from experiments on cell viability,
cytokine secretion from microglia, and TNFaIP3 in microglial cytoplasm are presented as
mean ± SEM. Plasma levels of ladostigil are presented as mean ± SD. p-values of < 0.05
were considered statistically significant. Measures of TNFAIP3 in microglia were analyzed
by a Kruskal–Wallis non-parametric test, and Egr1 in microglial nuclei was analyzed by
Dunnett’s multiple comparison test. Principal component analysis (PCA) was performed
using the R-base function “prcomp”. EdgeR was used to perform RNA read counts by the
trimmed mean of the M-values normalization of RNA (TMM) and differential expression
analysis [38]. Gene-set and KEGG pathway enrichment analyses were performed using the
“goana” and “kegga” functions (respectively) in the “limma” R package [39]. Figures were
generated using the ggplot2 R package.

3. Results
3.1. Ladostigil Concentration in the Plasma of Old Rats

The mean (±SD) plasma concentration of ladostigil in samples taken from six rats
after they had been given ladostigil (1 mg/kg/day) in the drinking fluid for six months
was 2.39 ± 1.08 ng/mL (8.75 ± 3.95 nM).

3.2. Effect of Ladostigil on Cytokine Release from Activated Microglia

The effect of BSA (0.1%) with LPS 0.75 µg/mL and BzATP (400 µM) on cell viability
in arbitrary units after 3 h was 0.026 ± 0.002 and 0.029 ± 0.004 after 24 h. It did not
differ from BSA, which was 0.025 ± 0.002 at both time points. The lowest concentration
of ladostigil tested in microglia that significantly decreased cytokine secretion induced
by BzATP/LPS was 1 × 10−13 M for TNFα and IL6, and 1 × 10−12 M for IL1β. Maximal
reductions of ≈50% for IL6 and IL1β were obtained by ladostigil (1 × 10−11–1 × 10−9 M).
At all concentrations of ladostigil and budesonide tested, the reductions of IL6 were greater
than TNFα, (p < 0.001). Reductions of IL1β by ladostigil (1 × 10−9 M) and budesonide
(1 × 10−11 M) were also greater than TNFα (Figure 1). The greater effect of ladostigil on the
release of IL6 than TNFα, which is also seen after budesonide, may be due to the differential
regulation of these cytokines by EGR1 [40].
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BSA. ANOVA for TNFα; F5,275 = 85.4, p < 0.0001; IL6; F5,282 = 141.7, p < 0.0001; IL1β; F4,73 = 18.14,
p < 0.0001. All concentrations of ladostigil and budesonide tested reduced the three cytokines;
** p < 0.01. This was significantly different from the value for TNFα; # p < 0.05.

3.3. Effect of Ladostigil on Genes in Microglia Assessed by RNA-seq

The reproducibility of the normalized RNA-seq read counts was assessed by perform-
ing PCA analysis for each biological sample. The biological replicates clustered tightly
together, confirming the low variability within each experimental group. The sample vari-
ability (within and between groups) is illustrated by the first two principal components that
comprise >83% of the variation. Only four DE genes were affected by ladostigil treatment in
resting, unstimulated microglia (Figure 2A), but the expression of 25 genes was significantly
altered 8 h after their activation by BzATP/LPS (Figure 2B) when ladostigil produced its
inhibitory effect on cytokine secretion.

Figure 2. Ladostigil treatment alters gene expression in BzATP/LPS-activated microglia. (A) Volcano
plots showing the log-fold change vs. −log10 (p-value), as calculated by edgeR, and differential
expression analysis in ladostigil-treated microglia compared to untreated cells. (B) Volcano plots
showing the log-fold change vs. −log10 (p-value) of ladostigil-treated microglia 8 h after the addition
of BzATP/LPS. Blue dots indicate genes that are downregulated and red dots indicate genes that are
upregulated by ladostigil. Cut-off value, ±0.5.

