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Abstract: Cardiometabolic disorders are major causes of morbidity and mortality worldwide. A
growing body of research indicates that the gut microbiota, whether it interacts favorably or not, plays
an important role in host metabolism. Elucidating metabolic pathways may be crucial in preventing
and treating cardiometabolic diseases, and omics methods are key to studying the interaction between
the fecal microbiota and host metabolism. This review summarizes available studies that combine
metabolomic and metagenomic approaches to describe the effects of drugs, diet, nutrients, and
specific foods on cardiometabolic health and to identify potential targets for future research.
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1. Introduction

Cardiometabolic disease (CMD) is associated with multimorbidity and increased mor-
tality worldwide [1–4]. The prevalence of CMD varies between countries and continents [2].
In Canada, the overall prevalence of CMD is 3.5% [1]. In China, the multimorbidity of
CMD increased from 2.41% to 5.94% between 2010 and 2016 [3]. The growing population
with metabolic disorders can become a challenge for the national healthcare system.

In the literature, CMD has been described as a cluster of interrelated risk factors such as
abdominal obesity, hypertension, elevated fasting plasma glucose, and dyslipidemia [5,6],
which leads to cardiovascular disease, stroke, and type 2 diabetes mellitus (T2DM) [7].
Unhealthy diets, inactivity, and smoking are among the major risk factors for CMD [6,7].
The individual symptoms that make up cardiometabolic disease require an integrated
approach and must be pharmacologically treated and prevented by increasing activity and
improving diet composition [8].

An inadequate diet combined with low physical activity promotes obesity, hyperten-
sion, type 2 diabetes, insulin resistance, and dyslipidemia [9,10]. Obesity, especially visceral
obesity, leads to body fat accumulation, lipotoxicity, inflammatory and oxidative process
initiation, and T2DM [11]. Among dietary modifications to reduce or prevent cardiovascu-
lar disease, caloric restriction in obesity is essential to achieving and maintaining weight
loss [12]. It normalizes inflammatory markers, lowers blood pressure, and modulates
insulin response and glucose levels [12,13]. An essential element of nutrition in preventing
cardiovascular disease is the qualitative composition of the diet, which involves increasing
the intake of vegetables, fruits, legumes, nuts, and seeds [12,13]. Plant products contain
many components with antioxidant activity that modulate the composition of the intestinal
microbiota, including polyphenols and dietary fiber. Currently, more and more new plant
raw materials containing biologically active substances are being sought, which could be
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ingredients in diets, medicines, or supplements for people with metabolic disorders and
cardiovascular diseases [14].

Polypharmacy is common in CMD [15]. Among the essential medications for treating
individual symptoms are drugs for diabetes, high blood pressure, appetite control, and
cholesterol-lowering [15]. In treating obesity and NAFLD, drugs that control appetite and
inhibit steatohepatitis, such as liraglutide, have a promising role. In the monotherapy of
type 2 diabetes, metformin is the treatment of choice in the early stages. Depending on
the symptoms of cardiovascular disease, patients require high blood pressure medications,
anticoagulants, aspirin, and, for gastroenterological side effects, proton pump inhibitors
(PPIs) [15]. Frequently, antibiotics are administered because of the increased prevalence of
infections [16].

Some of the effects of nutrition and pharmacotherapy may go beyond the impact
of food and drug chemicals alone as a result of the activity of the gut microbiota, which
transforms chemicals in the gut and, through the resulting compounds, exerts systemic
effects and modulates the effects of treatment. The gut is home to trillions of microor-
ganisms such as bacteria, archaeons, fungi, and viruses, of which bacteria are the most
numerous and most studied group. The gastrointestinal tract is populated in 90% by
two bacterial phyla: Firmicutes and Bacteroidetes, followed by Proteobacteria, Actinobacteria,
and Verrucomicrobia [17]. In fact, many of the compounds found in the bloodstream result
from the activity of the gut microbiota, which converts nutrients, mainly carbohydrates
and proteins as sources of carbon and energy, and other food compounds into various
chemical derivatives through numerous metabolic pathways [18,19]. A healthy microbiota
is necessary to maintain the intestinal barrier. Intestinal bacteria can ferment food and
extract nutrients by breaking down macronutrients. The effect of polysaccharide fermenta-
tion is the formation of Short Chain Fatty Acids (SCFAs), such as primarily butyric acid,
which show beneficial effects on the gastrointestinal tract by providing protection and
integrity [18]. By acidifying the environment, SCFAs reduce the ability of pathogens to
colonize the digestive tract and increase mucus production [19]. The effects of SCFAs are
not limited to the gastrointestinal tract. SCFAs can also modulate glucose metabolism, regu-
lating tissue insulin sensitivity and the body’s anti-inflammatory response [19]. In addition
to beneficial effects, microbiota may contribute to the formation of harmful products. Sev-
eral microbial metabolites exhibit negative effects on the host. Microbiota-derived amino
acid metabolites, such as indoxyl sulfate and p-cresol sulfate, promote the development
of vascular inflammation [20]. Trimethylamine oxide, produced by the microbiota from
choline-rich foods such as red meat, plays an adverse role in the pathology of cardiovascu-
lar disease and correlates with increased cardiovascular mortality [21–23]. The mechanistic
link of this association is platelet hyperresponsiveness and thrombosis [23,24]. Acylcar-
nitine fecal metabolites, which result from the conjugation of fatty acids with L-carnitine,
are positively correlated with obesity [25]. Another aspect of microbiota assessment is
to evaluate the abundance of different species of gut microbiota, which provides an op-
portunity to track the effectiveness of dietary therapy. The literature suggests that a high
Firmicutes to Bacteroidetes ratio may be associated with a higher risk of metabolic syndrome,
diabetes, and obesity. Previous studies have indicated that calorie-restricted diets increase
the abundance of Bacteroides species, which are inversely associated with obesity, high-fat
diets, and low dietary fiber [26–28]. A whole range of cutting-edge techniques, such as
metabolomics, proteomics, nutrigenomics, and metagenomics, which have evolved rapidly
over the past two decades, make it possible to learn about these processes (Figure 1). They
allow the identification of a significant number of compounds produced by microorgan-
isms and absorbed from the gastrointestinal tract, as well as the study of the metabolic
pathways of these compounds in the host body and their potential role in the treatment of
various diseases. Due to the multiple metabolic activities of the microorganisms inhabiting
the intestines, particularly the production and secretion of hormone-like substances, the
microbiota interacts with the body’s endocrine system in tissues and organs. Research indi-
cates that a greater diversity of microbiota promotes better health outcomes [29]. Adverse
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changes in the intestinal microbiota are referred to as “intestinal dysbiosis,” a state charac-
terized by altered microbial diversity and composition at the α- and β-diversity levels. The
α-diversity expressed as richness (number of taxonomic groups) and evenness (distribution
of abundances of the groups), is a measure of variation within a microbiome community,
while β-diversity measures the similarity or distance between microbiome communities.
Dysbiosis disrupts the complex balance of hormones and metabolic processes and leads to
pathological processes leading to diabetes mellitus and cardiovascular disease [30].
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Metagenomics and metabolomics are relatively young scientific disciplines. Metage-
nomics allows direct cloning, sequencing, and functional analysis of genetic material
isolated from the gut microbiome. Unlike bacterial culture studies, the techniques used in
metagenetic studies enable the detection of nucleic acids present in the environment, so
the isolated genetic material should overlap with the genetic material of microorganisms
present in biological samples. Metabolomics allows studying the metabolome of low-
molecular-weight compounds in biological samples [31]. It uses advanced technologies
such as nuclear magnetic resonance and mass spectrometry to determine amino acids,
phosphosugars, SCFA, nucleotides, and their precursors and metabolites.

