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Abstract: Estrogen receptors (ERs) play a multitude of roles in brain function and are implicated in
various brain disorders. The use of positron emission tomography (PET) tracers for the visualization
of ERs’ intricate landscape has shown promise in oncology but remains limited in the context of brain
disorders. Despite recent progress in the identification and development of more selective ligands for
various ERs subtypes, further optimization is necessary to enable the reliable and efficient imaging of
these receptors. In this perspective, we briefly touch upon the significance of estrogen signaling in
the brain and raise the setbacks associated with the development of PET tracers for identification of
specific ERs subtypes in the brain. We then propose avenues for developing efficient PET tracers to
non-invasively study the dynamics of ERs in the brain, as well as neuropsychiatric diseases associated
with their malfunction in a longitudinal manner. This perspective puts several potential candidates
on the table and highlights the unmet needs and areas requiring further research to unlock the full
potential of PET tracers for ERs imaging, ultimately aiding in deepening our understanding of ERs
and forging new avenues for potential therapeutic strategies.

Keywords: PET; estrogen receptors; radioligand; ERα; ERβ; GPER; positron emission tomography;
genomic estrogen signaling; non-genomic estrogen signaling; membrane estrogen receptors

1. Introduction

Low success rates in drug development for psychiatric and neurological diseases can
in part be attributed to an inadequate understanding of the intricate mechanisms and
underlying molecular correlates that go awry in these diseases in vivo, and the dynamic
complex nature of mental components such as cognition and emotion. Positron emission
tomography (PET) imaging is among the effective investigational tools used to study the
function of the brain and the pathophysiology associated with brain disorders in living
subjects. Its ability to quantify molecular targets and measure the target occupancy of a
drug molecule, as well as its biodistribution and pharmacokinetic parameters, phenomena
that cannot be directly measured otherwise, has made PET a boon to studying the central
nervous system (CNS). PET provides a selective and sensitive visualization of a target–
tracer interaction in vivo, which could be associated with a given stage of a brain disorder,
allow patient stratification, and permit the longitudinal investigation of responses to
potential therapies.

Altered neurosteroid signaling has been associated with psychiatric and neurological
disorders. Additionally, sex differences among different psychiatric and neurological
disorders, such as autism spectrum disorders, anxiety disorders, major depressive disorders
(MDD), Parkinson’s disease (PD), and Alzheimer disease (AD), have been consistently
reported [1]. These observations may drive the identification of potential novel targets and
etiological mechanistic approaches for treating these debilitating disorders.
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Estrogens and their cognate estrogen receptors (ERs) have been shown to play di-
verse and pivotal roles in the CNS [2], yet our picture of their exact functions and the
mechanisms through which they exert such actions in the brain is still fairly incomplete.
Non-invasive techniques, such as PET imaging, can dramatically improve our understand-
ing of the function of estrogen receptors in the brain and throughout different stages of a
brain disease.

To develop efficient PET tracers for CNS applications, several criteria need to be met,
with specific attention to their ability to cross the blood brain barrier (BBB). Moreover, what
makes development of ERs PET tracers even more challenging is the presence of ERs both
in the nucleus and at the plasma membrane, which are functionally distinct.

In this perspective, we first briefly review studies on estrogen and ERs in the brain and
then highlight the importance of studying diverse subtypes of ERs in the brain, emphasizing
the unique mode of action of each. We argue that there is a lack of selective CNS PET
tracers for the detection of various ERs in the brain addressing the potential setbacks. To
this end, we suggest several potential PET radioligand candidates.

2. Estrogen and Estrogen Receptors (ERs) in the Brain

Estrogens are steroid hormones with the phenolic ring A, the cyclohexane rings B and
C, a methyl group in C13, and the ring D as the backbone. Depending on the number of
hydroxyl groups in the chemical structure of the molecule, estrogens are categorized and
named differently, showing different physico-chemical and pharmacokinetic properties.
In terms of serum levels, during reproductive years, the most predominant estrogen is
estradiol (E2), which is also the most potent estrogen. Estetrol (E4) is only produced during
pregnancy by the human fetal liver, while estrone (E1), being the weakest estrogen in terms
of potency, becomes the main postmenopausal estrogen [2]. Hence, the term “estrogen”
most broadly refers to estradiol (E2), and in this context, we have also interchangeably used
these terms.

Estrogen is locally synthesized de novo in the brain by neurons and astrocytes from
cholesterol, as one of the neurosteroids [3]. The local metabolism of steroids can also
result in the production of estrogens in the brain. Both peripherally and locally produced
estrogens are able to target various regions of the brain and modulate sanguine cerebral
functions and homeostasis through estrogen receptors found in different brain areas.

In the brain, aromatase is responsible for the conversion of androgen precursors into
estrogens [4]. The hypothalamus has been demonstrated to have the highest levels of
aromatase in the adult brain, especially in the preoptic area (POA) and ventromedial nu-
cleus (VMN). Some other brain regions, including the amygdala, hippocampus, midbrain,
cortical regions, cerebellum, and white matter also contain considerable amount of aro-
matase [5,6]. In these areas, the expression of aromatase is sex- and steroid-independent,
whereas in the hypothalamus, higher concentrations of aromatase were found in males
than females, as the amount of the circulating testosterone regulates aromatase expression
and activity, which subsequently drives its conversion into E2 [5,6]. Such observations
were initially investigated with molecular, immunohistochemistry, and electron microscopy
techniques, and were further confirmed by PET imaging studies using radiolabeled aro-
matase inhibitors such as [11C]-vorozole and [11C]-cetrozole [7,8]. Another PET study
using [11C]-vorozole revealed that menstrual cycle did not change the regional levels of
aromatase [9].