Among these were early-growth response proteins 1 and 2 (Egr1 and Egr2), matrix
metalloproteinase (Mmp), Mmp 12, the tissue inhibitor of metalloprotease 1 (Timp1), and
platelet-derived growth factor β (Pdgf-β) which were all downregulated by ladostigil.
TNFaIP3 was upregulated (Figure 3A,B).

The connected genes with a STRING score of >0.6 are shown in Figure 4. The network
connectivity is highly significant (p-value: 2.2 × 10−4).
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Figure 3. Genes altered by ladostigil treatment. (A) Bars show the change caused by ladostigil in
gene expression in microglia after BzATP/LPS-induced activation. Bars on the right show genes that
were upregulated and bars on the left show genes that were downregulated. Cut-off value, ±0.5.
(B) Selected, differentially expressed genes after BzATP/LPS treatment, with or without ladostigil.
Significantly different from the unstimulated control, ** p < 0.01, *** p < 0.001; significant effect of
ladostigil, # p < 0.05; ## p < 0.01 ### p < 0.001.

Figure 4. STRING protein–protein interaction network. Differentially expressed genes 8 h after
BzATP/LPS activation with and without ladostigil. All clusters are labeled by their main cellular
functions, and the larger connected network (red color) is partitioned into sub-clusters for functional
annotation. The letter U in the node indicates upregulated genes. The other nodes are downregulated
genes. STRING protein–protein interaction enrichment, p = 2.2 × 10−4.
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3.4. Ladostigil Treatment Increases TNFaIP3 Protein in BzATP/LPS-Activated Microglia

The addition of BzATP/LPS to microglia caused a small but significant increase in
TNFaIP3 protein in the cytoplasm (p < 0.05). This was increased further (p < 0.001) by the
addition of ladostigil (1 × 10−10 M) (Figure 5 and Table 1).
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Figure 5. Ladostigil increases levels of TNFAIP3 protein immunoreactivity in microglial cytoplasm
in the presence of BzATP/LPS. Three representative high-power immunofluorescence confocal
microscopy images of single microglia are displayed: (A,a), medium with 0.1% BSA; (B,b) medium
plus BzATP/LPS; and (C,c) medium plus ladostigil + BzATP/LPS. TNFAIP3 protein was visualized
(red) by immunocytochemistry using an antibody against TNFAIP3 protein, F-actin (green) by Alexa
488-labeled phalloidin, and nuclei (blue) by DAPI staining. Optical slices of phagocytes, 1 µm thick,
were scanned sequentially and used to produce the shown maximal intensity projection images
(Zeiss Zen 3.3 software). TNFAIP3 protein immunoreactivity is detected in the cytoplasm but not
the nuclei (a–c). In fields (A–C), TNFAIP3 protein-positive immunoreactivity, F-actin and nuclei are
displayed. In fields (a–c), only TNFAIP3 protein-positive immunoreactivity and nuclei are displayed.
Calibration bars: 10 µm.

Table 1. Quantification of TNFAIP3 protein in the microglial cytoplasm.

Treatment N Mean Fluorescence Intensity ± SEM (AU/µm2)

Medium 32 19.8 ± 0.6
BzATP/LPS 53 23.3 ± 1.0 *

Ladostigil + BzATP/LPS 58 28.8 ± 0.9 ***###

Randomly selected fields (as those shown in Figure 5) were used. N = number of fields sampled. Significance of
difference by ANOVA, p < 0.0001, and Bonferroni’s multiple comparison test; medium vs. BzATP/LPS * p < 0.05
and medium vs. ladostigil + BzATP/LPS, *** p < 0.001; BzATP/LPS vs. ladostigil + BzATP/LPS, ### p < 0.001.

3.5. Ladostigil Treatment Decreases EGR1 Protein in the Nucleus of BzATP/LPS-Activated Microglia

The addition of BzATP/LPS to microglia significantly increased the number of mi-
croglia containing EGR1 protein in their nuclei (p < 0.001). This was decreased significantly
(p < 0.001) by ladostigil (Figure 6 and Table 2).
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not the nuclei (a, b, and c). In fields (A–C), TNFAIP3 protein-positive immunoreactivity, F-actin and 
nuclei are displayed. In fields (a–c), only TNFAIP3 protein-positive immunoreactivity and nuclei 
are displayed. Calibration bars: 10 µm. 