An integrated approach to metabolomics and metagenomics can reveal an interplay
between microbiota and host metabolism and provides much more material for inter-
pretation than individual omics. Research in recent years has increasingly considered a
dual-omics, or even cross-omics, approach to assessing the metabolome and metagenome
to predict cardiovascular disease. An example of this combined assessment is the study by
Feng et al. [32]. Using metagenomic and metabolomic technologies, the authors found that
plasma and urinary N-acetylglucosamine-6-phosphate and urinary mannitol, compounds
initially produced by the gut microbiota, may have potential as biomarkers of coronary
artery disease. They combined metabolome data with specific species of bacteria inhabiting
the gut (Clostridium sp. HGF2, Streptococcus sp. M143, and Streptococcus sp. M334) to find a
link between the microbiota and the host metabolome [32].

This qualitative review aimed to identify publications with an integrated approach
combining metabolomics and metagenomics to describe the complex impact drug treatment,
diet, nutrients, and specific foods can have on cardiometabolic health and identify potential
targets for future research. Due to the complex subject matter and the extensive research
material described in the studies, the review summarizes the most important findings
collected by metabolomics and metagenomics.
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2. Search Strategy

The search was conducted using PubMed, which covers biomedical literature from
Medline, life science journals, and online books. The search was performed in July 2022 and
included articles from PubMed’s inception until June 2022. Since the PubMed database did
not yet have completed articles in July, articles published in July were not considered for this
review. Search terms included: metabolomics, metabolome, metagenomics, metagenome,
nutrition, food, supplement, drug, pharmacology, cardiometabolic, and cardiovascular
(Figure 2). The articles included in the search strategy were observational studies (cohort
and case-control studies), experimental studies (clinical trials), and animal studies. The
systematic search was supported by hand searches that included multiple drug-related
terms such as metformin, statins, liraglutide, and orlistat. Only those articles where
metabolomic and metagenomic techniques were applied in the context of CMD or CMD
risk factors were selected for presentation in this review. Full-text articles published in
English that were relevant to this review were selected.
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3. Results

A search by predefined terms yielded 262 hits (Figure 2). Based on these, the abstracts
were reviewed, and 116 papers were qualified for further review. After reviewing the
full texts of the papers, those that did not address pharmacotherapy in association with
hypertension, elevated plasma glucose, dyslipidemia, obesity, non-alcoholic liver fatty
disease, CMD, or T2DM, and those that did not mention diet or food in the context
of prevention or treatment of CMD, and those that did not present metabolomic and
metagenetic studies concurrently, were rejected. Finally, 30 papers from 2013–2022 were
included in the review: nine reports concerning pharmacotherapy and 19 dealing with
food, supplements, or nutrition. By reviewing the publication dates, it was found that 86%
of the collected articles were from 2020–2022. A flowchart of article selection is shown in
Figure 3.
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3.1. Pharmacotherapy

Of the pharmacotherapy-related publications, all nine articles were published between
2020 and 2022, with the majority of them being human studies (seven of the nine articles)
and one combining human and animal studies.

These nine publications covered single drugs and groups of medications, such as
metformin, statins, orlistat, ezetimibe, antibiotics, or combinations of different drugs and
groups of drugs, including statins, the dipeptidyl peptidase-4 inhibitor PKF-275-055, and
antibiotics. The publications covered CMD, T2DM, coronary artery disease, ischemic heart
disease, NAFLD, and cirrhosis. The articles were compiled and presented in Table 1.