Estrogen is thought to affect neural synaptic plasticity and spine synapse formation,
migration, differentiation, and survival of newborn neurons, as well as proliferation of
neural stem cells, and integration of the blood brain barrier [3,10–16]. It is also believed that
both neuron- and astrocyte-derived estrogens play an essential role in neuroprotection and
cognition [5,17]. These modulatory effects of estrogens are exerted through their interaction
with different estrogen receptors in the brain, although some ligand-independent activation
of estrogen receptors has been reported [18].
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Autoradiography studies of mainly guinea pig, chick embryo, and rat brain tissues
using [3H]-17β-estradiol [19–23], followed by in situ hybridization and immunohisto-
chemistry techniques performed on rodent, macaque, guinea pig, and human brain tis-
sues [24–30], have shed light on the presence of different types of estrogen receptors in
various brain regions [31]. Based on preclinical studies, estrogen receptor alpha (ERα) was
found to be abundantly expressed in the POA, bed nucleus stria terminalis (BNST), amyg-
dala, periventricular nucleus (PV), VMN, as well as arcuate nucleus. Estrogen receptor
beta (ERβ) has almost the same expression pattern, with higher levels in the POA, BNST,
PV, and the supraoptic nuclei [28,31–35]. Both ERα and ERβ are also expressed in the
cortex, hippocampus, midbrain, striatum, basal nucleus of Meynert, and diagonal band of
Broca [34,36].

Co-localization studies demonstrated that corticotropin releasing hormone and insulin-
like growth factor I expressing neurons and/or glia co-express both ERα and ERβ [24,37–39].
However, ERα is distinctly found to be co-localized in dopamine, norepinephrine, GABA,
neuropeptide Y, proopiomelanocortin, somatostatin, galanin, and neurotensin contain-
ing neurons, while ERβ is primarily co-localized with gonadotropin releasing hormone,
vasopressin, oxytocin, and midbrain serotonin expressing neurons [32,38,40–55].

Co-localization of the sex steroid receptors with the neurons that are involved in the
pathophysiology of neuropsychiatric disorders could suggest their regulatory role in such
neurons. It is also interesting to mention that areas of the brain frequently reported to be
involved in neurodegenerative and psychiatric disorders often overlap.

3. Estrogen Receptors outside the Nucleus: Genomic vs. Non-Genomic Action of ERs

For the sake of clarity, going forward, we refer to the entire population of estrogen re-
ceptors with ERs (as a broad term that refers to estrogen receptors without any specification
of the type (only as an abbreviation for estrogen receptors), nERs as a broad reference to
nuclear estrogen receptors, which encompass nuclear ERα (nERα) and nuclear ERβ (nERβ),
and finally mERs as a broad terminology to refer to all membrane estrogen receptors, in-
cluding membrane ERα (mERα), membrane ERβ (mERβ), and G protein-coupled estrogen
receptor 1 (GPER).

In 1975, the first evidence suggested the presence of estrogen receptors (ERα and
ERβ), at the cell membrane of endometrial cells [56,57]. Up until then, ERs had been
classified solely as nuclear receptors. These membrane-bound ERs, unlike the ERs that
require translocation to the nucleus upon their activation, elicit an immediate response.
Soon after, it was reported that both ERα and ERβ were also found at the cell membrane in
the brain [58–60]. Several observations corroborated the rapid and distinct mode of action
of these membrane-bound estrogen receptors (mERα and mERβ), as applications of E2
after the inhibition of transcription or use of membrane-impermeable E2 still exerted an
effect leading to hyperpolarization of neural cells [61–63].

mERα and mERβ can form either homo- or hetero-dimers (predominantly homo-
dimers), and interestingly truncated variants of the full-length ERs have also often been
found to exist extranuclearly [64,65] (Figure 1) However, it is of note to mention that
research on membrane-associated ERs has mainly focused on Erα.

In addition to mERα and mERβ, another ER belonging to the G protein-coupled family
known as G protein-coupled estrogen receptor 1 (GPER), or GPR30, was later discovered.
GPER is localized to the endoplasmic reticulum in neurons [66] and is found at the cell
membrane [67] in some brain regions, predominantly in the hippocampus, hypothalamus,
prefrontal cortex, and somatosensory cortex [68], as well as in the hypothalamus [69] of
rats (Figure 1).

The classical signaling pathway that is activated through nuclear ERs is dependent
on the formation of ER homo- or hetero-dimers, and its translocation to the nucleus and
the subsequent binding to a specific part of the DNA to regulate the transcription of
certain genes. This phenomenon, which is known as nuclear-initiated signaling or genomic
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signaling, is relatively slow due to its nature and requires the recruitment of some nuclear
co-activators and regulatory proteins [31] (Figure 1).
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Figure 1. (Left) Localization of estrogen receptors in different brain areas. (Right) Membrane-
initiated ER (mER) signaling vs. nuclear-initiated ER (nER) signaling. Once estrogen (E2) binds
to its receptors (1), it initiates various cellular processes and responses depending on where and
which ER is activated. mERα and mERβ are placed in the membrane raft (through palmitoyla-
tion of ERs) and scaffolded with caveoline-1 (Cav-1). Activation of various kinases and G proteins
through physical interaction with mERα and mERβ (2), as well as GPER (2) leads to signal transduc-
tion and rapid physiological responses (within seconds) (3), whilst activation of intracellular ERs
(1) causes the recruitment of monomeric ERs (2), which are bound to heat-shock protein 27 (HSP27)
that subsequently form either homo- or hetero-dimers (3). Then, they are translocated to the nucleus
to alter gene transcription (4). This process is much slower compared to cellular responses associated
with mERs. Green and dark maroon circles represent the processes associated with the activation of
membrane ERs, and light red circles depict events following the activation of nuclear ERs.