Table 1. Quantification of TNFAIP3 protein in the microglial cytoplasm. 

Treatment N Mean Fluorescence Intensity ± SEM (AU/µm2) 
Medium 32 19.8 ± 0.6 

BzATP/LPS 53 23.3 ± 1.0 * 
Ladostigil + BzATP/LPS 58 28.8 ± 0.9 ***### 

Randomly selected fields (as those shown in Figure 5) were used. N = number of fields sampled. 
Significance of difference by ANOVA, p < 0.0001, and Bonferroni’s multiple comparison test; me-
dium vs. BzATP/LPS * p < 0.05 and medium vs. ladostigil + BzATP/LPS, *** p < 0.001; BzATP/LPS vs. 
ladostigil + BzATP/LPS, ### p < 0.001. 

3.5. Ladostigil Treatment Decreases EGR1 Protein in the Nucleus of BzATP/LPS-Activated 
Microglia 

The addition of BzATP/LPS to microglia significantly increased the number of micro-
glia containing EGR1 protein in their nuclei (p < 0.001). This was decreased significantly 
(p < 0.001) by ladostigil (Figure 6 and Table 2). 

 
Figure 6. Ladostigil decreases the number of microglia displaying positive EGR1 protein immuno-
reactivity in their nuclei induced by BzATP/LPS treatment. Three representative low-power immu-
nofluorescence confocal microscopy fields are displayed: (6A,a) medium with 0.1% BSA; (6B,b) me-

Figure 6. Ladostigil decreases the number of microglia displaying positive EGR1 protein immunoreac-
tivity in their nuclei induced by BzATP/LPS treatment. Three representative low-power immunofluo-
rescence confocal microscopy fields are displayed: (A,a) medium with 0.1% BSA; (B,b) medium plus
BzATP/LPS; (C,c) ladostigil + BzATP/LPS. Egr1 was visualized using immunocytochemistry and a
monoclonal antibody against EGR1; nuclei (blue) were visualized using DAPI staining, and EGR1
(red), overlaying nuclei appear pink. In fields (A–C), both EGR1 protein-positive immunoreactivity
and nuclei are displayed. In fields (a–c), only EGR1 protein-positive immunoreactivity is displayed.
Calibration bars: 20 µm.

Table 2. Quantification of EGR1 protein immunoreactivity in microglial nuclei.

Treatment N Mean Percent of Nuclei with Positive EGR1
Protein Immunoreactivity ± SEM

Medium 32 19.0 ± 4.2
BzATP/LPS 53 82.3 ± 3.7 ***

Ladostigil + BzATP/LPS 58 56.0 ± 3.9 ***###

Randomly selected fields (as those shown in Figure 5) were used. N = number of fields sampled. Significance
of difference by ANOVA, p < 0.0001, and Bonferroni’s multiple comparison test; medium vs. BzATP/LPS and
medium vs. ladostigil + BzATP/LPS, *** p < 0.001; BzATP/LPS vs. ladostigil + BzATP/LPS, ### p < 0.001.