Statins are commonly used to lower LDL cholesterol levels, reducing cardiovascular
risk. They are effective in lowering cholesterol; however, statins cause adverse effects
such as impaired metabolic control and an increased risk of T2DM in a particular group
of patients. A study by Wilmanski et al. [33], using two independent cohorts, aimed to
investigate the potential role of the gut microbiome in modifying patient responses to
statin therapy. The authors concluded that HMG (a hydrolyzed substrate of 3-hydroxy-
3-menthyl glutarate coenzyme-A reductase) might become a promising marker of statin
targeting. Plasma HMG levels reflected the intensity of statin therapy and known genetic
markers of variable response to statins. In contrast, heterogeneity in response to statins was
consistently associated with variation in the gut microbiome. A gut microbiome enriched in
Bacteroides and depleted in diversity was associated with more intense responses to statins,
both in terms of on-target and adverse effects.
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Table 1. Summary of studies ranked in order of most recent using metagenomics and metabolomics to study pharmacotherapy in CMD.

Reference, Year Drugs Studied Study Design Participants/Animals Samples/Omics Methods Major Findings No Ref.

1. Wilmanski et al.,
2022 Statins Cross-sectional

cohort study

two independent
cross-sectional cohorts:

discovery n = 1848 (244 statin
users); validation n = 991 (688

with various stages of
cardiometabolic disease)

- fecal metagenome;
- blood metabolomics

- HMG (a hydrolyzed substrate for
3-hydroxy-3-methylglutarate-coenzyme-A
(HMG-CoA) reductase) appears as a marker
for statin on-target effects

- heterogeneity in statin responses is
associated with variation in the
gut microbiome

- more intense on-target and adverse effects of
statins found in microbiomes enriched with
Bacteroides and lacking diversity.

[33]

2. Fromentin et al.,
2022 Polypharmacy Observational

study

1241 middle-aged Europeans,
healthy and with ischemic

heart disease (IHD)

- fecal metagenome;
- serum and urine

metabolome

- about 75% of microbiome and metabolome
features in individuals with dysmetabolism
can distinguish individuals with IHD from
healthy individuals after adjustment for
confounders associated with medication and
lifestyle

- changes in the gut microbiome and
metabolome can begin long before the
clinical onset of IHD

- statins are associated with the restoration of
diversity in the gut microbiota.

[34]

3. Shuai et al., 2022 Antibiotics Cohort study 1210 healthy, prediabetic, and
T2D participants

- fecal metagenome;
- fecal metabolome

- a shift of antibiotic resistance genes (ARGs)
in groups of healthy subjects, prediabetes,
and T2DM

- larger ARG diversity associated with a
higher risk of T2DM

- study-developed ARG score associated with
T2DM progression

- gut ARG associated with cardiometabolic
risk factors.

[35]
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Table 1. Cont.

Reference, Year Drugs Studied Study Design Participants/Animals Samples/Omics Methods Major Findings No Ref.

4. Forslund et al.,
2021

28 drugs and
several drug
combinations

Meta-Cardis
cohort 2173 European residents

- fecal microbiome;
- serum metabolome

- additive effects of drugs cause a shift of the
metabolome and microbiome towards a
healthier state

- strongest effects on the serum metabolome
are for antidiabetic drugs, statins,
beta-blockers, antithrombotic drugs,
and aspirin

- antibiotics exhibit a quantitative relationship
between the number of courses prescribed
and progression towards a microbiome state
associated with the severity of
cardiometabolic disease

- the relationship between CMD medication
dosage, improvement in clinical markers,
and microbiome composition, supports
direct drug effects.

[36]

5. Zeybel et al., 2021

Combined
metabolic
activators

(CMA) (3.73 g
L-carnitine
tartrate, 1 g

nicotinamide
riboside, 12.35 g

serine, and
2.55 g N-acetyl-l-

cysteine)

10-week
placebo-controlled

phase 2 study to
investigate the

efficacy and safety
of CMA

NAFLD patients: 20 in the
CMA treatment group and 11

in the placebo group

- oral and fecal
metagenome;

- plasma metabolome

- a significant decrease in the abundance of
species belonging to Proteobacteria,
Actinobacteria, and Firmicutes in the fecal
microbiome after the CMA treatment

- the abundance of specific species of
Proteobacteria, Bacteroidetes, and Actinobacteria
was reduced in the oral microbiota in the
CMA group

- N-trimethyl-5-aminovalerate associated with
intestinal microbiota was the most
significantly reduced metabolite in the CMA
group and was significantly lower than in the
placebo group

- CMA treatment positively correlated with
the plasma levels of serine, glycine,
gamma-glutamylglycine, carnitine,
1-methylnicotinamide,
N1-methyl-4-pyridone-3-carboxamide, and
N1-methyl-2-pyridone-5-carboxamide.

[37]
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Table 1. Cont.

Reference, Year Drugs Studied Study Design Participants/Animals Samples/Omics Methods Major Findings No Ref.

6. Tian et al., 2021 metformin Prospective cohort

- 71 patients with stable
coronary artery disease
(SCAD)

- 38 SCAD + T2DM
- 55 healthy control

fecal and serum samples

- a significant difference in gut bacteria
between SCAD and SCAD + T2DM patients

- metformin may confound gut dysbiosis and
increase the potential for
nitrogen metabolism.

[38]

7. Jin et al., 2021 Orlistat,
ezetemibe

Randomized
controlled

open-label trial

overweight and obese
individuals with
dyslipidemia:
- 37 taking orlistat
- 31 taking ezetimibe

- fecal metagenome;
- fecal metabolome

- intestinal malabsorption of dietary fat and
cholesterol caused by orlistat and ezetimibe
had limited effect on the overall gut
microbial community and their metabolites.