ERs can also initiate rapid signal transduction through the activation of membrane-
initiated estrogen signaling in the brain. mERα and mERβ are trafficked to the plasma
membrane through palmitoylation (highly conserved cysteine palmitoylation sites were
identified for both ERα and ERβ) and association with caveoline to be transported to the
membrane caveolae, the functional signalosome [64,70–72]. The activation of mERs in
the membrane raft gives rise to activation of various proximal kinases and production
of secondary messengers leading to expansion of signal transduction. Unlike nuclear-
initiated pathways, the non-genomic pathway is rapid, resulting in the initiation of a
signaling cascade seconds to minutes after its activation affecting behavior and higher brain
functions by induction of cellular changes (Figure 1).

4. Estrogen, ERs, and Link to Brain Disorders

Apart from playing a key role in the regulation of reproduction and socio-sexual
behavior, as well as sexual differentiation [5], there are other diverse implications for
estrogen in the brain (both peripheral or neuron/astrocyte-derived), including, but not
limited to, neuroprotection, the modulation of synaptic plasticity and cognitive function,
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induction of growth hormone, facilitation of DNA repair, antioxidant activity, regulation
of microglia, and cerebral blood flow [5,73]. For a detailed review of the literature, please
see [5]. Brain-derived estrogen positively influences both neuronal and astrocytic functions,
reducing neuronal damage and preserving the brain’s cognitive ability [5].

E2 is also involved in synaptic transmission, potentiating glutamatergic, serotonergic,
and dopaminergic transmission, and suppressing GABAergic neurotransmission [74]. E2
increases serotonin and dopamine availability via the induction of their synthesis, the
inhibition of their degradation and reuptake, and upregulation of their corresponding
receptors [75–80].

The agonism of ERα and ERβ can bring about a rapid increase in the influx of Ca2+

in neurons with the consequence of MAPK and ERK phosphorylation, which promotes
neuroprotection [81]. ERα plays a protective role against neurotoxicity associated with
hyper-activation of the glutamatergic system [81,82]. Gene knockdown animal studies
of ERβ have pointed out the role of this receptor in the survival and differentiation of
neurons. Abnormal neural morphology during brain development, reduced quantity
of cortical neurons and their migration, and enhanced apoptosis were observed in ERβ
knockdown rodents [83,84]. The activation of ERβ is also associated with elevated protein
levels of the brain-derived neurotrophic factor (BDNF) important for neuronal function
and plasticity [85,86].

Furthermore, GPER agonists were reported to enhance dendritic spine density in
the hippocampus taking part in the estrogen-related mediation of learning and memory
through rapid signaling. The BDNF expression level also increases after the activation
of GPER, promoting synaptic plasticity. The PI3K/Akt/MAPK pathway is regulated via
GPER exerting neuroprotective action [87].

Overall, estrogens, through their interactions with GPER, ERα, and ERβ, play critical
roles in neuroprotection, synaptic transmission, neuronal survival, and synaptic plasticity,
contributing to the modulation of brain function and potential applications in neurodegen-
erative, neurodevelopmental, and psychiatric disorders. Accumulating evidence from both
clinical and preclinical studies provides a growing body of support for the relationship
between estrogen and estrogen signaling, and psychiatric and neurological conditions.
Mounting evidence has indicated that ERs and estrogen are involved in the pathophys-
iology of several psychiatric and neurological disorders such as schizophrenia, bipolar
disorder, MDD, autism spectrum disorder, attention deficit hyperactivity disorder (ADHD),
anxiety disorders, eating disorders, substance use disorder, AD, and PD (for detailed
reviews please see [83,88,89]).

Reduced levels of both ERα and ERβ in the CA1 hippocampal synapses in female rats
have been reported as they age [88,90–92]. In another study, Hu et al. demonstrated that in
female patients with AD, the number and proportion of nERα in the CA1 and CA2 areas of
the hippocampus were reduced compared to the matched healthy controls [93]. On the con-
trary, the upregulation of ERα and ERβ, especially nERα, in the nucleus basalis of Meynert,
vertical limb of the diagonal band of Broca, infundibular nucleus of the hypothalamus, and
medial mammillary nucleus (only nERα and not ERβ) has been shown to be linked to the
pathophysiology of AD when compared to age- and sex-matched controls [94–97]. Though
some conflicting findings on the role of ERα in the pathophysiology of AD exist, ERα has
been shown to play a role in AD risk and progression [88]. Nevertheless, studies on ERβ
were more consistent, and in a study on the brains of females with AD, the downregulation
of neuronal mitochondrial ERβ in the frontal cortex has been observed [98].

Moreover, both men and women with schizophrenia have been found to express
lower levels of hippocampal dentate gyrus ERα [99], while no evidence in support of
the involvement of genomic variations in ERα and ERβ genes in the etiology of bipolar
disorder was found in two studies exploring the possible relationship [100,101].

We have only limited studies comparing the expression of ERs in the brains of patients
with psychiatric illnesses such as bipolar disorder, generalized anxiety disorder, and ADHD.
In one study, it has been revealed that the serum concentration of GPER in euthymic patients
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with bipolar disorder is higher than that of control subjects, and this was proven to be
unrelated to the medications [102]. However, a decrease in the serum levels of patients
with ADHD compared to healthy controls was found [103].