4. Discussion

The dysfunction of mitochondria and the generation of reactive oxygen species (ROS)
occur in the aging brain and are early contributory events to neurodegeneration and
Alzheimer’s disease (AD) [6,7]. ROS releases ATP [41], which activates purinergic A2A
receptors (A2AR) on the microglia membrane, causing them to retract their processes [42].
A2AR and P2x7 receptors (P2x7R) are upregulated in the brains of patients with AD [43]
and in the hippocampus of aging rats with memory impairment. The stimulation of A2AR
in the brain by ATP further increases neurodegeneration [44], while the activation of P2x7R
on microglia releases several pro-inflammatory cytokines [28]. In the current study, the
addition of BzATP to activate P2x7R in microglial cultures in addition to LPS enabled
the measurement of IL1β protein secretion. Both IL1β and IL6 decreased by ≈50% at
concentrations of ladostigil of 0.01–1 nM.
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Chronic treatment with ladostigil (1 mg/kg/day) in aging rats prevented the upregu-
lation of A2AR and memory decline [25]. The mean plasma concentration of ladostigil in
these rats was found to be 2.39 ± 1.08 ng/mL or 8.75 ± 3.95 nM. However, ladostigil was
not measured in the brain of the aging rats, and peak concentrations in the cerebral cortex in
young adult rats after acute oral administration of 5 mg/kg were ≈25% of those in plasma
(unpublished observations). Assuming a similar plasma-cortical ratio after the chronic
administration of 1 mg/kg/day in aged rats, a concentration of ≈2.2 nM is obtained. After
s.c. injection of 5 mg/kg in mice, the concentration of ladostigil in the brain was also 25–50%
of that in plasma [34]. Since a dose of 1 mg/kg/day also decreased the gene expression of
TNFα, IL6, and IL1β in the brain [23], it is reasonable to assume that there could have been
enough ladostigil in the brain of the aging rats to have reduced cytokine release.

Cytokine secretion from microglia activated by LPS and BzATP was accompanied
by a significant upregulation of transcription factors, Egr1, Egr2, and PDGF-β. Egr1 and
Egr2 are downstream signaling targets of P2x7R [40] that increase in LPS-activated mixed
astrocyte–microglial cultures [45]. Egr1 is rapidly and transiently induced in different cell
types in response to a variety of stimuli, including oxidative stress, radiation injury, elec-
trical stimulation, and neurotransmitter activity. It is activated by intracellular pathways,
including MAPKs, ERK, and p38. Egr1/Krox24 gene expression in the hippocampus was
shown to be related to the severity of AD in human subjects [46]. Egr1 also accelerates tau
phosphorylation and the processing of amyloid precursor protein to β-amyloid in a mouse
model of AD [47]. Much less is known about the role of Egr2 as a mediator of inflammation.

PDGF-β is released in the cerebral spinal fluid (CSF) from pericytes and is a specific
marker for pericyte injury associated with a loss of integrity in the blood–brain barrier [48],
which declines in normal aging and more rapidly in AD. A correlation was found between
age and PDGF-β in CSF, with the highest levels found in subjects with mild cognitive
impairment (MCI) and AD [49].

Ladostigil decreased the expression of Egr1 and Egr2 transcripts in BzATP/LPS-
activated microglia and Mmps 12, all of which regulate cytokine release [50], and it also
reduced the expression of PDGF-β. It significantly reduced the amount of EGR1 protein
in the nucleus three h after it had been elevated by BzATP/LPS. On the other hand,
ladostigil upregulated the gene expression of the ubiquitin-modifying enzyme, TNFaIP3,
and increased the levels of this protein in the microglial cytoplasm. TNFaIP3 terminates
the activation of NFκB in response to stimulation by LPS, IL1β, TNFα, IL6, or CD40 [51].
TNFaIP3 prevents the NFκB-dependent upregulation of NLRP3 and conversion of pro-
IL1β to mature IL1β through the binding of its A20-like zinc finger domain to ubiquitin
chains [52]. It also blocks IKKα/β activation by the upstream kinase, Tak1 [53]. Moreover,
the brains of mice lacking TNFaIP3 have a larger number of microglia with shorter and
fewer processes, resembling those after chronic infection or aging [54]. Together, these
observations suggest that the elevation of TNFaIP3 could protect the organism against
inflammatory conditions occurring in the aged brain [19].

An increase in cytosolic TNFaIP3 by ladostigil via the alteration of various feedback-
controlling mechanisms [55] could be responsible for the reduction in the phosphorylation
of ERK and/or p38 and the decrease in nuclear EGR1. This, in turn, explains how ladostigil
reduced the formation and secretion of cytokines in BzATP/LPS-activated microglia in
the current study. Restoring the aberrant signaling of these genes and their proteins by
ladostigil to normal enables us to explain how they prevented the morphological and
inflammatory changes in the brain regions of aging rats [25] and the attenuation of the
decline in memory in the whole brain and hippocampal volumes in elderly subjects with
MCI [56].
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