[39]

8. Kappel et al., 2020 oral antibiotics Animal study,
human study

- ApoE-knockout mice
- 42 humans with carotid

atherosclerosis

- serVum metabolome;
- cecVal microbiome

- antibiotic therapy in mice had an adverse
effect on the development of atherosclerosis
regardless of diet

- humans with atherosclerosis showed a trend
toward lower α-diversity, lower levels of
tryptophan, and higher levels of long-chain
fatty acids.

[40]

9. Ryan et al., 2020

metformin and
dipeptidyl

peptidase-4
(DPP-4)
inhibitor,

PKF-275-055

Animal study C57BL/6 male mice - cecal microbiota;
- plasma metabolome

- microbiota and metabolomic profiles differed
between metformin and PKF-275-055-treated
mice

- metformin and PKF-275-055 treatment
decreased Firmicutes/Bacteroidetes ratios

- metformin favors metabolic
health-associated Akkermansia, Parabacteroides,
and Christensenella

- metformin reduced α-diversity, a metric
frequently associated with host metabolic
fitness–PKF-275-055 treatment increased
levels of butyrate-producing Ruminococcus
and acetogen Dorea, with reduced levels of
certain plasma sphingomyelin,
phosphatidylcholine, and
lysophosphatidylcholine entities. In turn,
metformin reduced levels of acylcarnitines, a
functional group associated with systemic
metabolic dysfunction. Finally, several
associations were identified between
metabolites and altered taxa.

[41]
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The effects of drugs on the microbiome and metabolome can be complex, especially in
multidrug regimens. The MetaCardis cohort study of more than 2000 Europeans provides
information on the interactions between drug groups and gut microbiota [36]. The drug
groups in this study included medications most commonly prescribed to CMD patients,
such as antidiabetic medications, antihypertensive, antidyslipidemic, antithrombotic, an-
tiarrhythmic, and gout medications, PPIs, and antibiotics. This study evaluated the effects
of individual drugs and their combinatorial effects. Univariate statistical analysis was
used to separate drug effects from factors related to the disease, vs. gut microbiome, and
host characteristics to quantify the impact of individual drugs. Research indicated that
much of the naive relationship between drugs and the microbiome, or metabolome, could
be attributed to drug intake. Still, not all interactions can be related only to the effects of
treatment. Considering the direct impact of drugs, of the 28 cardiometabolic drugs studied,
the most potent effect on serum metabolomes was found for antidiabetic drugs, statins,
beta-blockers, anticoagulants, and aspirin. This study identified aspirin-associated changes
in bacterial species abundance and shifts in the serum lipidome and metabolome associated
with improved cardiometabolic health. They included depletion of bacteria associated
with inflammatory diseases such as Ruminococcus gnavus and Parvimonas micra, among
others; reduction of plasma inflammatory markers; and a reduction in levels of pyruvate,
glutamate, and succinate, which, as previous studies found, are associated with obesity, to
an extent comparable to aspirin levels detected in the serum of treated subjects. In addition,
γ-butyrobetaine, a proatherogenic intermediate of microbial metabolism, was lower in
aspirin takers, revealing a potential complex antiatherosclerotic effect of aspirin beyond
its known anti-platelet functions. PPIs had the most associations with gut microbiome
features, including a higher prevalence of oral bacteria, probably due to the transfer of
bacteria from the mouth to the gut due to reduced gastric acidity. In this study, a synergistic
positive effect of the drug combination on disease markers was observed. In T2DM, the
most pronounced synergistic effect on microbiome traits was observed with loop diuretics,
especially in combination with aspirin, angiotensin-converting enzyme (ACE) inhibitors,
and beta-blockers, and on host features with statins. Loop diuretics in combination with
aspirin, ACE inhibitors, or beta-blockers were found to more strongly enrich microbiome-
related health markers. Statins, taken together with metformin or aspirin, contributed to
the microbiome’s richness and abundance of Firmicutes and methanogenic bacteria, which
are depleted in T2DM. This is consistent with previous results of a study that showed that
statin therapy is associated with a lower incidence of dysbiosis of the gut microbiota [42].
The authors hypothesize that these shifts in the microbiome may mediate some of the
synergistic effects of the drugs on the host. Other drugs used for lipid disorders in high-risk
patients include ezetimibe and orlistat [39]. Research showed that intestinal orlistat- and
ezetimibe-mediated malabsorption of fat and cholesterol from food had limited effects on
the overall gut microbial community and their metabolites. During the intervention, the
gut microbiota and their SCFA metabolites were relatively stable in overweight and obese
Chinese individuals with dyslipidemia.

Growing evidence shows a link between antibiotic therapy, dysbiosis, metabolic diseases,
and cardiovascular risk, independently of diet. A cross-omics study by Kappel et al. [40], con-
ducted in mice and humans, explored the complex interaction between the gut microbiome
and host metabolism. They fed mice a Western-type diet (WTD) or a normal chow diet
and challenged them with non-absorbable antibiotics (NAA). As they expected, mice fed
WTD developed atherosclerotic lesions; however, NAA, independently of the diet, aug-
mented the development of atherosclerosis. A decrease in tryptophan metabolites and
other metabolic pathways, mainly related to altered lipid metabolism, was accompanied by
a decrease in a few bacterial families, such as those belonging to Clostridia, Ruminococcaceae,
Lachnospiraceae, and Porphyromonadaceae of Bacteroidetes. Additionally, several antibiotics
may have a quantitative relationship between the number of antibiotic therapy courses and
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the microbiome’s deteriorating state, which may reflect the severity of the cardiometabolic
disease [36].