In both drug-naïve patients with generalized anxiety disorder and those with MDD,
enhanced serum levels of GPER have been observed, positively correlated with anxiety
and depression severity [104,105]. Moreover, the overexpression of ERα in the dorsolateral
prefrontal cortex and anterior hippocampus of depressed male patients in comparison to
female patients with MDD has been reported [99]. Finally, in autism spectrum disorder, the
downregulation of ERβ in the middle frontal gyrus was observed [106], providing another
line of evidence for the association of the ERβ gene with autistic traits [107].

ER knock-out animals have significantly contributed to our understanding of the
crucial functions of ERs. However, they often fail to fully recapitulate the endogenous
regulation and signaling of ERs and suffer from exerting multitude of undesirable outcomes
in various tissues, including the disruption of hypothalamus-pituitary-gonadal axis. PET
imaging can provide insights into the expression levels of receptors, and can serve as an
even more valuable tool when combined with other techniques for a better understanding
of the roles played by ERs in the pathophysiology of brain disorders. Furthermore, PET
imaging offers the advantage of longitudinally monitoring changes in ERs in the course of
a brain disease, or throughout its progression.

5. PET Imaging of ERs

To longitudinally visualize the dynamic interplay between ERs and the functional
changes in the brain, as well as associated alterations in behavior, cognition, and emotion in
neuropsychiatric disorders, PET imaging can be a valuable tool. Despite the availability of
several PET tracers to study ERs, their utilization has been predominantly limited to oncol-
ogy. In brain disorder studies, the current methods are often restricted to autoradiography
and ex vivo tissue counting, rather than in vivo PET imaging [108].

16α-[18F]fluoro-17β-estradiol ([18F]FES) is the most widely used PET tracer to study
ERs. There are incongruities among a few available studies using this tracer as a marker
to quantify ER occupancy in the brain. It has so far been shown that [18F]FES is primarily
suitable for studying the ERs of the brain regions with a high expression of ERs, such as
the pituitary and hypothalamus [108].

In a rat study, the pituitary, hypothalamus, bed nucleus of the stria terminalis, and amyg-
dala exhibited the highest uptake of [18F]FES in a descending order [109]. Khayum et al. [109]
demonstrated that the uptake of [18F]FES was influenced by the estrous cycle and fluctu-
ations of ovarian sex hormones. Ovariectomy increased the uptake of the tracer, while
exogenous estradiol administration reduced its uptake in the pituitary and hypothala-
mus, the two areas where [18F]FES tracer was mostly detected due to a higher density of
ERs [109]. The study also concluded that semi-quantitative standard uptake value analysis
is prone to be more sensitive to the endogenous estrogens in blood, and thus quantitative
kinetic analysis is preferred [109].

A subsequent human study in healthy postmenopausal women revealed significantly
higher accumulation of [18F]FES tracer in the pituitary compared to other brain regions,
which was diminished after the administration of an ER antagonist, Elacestrant, indicating
the specific binding of the tracer to ERs [110]. None of the other regions showed a decrease
in [18F]FES occupancy, implying that due to its high lipophilicity, non-specific binding is
likely. Unlike preclinical studies, no changes in the hypothalamus in this clinical study
were observed, warranting further experiments and research to replicate and explain
this finding.

Additionally, in oncology, [18F]FES has shown utility in detecting and diagnosing brain
metastasis in patients with ER-positive breast cancer or double primary cancer, which may
have otherwise gone undetected [111–113]. Another PET tracer developed to study ERs
is 4-fluoro-11β-methoxy-16α-[18F]-fluoroestradiol (4FMFES). 4FMFES and [18F]FES were
extensively examined in a cross-species study comparing the brain uptake of these tracers



Biomolecules 2023, 13, 1405 7 of 22

in humans, mice, and rats [114]. 4FMFES yielded better contrast and lower non-specific
accumulation [114] presumably due to its higher resistance to being metabolized and lack
of binding to sex-hormone-binding globulins (SHBG) [115], despite its lower uptake in
the pituitary. Both tracers were corroborated to have higher selectivity toward ERα than
ERβ [116–118].

6. The Need for a PET Tracer

As our understanding of the diverse and crucial roles of ERs in the brain, and in
particular, their connection to neuropsychiatric disorders continues to expand, there is an
increasing demand for high-quality target-specific PET tracers for various ER subtypes.
The current PET tracers utilized to detect ERs suffer from high non-specific binding as
well as lack of selectivity. The discovery of different subtypes of ERs and their diverse
pharmacology has highlighted the need for specific tracers that can selectively bind to,
visualize these receptor subtypes in the brain, and provide us with a better understanding of
their functions. Such tracers, in conjunction with non-invasive PET imaging, would enable
researchers and clinicians to better understand the involvement of specific subtypes of ERs
in different brain regions and their potential implication for neuropsychiatric disorders.

As ERs are involved in assorted physiological functions, such as neuroplasticity,
neurotransmitter release, etc., the development of new selective PET ligands for distinct
ER subtypes can enhance our ability to study the distribution, density, and function of
each ER subtype in the brain in vivo. This valuable insight into the possible mechanisms
underlying pathophysiology of neuropsychiatric disorders can boost the development of
targeted therapeutic interventions.