Antibiotic use can lead to long-term enrichment of the gut microbiota’s antibiotic
resistance genes (ARGs), called the antibiotic resistome. Shuai et al. [35] found a shift
between the ARG of healthy subjects, prediabetes, and T2DM. This study’s more significant
variation in antibiotic resistance was associated with an increased risk of T2DM. They
found that antibiotic resistance was associated with fecal metabolites. Specifically, the
authors’ Diabetes-ARG score (DAS) and D-Ala-D-Ala-dipeptidase required for vancomycin
resistance (Vancomycin vanX) were positively associated with Branch Chain Amino Acids
(BCAA) L-isoleucine and L-leucine, which have been implicated in diabetes risk in earlier
studies [43,44]. Associations were also observed between DAS and the multidrug resistance
protein (Multidrug emrE). They were positively related to dihomo-gamma-linolenic acid
(DGLA), which was previously found to be positively associated with obesity, body fat ac-
cumulation, and insulin resistance in patients with type 2 diabetes [45,46], while negatively
associated with butyric acid, a key metabolite of healthy gut microbiota [47].

A decreased ability of the microbiome to biosynthesize SCFAs and increased produc-
tion of BCAAs were observed in CMD. Fromentin et al. [34] found that these microbiome
features were associated with an increased risk of asymptomatic coronary atherosclero-
sis. They studied individuals with ischaemic heart disease (IHD), including those with
acute coronary syndrome, as well as individuals with chronic ischemic heart disease and
those with IHD and heart failure. A reduction in gut bacterial cell density and a shift in
the abundance of many species and in microbial functional potential were found, which
seem to reverse after IHD treatment. Changes in the metabolome accompanied shifts
in the microbiome. Metabolites with vasoprotective and antioxidant properties such as
fatty acid esters, ergothioneine, and alpha-tocopherol were depleted, while proatherogenic
trimethylamine intermediates and compounds derived from tryptophan and phenylalanine
were enriched. In contrast, other metabolites, such as 4-cresol and phenylacetylglutamine,
reflected the early stage of IHD.

Nonalcoholic fatty liver disease (NAFLD) is associated with lipid accumulation in
the liver and is considered a risk factor for cardiovascular events [48]. Zeybel et al. [37]
in a placebo-controlled 10-week clinical trial studied the safety and efficacy of combined
metabolic activators (CMAs) such as L-carnitine tartrate, nicotinamide, riboside, and N-
acetyl-l-cysteine concerning lipid accumulation in the liver. This small cross-omics study
demonstrated the efficacy of CMA in treating NAFLD and studied the mechanisms of host-
microbiota interactions. The treatment with CMAs led to a significant decrease in the abun-
dance of fecal microbiome species belonging to the phyla Proteobacteria, Actinobacteria, and
Firmicutes and of the oral microbiome belonging to Proteobacteria, Bacteroidetes, and Actinobac-
teria. Faecalibacterium prausnitzii was positively related to CMA directly related metabolites
such as cysteine, cysteinyl glycine, sarcosine, and N1-methylinosine, and plasma cysteine
was positively related to the abundance of Roseburia faecis and Oscillibacter sp. 57 20, which
belong to the phylum Firmicutes, and with Bacteroides ovatus and Bacteroides fragilis, which
belong to the phylum Bacteroidetes. Plasma metabolites indirectly associated with CMA,
N1-methyl-4-pyridone-3-carboxamide, and N1-methyl-2-pyridone-5-carboxamide, were
positively associated with the abundance of Alistipes shahii and negatively related to the
abundance of Bacteroides cellulosilyticus and Fusicatenibacter saccharivorans.

Metformin, an oral antidiabetic medication, is often prescribed to treat T2DM. Earlier
studies found that metformin treatment may be responsible for gastrointestinal side effects
in healthy volunteers [49]. In line with these findings, Tian et al. [38] found that met-
formin treatment in patients with stable coronary artery disease combined with diabetes
mellitus may alter gut microbiota signatures. They found that gene richness significantly
increased in the microbiome of metformin-treated patients, showing an increase in un-
classified Clostridium spp. and a reduced abundance of Prevotella bryantii, Citrobacter
koseri, and Acidaminococcus fermentans. This study demonstrated that metformin may in-
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teract with the gut microbiota, confounding gut dysbiosis and increasing the potential for
nitrogen metabolism.

In metabolically dysfunctional C57BL/6 mice, two antidiabetic medications, met-
formin, and the dipeptidyl peptidase-4 (DPP-4) inhibitor PKF-275-055, were studied in
relation to the cecal microbiota and the markers of cardiometabolic disease [41]. Although
both medications decreased Firmicutes/Bacteroidetes ratios and showed similar benefits on
metabolic features such as mesenteric adiposity, microbiota, and metabolomic profiles, they
differed significantly. Metformin reduced α-diversity, a metric frequently associated with
host metabolic fitness, while favoring these microbiotas associated with metabolic health.
It also increased plasma sphingolipids and colonic bacteria associated with sphingolipid
metabolism. Earlier studies demonstrated that sphingolipid species are associated with
reduced insulin sensitivity [50]. On the other hand, PKF-275-055-treated mice showed
increased butyrate and acetogenic bacteria production and a reduced concentration of
some sphingolipids.

3.2. Nutrition, Food, and Supplements

The nutrition and food articles that met the inclusion criteria spanned the years
2015–2022. Except for one publication that focused on the colonization of mice with
human fecal communities, all the others were related to humans (healthy, overweight,
obese, elderly, twins, and children). Publications covered the usual diet, Western diet,
Mediterranean diet, calorie restriction, low-carbohydrate diet, plant-based diet, dairy
intake, transition from low-fat to high-fat and low-carbohydrate diet, dietary fiber intake,
raspberries, berberine, probiotics, sodium and potassium, and soy. The articles have been
collected and are presented in Table 2.
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Table 2. Summary of studies ranked in order of most recent using metagenomics and metabolomics to investigate nutrition and consumption of specific foods
in CMD.

Reference,
Year Diet/Food Studied Study Design Participants/Animals Samples/Omics Methods Major Findings No Ref.

1. Bombin et al.,
2022 Habitual diet Observational

study
135 healthy individuals

(lean, overweight, obese)

- fecal and salivary
metagenomics;

- plasma and fecal
metabolomics

- salivary bacterial communities differ by
composition and phyla in lean and
obese individuals

- An increase in obesity status is positively
associated with strong correlations between
bacterial taxa, mainly with bacterial groups
implicated in metabolic disorders, including
Fretibacterium and Tannerella

- Consumption of sweeteners, especially
xylitol, significantly influences the
compositional and phylogenetic diversities of
salivary and fecal microbiota.

[51]

2. Franck et al.,
2022

Raspberry
consumption

8-week
randomized

controlled trial

24 participants
(responders and

non-responders to
raspberries according to
transcriptional profiles)

- fecal metagenomics;
- serum metabolomics

- distinct metagenomic profile identified before
intervention in responders and
non-responders

- lower Firmicutes-to-Bacteroidetes ratio found
in responders compared to non-responders

- plasma lipidomic profile of responders was
characterized by a significant decrease in
triglycerides and an increase in
phosphatidylcholines following
raspberry consumption.

[52]

3. Barber et al.,
2022

Western-type diet (WD)
vs. a fiber-enriched

Mediterranean
diet (MD)

2-week
randomized
cross-over

study
20 healthy men

- fecal metagenomics;
- urinary metabolomics

- relatively little difference in microbiota
composition between MD and WD

- microbial metabolism differed substantially,
as shown by urinary metabolite profiles and
the abundance of microbial
metabolic pathways

- effects of the diet were less evident in
individuals with higher β diversity.

[53]
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Table 2. Cont.

Reference,
Year Diet/Food Studied Study Design Participants/Animals Samples/Omics Methods Major Findings No Ref.

4. Li et al., 2022 Habitual diet Longitudinal
cohort study

307 healthy men, Men’s
Lifestyle Validation

Study

- fecal metagenomics;
- urine and plasma

metabolomics

- 10 microbial species significantly associated
with plasma trimethylamine
N-oxide (TMAO)

- higher habitual intake of red meat and
choline significantly associated with
increased TMAO among men with a
microbial profile of abundant species
predicted TMAO concentrations.

- -Alistipes shahii species significantly
strengthened the positive associations of red
meat intake with TMAO concentrations
and HbA1c.

[54]

5. Benítez-Páez
et al., 2021

Caloric restriction with
fiber supplementation

12-week
clinical trial

80 overweight
participants

- fecal metagenomics;
- plasma and fecal

lipidomics

- an abundance of microbial species, mainly
Clostridia and Bacteroides, reduced by the
caloric-restricted diet

- supplementation of caloric-restricted diets
with soluble fiber lowered blood pressure in
all participants and had a more significant
effect on women than on men, which was
associated with specific changes in the gut
microbiome and metabolome

- fecal lithocholic acid was significantly
reduced in women, and this effect was likely
to be related to the presence of Clostridia
comes or Roseburia torques.

[55]

6. Ma et al., 2021
Low-carbohydrate (LC)
and calorie-restricted

(CR) diets

12-week
clinical trial

48 overweight and
obese women

- fecal metagenomics;
- erythrocyte and

plasma metabolomics

- LC and CR diets produced different changes
in the gut microbiota, plasma acylcarnitines,
and erythrocyte fatty acids

- the Bacteroidetes to Firmicutes ratio increased
significantly in the LC diet but not in the
CR diet

- LC group vs. CR group had lower BCAA
biosynthesis and higher serine biosynthesis.

[56]
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Table 2. Cont.

Reference,
Year Diet/Food Studied Study Design Participants/Animals Samples/Omics Methods Major Findings No Ref.

7. Galié et al.,
2021

Mediterranean diet
(MD) or a non-MD diet

supplemented with
50 g nuts

2 months
randomized
controlled

cross-over trial

44 adults with
overweight/obesity and

metabolic syndrome

- fecal metagenomics;
- plasma metabolomics

- -MedDiet produced significant changes in
65 circulating metabolites, mainly lipids,
acylcarnitines, amino acids, steroids, and
intermediates of the tricarboxylic acid

- -two clusters of microbial genera with
opposing behaviors toward selected
metabolites were identified, mainly species of
phosphocholine, cholesteryl esters,
triglycerides, and medium- and long-chain
acylcarnitines.

[57]

8. Li et al., 2021 plant-based diet
index (hPDI)

Longitudinal
cohort study

303 older men, Men’s
Lifestyle

Validation Study

- fecal metagenomics;
- plasma metabolomics

- -the hPDI was associated with the relative
abundance of seven species and
nine pathways

- -higher hPDI was associated with a higher
relative abundance of Bacteroides
cellulosilyticus and Eubacterium eligens, amino
acid biosynthesis pathways (l-isoleucine
biosynthesis I and III and l-valine
biosynthesis), and the pyruvate to isobutanol
fermentation pathway.

[58]

9.
Murga-

Garrido et al.,
2021

Dietary fibers:
cellulose, inulin, pectin,

a mix of
5 fermentable fibers

Animal
intervention

study

66 genetically-identical
germ-free mice colonized
with two distinct human

fecal communities

- fecal metagenomics;
- serum metabolomics

- -ingesting the same type of dietary fiber by
genetically identical mice but differing in
microbiomes transferred from humans can
lead to various metabolic outcomes in
the host

- -fiber-specific differences were found in the
intestinal levels of butyrate and valerate

- -genus Anaerotruncus was negatively

associated with long-chain saturated, unsaturated,
and branched fatty acids, lysophospholipids, and
monoacylglycerol, and positively with lysine,
glycine, arginineproline, purine, and pyrimidine
- -Ruminococcus was negatively associated with

BCAA, glutamate, tryptophan, fatty acids,
purine, and gamma-glutamyl amino acid.