7. Criteria for a Good CNS PET Tracer

When developing CNS PET ligands, the BBB must always be considered. Most CNS
PET radiotracers pass through the BBB via passive diffusion rather than active trans-
port [119]; therefore, good CNS PET tracers must be soluble enough in the lipid layer of
the BBB and small enough to pass through the endothelial cell membrane to cross the BBB,
implying that having proper lipophilicity is key [120,121]. LogP and LogD7.4 are values
that can predict the lipophilicity of a molecule, where favorable BBB-permeable molecules
have LogP values ranging from 2 to 4 and LogD7.4 values between 1.5 and 3.5 [122–124].
Topological polar surface area (TPSA), which is defined as the sum of surface area of
polar heteroatoms of a molecule, is also another predictive tool to determine molecular
structures that are considered favorable for BBB permeability [123,124]. Fortunately, most
estrogenic compounds are naturally lipophilic enough, making the task easier. However,
it is noteworthy to mention that the BBB’s efflux transporters, specifically P-glycoprotein
(P-gp) must also be taken into account. A molecule may have sufficient permeability to
cross the BBB, but could still be a substrate of P-gp, thereby potentially resulting in the poor
uptake of a CNS-penetrant PET tracer [123]. One strategy to overcome this issue in the
case of having a promising radiotracer is to co-administer a P-pg substrate PET tracer with
an inhibitor of this transporter, such as cyclosporin-A or elacridar [125]. In PET imaging,
solubility is hardly a concern and is infrequently assessed [126].

Favorable pharmacokinetic parameters for a potential CNS PET tracer are also of
paramount importance. The intravenous injection of PET tracers removes the absorption
and excretion from ADME (absorption, distribution, metabolism, and excretion) considera-
tion, and challenges only lie in metabolism and distribution [123]. CNS PET radiotracers
need to exhibit favorable tissue distribution and time of activity. This ensures that a ra-
diotracer is readily taken up and is rapidly cleared from non-target tissues to provide
sharp imaging contrast. Most CNS PET tracers typically require a volume of distribution
at steady state (Vss) greater than the total body water volume. However, it is critical to
bear in mind that high Vss values can sometimes be linked to non-specific binding or tracer
accumulation in muscle, skin, or fat tissues [123]. Thus, achieving a balance is crucial.
On the other hand, slow kinetics can result in less informative images, and a propitious
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time of activity is essential for scheduling imaging acquisition procedures and the inter-
pretation of results. Furthermore, micro-dosing of PET tracers alleviates concerns about
the potential toxicity of the metabolites [126]. Nonetheless, CNS PET tracers should be
designed with careful consideration to avoid having biologically active radio-metabolites
in the brain [124]. Metabolites also need to be BBB-impermeable to prevent any interference
with the integrity of the imaging signal [124]. A special caveat with PET tracers labeled
with 18F is the accumulation of fluorine ions in the skull due to defluorination, resulting in
the spill-over of radioactivity, compromising the accuracy of binding quantification [124].
(For more information in this regard please refer to [124]).

The success of developing a PET tracer, however, does not only boil down to the
tracer itself. The biological molecular target is also of utmost importance for the successful
development of a novel PET tracer. The expression level of the target receptor and a
propitious profile of brain bio-distribution determine whether a PET ligand could be
specific enough. PET tracers need to be highly (adequately) potent and selective, and
occupy the same binding site as the drug or the endogenous ligands of interest. Potencies
in sub-nanomolar and nanomolar concentration ranges are favorable [120,121]. High target
expression and high affinity toward that target can be quantified by an index, Bmax/Kd,
which should ideally be equal or more than 10 [120,121] and can compensate for one another.
If a target of interest has promising pharmacokinetic parameters, but a low expression
level, then it needs to have higher affinity (long target occupancy) to compensate for that,
and vice versa [126]. An analysis of 20 studies of multiple successful PET tracers targeting
various receptors in different brain regions of healthy human subjects reveals that the Bmax
values typically fall within the range of 0.7 to 103 nM, while the Kd values exhibit variation
within the range of 0.02 to 6.1 nM. Notably, all of these tracers consistently maintain a
Bmax/Kd ratio exceeding 3 [127].

Plasma protein binding is also something essential to think of upfront [123]. Determin-
ing the bound fraction of a radiotracer, which can impact its ability to cross the BBB, might
be advantageous, especially when a reference region in the brain is not utilized. Estrogen
binds both albumin and SHBG in humans [109]. While binding a radiotracer to plasma
proteins shields it from peripheral metabolism, it can also influence the uptake of a PET
tracer into the brain. It is worth noting that rats lack SHBG, which should be considered
when interpreting between species findings [109].

Last but not least, radioligands should possess the proper chemical structure for the
incorporation of either [11C] or [18F], and this process should preferentially be the final
step in the synthesis and purification of the radioligands considering the short half-lives
of these tracers, which are 20 and 110 min, respectively [120,121]. For a summary of the
factors mentioned please refer to (Box 1).

Box 1. Criteria for a successful potential CNS PET radiotracer.

Molecular weight (MW) of less than 500 Da
2 < LogP < 4
1.5 < LogD7.4 < 3.5
Less than 3 hydrogen bond donors
Less than 9 hetreroatoms
Topological surface area of less than 90 Å2

Favorable pKa of functional groups
Subnanomolar to nanomolar affinity for target
Target selectivity
Lack of brain penetrant metabolites
Favorable kinetics
Not a substrate for P-gp

8. Setback for Detection of ERs in the Brain

In order to explore the brain regions with lower density of ERs, PET tracers with
higher affinity to ERs are needed. In addition, tracers that have a high tendency to remain
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bound to the SHBG and albumin are sequestered in blood circulation (bound fraction) and
will not be able to reach their target in the brain.

Bmax and bio-distribution are particularly important in the case of mERs, which struc-
turally resemble nERs and account for less than 5% of the population of ERs. Additionally,
given the generally low expression profile of ERs in most brain regions, the development
of CNS PET tracers for ERs should heavily depend on achieving high molar activities.
Another challenge lies in discriminating GPER signaling from ERα than ERβ signaling, as
most ligands lack selectivity for ERα or ERβ.