[59]
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Table 2. Cont.

Reference,
Year Diet/Food Studied Study Design Participants/Animals Samples/Omics Methods Major Findings No Ref.

10. Shuai et al.,
2021

Habitual dairy
consumption

Prospective
cohort study

1780 participants in
Guangzhou Nutrition

and Health Study

- fecal metagenomics;
- serum metabolomics

- an overall difference in gut microbial
community structure (β-diversity) between
the highest and lowest categories of dairy,
milk, and yogurt

- association of targeted serum metabolites
with dairy-microbial features and
cardiometabolic traits

- 2-hydroxy-3-methylbutyric acid,
2-hydroxybutyric acid, and L-alanine were
inversely associated with the
dairy-microbial score.

[60]

11. Asnicar et al.,
2021 Habitual diet Clinical trial

1203 gut microbiomes
from 1098 individuals of
Personalised Responses
to Dietary Composition

Trial (PREDICT 1)

- fecal metagenomic;
- blood metabolomics

- taxa associated with healthy plant-based
foods included mainly butyrate

- producers (Roseburia hominis, Agathobaculum
butyriciproducens, Faecalibacterium prausnitzii,
and Anaerostipes hadrus)

- less healthy plant and animal products,
which were correlated with Clostridia
(Clostridium innocuum, Clostridium symbiosum,
Clostridium spiroforme, Clostridium leptum, and
Clostridium saccharolyticum).

[61]

12. Zhang et al.,
2020 Berberine, probiotics

12-week
randomized
double-blind
clinical trial

409 T2DM individuals
- fecal metagenomic;
- plasma metabolomics

- hypoglycaemic effect of berberine in T2DM
was mediated by the inhibition of
deoxycholic acid biotransformation by
Ruminococcus bromii

[62]
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Table 2. Cont.

Reference,
Year Diet/Food Studied Study Design Participants/Animals Samples/Omics Methods Major Findings No Ref.

13. Wang et al.,
2020

Sodium, potassium,
and Na/K ratio

Longitudinal
study, China
Health and
Nutrition

Survey

392 adults
- fecal metagenomics;
- plasma metabolomics

- dietary sodium, potassium, and Na/K ratios
were associated with microbiota and
metabolites related to inflammation and CVD
risk factors

- dietary sodium was inversely associated with
the phenolics 1,2,3-benzenetriol sulfate,
3-methoxycatechol sulfate, and
4-methylcatechol sulfate derived from the
microbial conversion of nutritional
polyphenols and with SCFAs
(butyrate/isobutyrate and isovalerate)

- Coriobacteriaceae and Ruminococcaceae were
positively associated with
4-methylcatechol sulfate

- Coriobacteriaceae was involved in the
phenolic conversion.

[63]

14. Meslier et al.,
2020

Mediterranean
diet (MD)

8-week
randomized

controlled trial

82 healthy overweight
and obese subjects with a
habitually low intake of
fruit and vegetables and

a sedentary lifestyle

- metagenomics
- fecal, urinal, and

serum metabolomics.

- MD resulted in increased levels of the
fiber-degrading bacteria Faecalibacterium
prausnitzii and of genes for microbial
carbohydrate degradation associated with
butyrate metabolism

- shift to MD resulted in increased urinary
urolithins, fecal bile acid degradation, and
insulin sensitivity, which co-occurred with
specific taxa of microorganisms.

[64]

15. Shah et al.,
2020 Soy intake Cross-sectional

study

104 healthy lean,
overweight, or
obese subjects

- fecal metagenomics,
- plasma and fecal

metabolomics

- reduction in blood pressure in response to
soy may be dependent on
microbiome composition

- -suppression of genus Dialister and Prevotella
by high soy consumption.

[65]
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Table 2. Cont.

Reference,
Year Diet/Food Studied Study Design Participants/Animals Samples/Omics Methods Major Findings No Ref.

16. Wan et al.,
2019

The transition from a
low-fat diet to a

high-fat and
low-carbohydrate diet

6-month
randomized

controlled trial
217 healthy young adults

- fecal metagenomics;
- fecal metabolomics

- the lower-fat diet was associated with
increased α-diversity, increased abundance of
Blautia and Faecalibacterium, and decreased
p-cresol and indole

- the higher-fat diet was related to increased
Alistipes, Bacteroides, arachidonic acid, and the
lipopolysaccharide biosynthesis pathway and
decreased Faecalibacterium and total SCFA.

[66]

17. Hibberd et al.,
2019

Probiotic
(Bifidobacterium animalis

subsp. lactis 420™),
prebiotic

(polydextrose)

Randomized,
double-blind,

placebo-
controlled

clinical trial

134 overweight and
obese adults

- fecal metagenomics;
- fecal and plasma

metabolomics

- supplementation with probiotics and
prebiotics increased Akkermansia,
Christensenellaceae, and Methanobrevibacter
and decreased Paraprevotella

- plasma bile acids glycocholic acid,
glycoursodeoxycholic acid,
taurohyodeoxycholic acid, and
tauroursodeoxycholic acid were reduced in
probiotic- and
prebiotic-supplemented individuals.