In the following subsections, we shift our attention to various selective ligands that
have been developed, and we propose the labeling of some of these ligands as PET tracers.
To assess the suitability of the suggested compounds as potential CNS PET traces, we
conducted computational simulations on ADME parameters using SwissADME (http://
www.swissadme.ch/).

8.1. ERα or ERβ

Recently, a selective compound, AB-1, has been identified, demonstrating selectivity
toward ERα and ERβ, but not GPER, enabling us to exclude any potential response initiated
by GPER and restrict it to ERα and ERβ signaling [128] (Figure 2).
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Figure 2. Potential ligands that into the structure of which a radionuclide can be incorporated, which
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from mERs (E4). Structural modification(s) are shown with blue circles. However, E4 lacks sufficient
lipophilicity to cross the BBB.

Furthermore, estetrol (E4) is another naturally occurring estrogen produced exclusively
by the human fetal liver during pregnancy, which has been reported to activate nERs,
lacking the capability of activating mERs (Figure 2) [129,130]. Abot et al. have also shown
that in the presence of E2, E4 antagonizes membrane-initiated signaling [129]. Therefore, it
can be exploited as a potential PET tracer to discern nERs from mERs.

Additionally, distinction between ERα and ERβ seems essential in delving into the
distinct roles each receptor plays in modulating CNS function and the pathophysiology of
neuropsychiatric disorders. By understanding the specific contributions of ERα and ERβ,
we can gain deeper insight into their modes of action in various brain disorders. Several
molecules were demonstrated to exhibit selectivity toward ERβ.

Darylpropionitrile (DPN), indazole chloride, WAY-166818, WAY-200070, LY500307,
LY3201, and ERB-041 are all highly potent and selective molecules with a preference for
ERβ over ERα, and have been tested in models of various brain disorders [131]. Among
them, compounds DPN, WAY-200070, LY3201, and ERB-041 have the potential to either
be directly labeled with either 11C or 18F (DPN, LY3201 and ERB-041), or by exchanging
Br with 18F (WAY-20070), and serve as structurally modified compounds to develop PET
radioligands (Figure 3). Recently, a radiolabeled analogue of ERB-041, [18F]-PVBO, has
been developed, showing selectivity toward ERβ [132]. However, it suffers from moderate

http://www.
http://www.
swissadme.ch/
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defluorination due to having a labeled fluorine atom bound to an aliphatic carbon, and a
subsequent accumulation of the tracer in the bones has been reported in mice [132]. This
could be especially problematic in the case of imaging ERs in the brain because of its
accumulation in the skull.
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circles. All 4 structures with potential for being radiolabeled are predicted to be BBB-permeable, and
LY-3201 is predicted to be the only substrate of P-gp of this grouped category.

Propyl pyrazol triol (PPT) is a compound synthesized and developed specifically to
selectively activate ERα. It exhibits a potency that is more than 1000-fold higher towards
ERα compared to ERβ [133,134]. The compound was designed to target and activate ERα
specifically, allowing for the investigation of the receptor’s functions and effects [133]. On
the other hand, methyl-piperidino-pyrazole (MPP) was developed by the same research
group with the intention of achieving the antagonism of ERα [135]. Both PTT and MPP
can serve as a backbone for the development of PET tracers specifically selective to ERα
(Figure 4). The incorporation of suitable radionuclides into their structure may provide
the non-invasive visualization and quantification of ERα dynamics in the brain and brain
disorders. PTT and MPP may not be labeled directly either with 11C or 18F. Here, labelling
might be achieved by coupling a chelator to the PTT or MPP backbone and using either 18F
or 68Ga. However, ADME prediction suggests that none of these compounds can penetrate
the BBB.
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8.2. Nuclear Receptors outside the Nucleus: mERα and mERβ

As mentioned earlier, the structural similarity between mERs to nERs makes it arduous
to develop specific ligands to detect ERs located at the membrane. Furthermore, the low
abundance of mERs, accounting for virtually 5% of the total ER population [136], is another
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complication to the development of a selective tracer. However, there are several strategies
to selectively target mERα and mERβ.

The resolution of PET imaging does not allow for distinguishing between intracellular
and extracellular receptors. Nevertheless, various strategies may be employed to potentially
be able to differentiate between receptors located intracellularly or at the plasma membrane.
These strategies include the designing of radioligands that are unable to penetrate the
plasma membrane, developing ligands with preferential selectivity toward membrane-
bound receptors, and combining PET with other techniques, such as two-photon excitation
microscopy to verify data obtained by PET imaging.

One approach involves structural modification of some steroidal and non-steroidal
compounds with the aim of lowering their affinity for ERs, which leads to an enhanced
selectivity toward non-genomic (extra-nuclear) signaling over genomic (nuclear) signal-
ing [137]. These modified compounds, known as pathway preferential estrogens (PaPEs),
represent selectivity toward mERs [137–140] while maintaining a suitable lipophilicity
profile, making them hold promise as potential candidates for developing PET tracers.
PaPE-1, PaPE-2, and PaPE-3 have been designed [137] to exhibit preferential selectivity to
mERα and m ERβ rather than nERs by lowering the binding affinity of these compounds
to both ERα and ERβ and increasing their dissociation rate from ERα [137]. Considering
the abovementioned criteria from a chemical point of view for developing CNS PET tracers,
PaPE compounds can potentially be labeled as a PET tracer for detection of mERs (Figure 5).
Among these compounds, both have been predicted to be capable of crossing the BBB, but
only PaPE-2 was predicted to be a non-substrate of P-gp.
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Another strategy is to covalently conjugate potential candidates with dendrimers,
such as (polyamidoamine) PAMAM, which are able to cross the BBB but are unable to
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penetrate the nucleus due to their large size and positive charge. Estrogen-dendrimer
conjugates (EDCs) have been utilized to differentiate between membrane-initiated estrogen
signaling from that of nucleus [141,142] (Figure 5). Surfaced-engineered dendrimers labeled
with various radio-nuclei such as 68Ga, 64Cu, 18F, 89Zr, etc., have recently been developed,
offering new possibilities for imaging a target with improved profile and with applications
in brain disorders [143–149]. There have been reports indicating that labeled PAMAM
dendrimers can cross the BBB upon intravenous and intra-arterial administrations [148,150].
However, it should be noted that the penetration of heavy metals into the BBB is generally
challenging. Another caveat is that EDCs undergo a significant morphological transition in
response to changes in pH, rendering the estrogen inaccessible and consequently masking
its bioactivity [151].

8.3. GPER

Compounds G-1 and G-15 serve as the selective agonist and antagonist of GPER,
respectively, and can be exploited as a backbone for synthesizing radioligands specific
to GPER detection. Several first-generation non-steroidal 99mTc-labeled selective GPER
radiotracers (confirmed by in vivo competition studies) (Figure 6) were developed, demon-
strating binding affinities of 10 to 30 nM [152].
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Figure 6. Potential ligands and the structural modification(s) needed to develop PET tracers selective
for GPER. G-1 and G-15 are BBB-permeant, but might be subject to efflux by P-gp. The choice of
metal to be able to traverse the BBB is also important.

These radioligands belong to a family of neutral M(I)-tricarbonyl complexes (M = Re,
99mTc) where the pendant tetrahydro-3H-cyclopenta[c]quinolone scaffold is coupled through
linkers of different length and nature to pyridin-2-yl hydrazine and picolylamine bifunc-
tional chelators. It has been unveiled that complex linkage with the hydrogen bond acceptor
ethanone group resulted in the agonistic activity of the compounds, while triazole-linked
complexes functioned as antagonists [153]. Moreover, the analogues needed to be neu-
tral and uncharged to interact with the functional intracellular receptor and initiate the
rapid signaling associated with this transmembrane GPER [154,155]. The steric volume
of the conjugates also played a role, with reduced affinities observed as the steric volume
increased [153].

However, more structural optimizations are necessary to incorporate either 11C or 18F
for improved brain bio-distribution and imaging characteristics. Albeit these compounds
benefit from favorable lipophilicity to be able to cross the BBB, it is hard to predict whether
they could be potential substrates for P-gp, and further experimental investigations are
warranted. According to our simulation, nonetheless, both are likely to be substrates
of P-gp.
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9. ADME-Driven Informed Selection of Ligands

In PET neuroimaging studies, antagonists are predominantly used, as they are capable
of binding to both coupled and non-coupled G-protein-coupled receptors (GPCRs) with
equal affinity, allowing for the imaging of the overall density of a given receptor. However,
when it comes to agonists, they distinguish the active state of a protein from its inactive
one, since they exhibit different affinities toward different states, resulting in a lower signal-
to-noise ratio [156]. Another challenge with PET radiotracers designed as agonists is that
the rate at which a receptor converts from high-affinity (active) to low-affinity (inactive)
status (which has been demonstrated to occur upon binding of an agonist) can give rise
to rapid dissociation of the radioligand from the receptor [156]. On the other hand, the
use of agonist PET tracers can offer advantages by allowing the selective detection of
active receptors in the brain [156,157]. This approach is particularly beneficial for exploring
coupled and non-coupled receptors in vivo [156,157], as changes in the state of receptors in
the brain under pathophysiological conditions have been reported in vitro [158]. Most of
the ligands we suggested for radiolabeling are therefore agonists.

Based on the potential of already existing ligands for various subtype of ERs for
having a radionuclide incorporated, we employed computational simulations on ADME
parameters to evaluate the suitability of the proposed compounds as potential CNS PET
traces using SwissADME [159]. Among the suggested compounds, E4, MPP, and PPT
were the only ones found to be impermeable to the BBB, while the rest exhibited favorable
physicochemical properties, enabling them to cross the BBB (Figure 7 and Table 1). However,
among those BBB-permeant tracers, only WAY-200070, ERB-041, DPN, and PaPE-2 were
predicted not to be substrates of P-gp (Figure 7 and Table 1). However, experimental data
are needed to corroborate whether these compounds are effluxed by P-gp. Even when
experimentally determined, it is essential to keep in mind that rodents display higher efflux
transporter activity compared to pigs, primates, and humans [160], and therefore, when
encountering unsatisfying results, it is important to thoroughly examine this aspect.
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and red dots for P-gp non-substrates (PGP−). White area represents passive gastrointestinal
absorption (HIA).
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Table 1. ADME parameters for the selected potential tracers predicted by SwissADME. Topological
polar surface area (TPSA), LogP values, molecular weight (MW) and the number of H-bond donors
and heteroatoms are shown. Based on such parameters, the permeability of the compounds of interest,
as well as being potential substrates for P-glycoprotein, have been determined.

Molecule Formula MW Heteroatoms H-Bond
Donors TPSA WLOGP Consensus

Log P
BBB

Permeant
P-gp

Substrate

AB-1 C16H20O3 260.33 3 2 49.69 2.47 2.27 Yes Yes

E4 C18H24O4 304.38 4 4 80.92 1.55 1.66 No Yes

LY-3201 C18H16F2O3 318.31 5 2 49.69 4.88 3.55 Yes Yes

WAY-200070 C13H8BrNO3 306.11 5 2 66.49 3.67 2.93 Yes No

ERB-041 C15H10FNO3 271.24 5 2 66.49 4 3.24 Yes No

DPN C15H13NO2 239.27 3 2 64.25 2.95 2.52 Yes No

PaPE-1 C17H18O2 254.32 2 2 40.46 3.33 3.37 Yes Yes

PaPE-2 C16H18O2 242.31 2 2 40.46 3.4 3.33 Yes No

PaPE-3 C18H20O2 268.35 2 2 40.46 3.72 3.66 Yes Yes

G-1 C21H18BrNO3 412.28 5 1 47.56 4.31 4.06 Yes Yes

G-15 C19H16BrNO2 370.24 4 1 30.49 4.11 4.08 Yes Yes

PPT C24H22N2O3 386.44 5 3 78.51 5.28 4.25 No No

MPP C29H33Cl2N3O3 542.5 8 2 70.75 7.01 4.62 No Yes

Based on these predictions, selective ligands for the detection of ERα are still lacking,
but some alternative strategies such as the use of dual/multiple tracers can be explored. As-
suming specific tracers are available for particular receptor subtypes, they can be employed
to subtract the signal associated with the more selective tracer from the less selective one,
where the less selective tracer can give a good indication of non-specific binding.

Such simulations, however, do not provide more detailed information on the metabolic
stability of the tracer, kinetic modeling, binding affinity, and plasma protein binding of the
tracer, all of which need to be determined experimentally.

10. Concluding Remarks

Despite the extensive use of PET tracers for ERs in oncology, there remain several
unmet needs and areas that require further research to develop efficient PET tracers for
the family of ERs. The presence of varied ERs in the brain and the local synthesis of
E2 within neurons and astrocytes highlight the importance of understanding estrogen
signaling in various functions and dysfunctions of the brain. The traces of estrogen signaling
and ERs throughout the course of many brain disorders such as neurodevelopmental,
neurodegenerative, and psychiatric disorders have put even more emphasis on developing
better and more selective PET radioligands to non-invasively and longitudinally study ERs
in a diseased brain. Although the precise mechanisms underlying the effects of estrogen
signaling in brain disorders are still being elucidated, the visualization of ERs via PET
imaging facilitates a deeper understanding of the pivotal roles they play.

Nonetheless, one of the key challenges is the development of highly specific and
selective PET tracers for different subtypes of ERs in the brain. While there have been
advancements in identifying and developing more selective ligands, more research is
needed to optimize such ligands as potential PET tracers and assess their functionality,
enabling accurate imaging and quantification of the expression and bio-distribution of
the receptors.

Another area that requires further attention is the improvement of tracer stability
and pharmacokinetic properties to be able to target specific subtypes of ERs in the brain.
PET tracers ought to have sufficient stability to withstand the metabolic processes in the
body, while having favorable pharmacokinetic properties to ensure adequate uptake and
retention in the brain. Such parameters need to be experimentally determined.

Additionally, the translation of preclinical findings to clinical applications in the
development of PET radiotracers involves careful considerations. It is essential to consider
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potential challenges when translating preclinical findings, mainly due to inherent biological
differences among various species [161,162]. Special attention should be given to ensure
that the target of interest is expressed in a comparable abundance and is bereft of any
significant structural alterations across species. Additionally, with respect to kinetics, the
rate of metabolism varies among different species, which may alter the translatability
of findings [161,163,164]. The choice of a time point for a post-mortem study is also of
importance, since dynamic processes are being evaluated, and this is a further argument
for the need for validated in vivo imaging biomarkers for the ER field.

The choice of compatible radionuclides should balance the need for a long enough
half-life, allowing sufficient imaging time, while at the same time being short enough to
minimize radiation exposure. The efficacy, safety, and clinical utility of such proposed PET
tracers also need to be further assessed.

Addressing these challenges will lead to the advancement of developing efficient PET
tracers for peering into both nERs and mERs and gaining a better insight into the estrogen
signaling mode of action in the brain.
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Nomenclature

Compound IUPAC Name
AB-1 (4-(5-(hydroxymethyl)-8-methyl3-oxabicyclo[3.3.1]non-7-en-2-yl)-phenol)

E4
(8R,9S,13S,14S,15R,16R,17R)-13-methyl-6,7,8,9,11,12,14,15,16,17-
decahydrocyclopenta[a]phenanthrene-3,15,16,17-tetrol

Indazole
chloride

3-Chloro-2-(4-hydroxyphenyl)-2H-indazol-5-ol

LY3201
(3aS,4R,9bR)-2,2-difluoro-4-(4-hydroxyphenyl)-3,3a,4,9b-tetrahydro-1H-
cyclopenta[c]chromen-8-ol

WAY-200070 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol
ERB-041 7-ethenyl-2-(3-fluoro-4-hydroxyphenyl)-1,3-benzoxazol-5-ol
DPN 2,3-bis(4-hydroxyphenyl)propanenitrile
WAY-166818 2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol

LY-500307
(3aS,4R,9bR)-4-(4-hydroxyphenyl)-1,2,3,3a,4,9b-hexahydrocyclopenta[c]chromen-
8-ol

PPT 4,4′,4′′-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol

MPP
1,3-Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-
pyrazole
dihydrochloride

PaPE-1 (S)-5-(4-Hydroxy-3,5-dimethyl-phenyl)-indan-1-ol
PaPE-2 4-[4-[(1S)-1-hydroxyethyl]phenyl]-2,6-dimethylphenol
PaPE-3 (1S)-6-(4-hydroxy-3,5-dimethylphenyl)-1,2,3,4-tetrahydronaphthalen-1-ol

G-1
1-[(3aS,4R,9bR)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-
cyclopenta[c]quinolin-8-yl]ethanone

G-15
(3aR,4R,9bS)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-
cyclopenta[c]quinoline
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