[67]

18. Pallister et al.,
2017 Habitual diet Cohort study 2218 twins

- blood metabolomics;
- fecal metagenomics

- visceral fat mass (VFM) score and VFM were
associated with Eubacterium dolichum and
four blood metabolites (hippurate,
alpha-hydroxyisovalerate, bilirubin,
and butyrylcarnitine.

[68]

19. Zhang et al.,
2015

A diet rich in
non-digestible
carbohydrates

30-day dietary
intervention for

body weight
reduction

17 children with
Prader-Willi

syndrome (PWS),
21 children with
simple obesity

- fecal metagenomics;
- urine and fecal

metabolomics

- enriched pathways for carbohydrate
metabolism and decreased pathways for fat
and protein metabolism after the intervention

- 13 bacterial Co-Abundance Gene Groups
(mostly in Ruminococcus spp., Parabacteroides
spp. and Bacteroides spp.) had gene clusters
for anaerobic choline degradation.

[69]
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3.2.1. Nutrition

Obesity is a known cardiometabolic risk factor, and a poor diet can promote body fat
accumulation [70]. Pallister et al. [68] conducted a cohort study of twins in which they
found that visceral fat mass (VFM) and the higher dietary VFM-risk score developed by the
authors were positively related to the bacterial species Eubacterium dolichum and plasma
alpha-hydroxyisovalerate and butyrylcarnitine. According to the authors, E. dolichum
may be a link between VFM and a diet low in fruit, whole grains, and fermented dairy
products and high in red, processed meat, eggs, and fried and fast foods. In animal studies,
E. dolichum was associated with a Western-type diet and adverse metabolic outcomes [71,72].
Alpha-hydroxyisovalerate and butyrylcarnitine are metabolites of branched-chain amino
acid catabolism and fatty acid metabolism, which are associated with obesity and the
risk of diabetes [73–76]. In this study, VFM was negatively associated with plasma hip-
purate and bilirubin. Bilirubin is an endogenous antioxidant [77] that protects against
adiposity [78]. Hippurate in this study was associated with increased intakes of fruit and
whole-grain products.

The latest findings by Bombin et al. [51] show that salivary bacteria of healthy lean
and obese individuals may differ by phyla and composition and better reflect obesity, over-
weight, or lean body mass than those of fecal microbiota. The salivary bacterial composition,
namely Campylobacter, Aggregatibacter, Veillonella, and Prevotella, best characterizes obese
individuals. Obesity was positively associated with strong correlations, mainly between
Fretibacterium and Tannerella, bacterial taxa that are involved in metabolic disorders. The
dominant bacterial genera in the feces that characterized the obese group were Agathobacter
and Parabacteroides. Sweeteners, primarily xylitol, have been found to affect the composition
and phylogenetic diversity of the salivary and fecal microbiota. Calorie-restricted diets
may produce significant changes in the microbiota and cause a shift toward more beneficial
metabolite profiles [55,56]. Benítez-Páez et al. [55] studied the effects of caloric restriction
with fiber supplementation in a 12-week clinical trial involving 80 overweight participants.
They found that dietary interventions may depend on gender and be more beneficial for
women than for men, and this effect was associated with specific changes in the intestinal
microbiome and metabolome. During the study, the caloric-restricted diet reduced an abun-
dance of microbiota, particularly Clostridia and Bacteroides, while supplementation with
dietary fiber lowered blood pressure, which was associated with changes in the intestinal
microbiome and metabolome. In contrast to calorie-restricted diets, low-carbohydrate diets
may cause different changes in intestinal microbiota and microbiota-produced metabo-
lites [56]. Ma et al. [56] found that, in contrast to a calorie-restricted diet, a low-carbohydrate
diet can increase the Bacteroidetes/Firmicutes ratio, decrease branched-chain amino acid
biosynthesis, and increase serine biosynthesis. Both calorie-restricted and low-carbohydrate
diets increased acylcarnitines, which are suggested markers of cardiometabolic risk [79,80].
Conversely, a transition from a low-fat to a high-fat and low-carbohydrate diet may be
associated with adverse changes in the composition of the gut microbiota, fecal metabolites,
and pro-inflammatory markers in plasma [66]. The high-fat diet increased bacterial genera
such as Alistipes and Bacteroides and fecal contents of arachidonic acid and lipopolysac-
charides. On the other hand, a low-fat diet was associated with higher α-diversity and
increased abundance of Blautia and Faecalibacterium, while reducing uremic toxins such as
p-cresol and indole and increasing SCFA production.

Accumulating evidence from murine and human studies indicates possible links
between obesity and dysbiosis [25,81,82]. Zhang et al. [69] conducted a dietary intervention
using diets rich in non-digestible fermentable carbohydrates in children with simple and
genetic obesity who were found to be dysbiotic. They found that the gene richness and
diversity of the gut microbiota decreased after the intervention period, indicating a more
healthy intestinal microbiota with a greater number of carbohydrate-fermenting bacteria.
Meanwhile, urine samples showed reduced levels of TMAO and indoxyl sulfate, harmful
compounds resulting from lipids and proteins’ intestinal fermentation.
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The Mediterranean diet (MD) is the most studied and considered one of the healthiest
dietary plans for preventing and treating cardiometabolic diseases [83,84]. MD is abundant
in nutrients and dietary fiber, contrary to the Western diet, which is low in nutrients and
fiber but high in saturated fat, sugar, and salt. Barber et al. [53] studied fiber-rich MD (FMD)
in contrast to a Western-type diet (WD) in 20 healthy men for two weeks in a randomized
cross-over study. Surprisingly, fecal microbiota composition in FMD and WD groups was
similar at the end of the study, suggesting little influence of diet on the habitual microbiota.
FMD was associated with a higher β-diversity and a higher number of butyrate-producing
bacteria compared to WD. Interestingly, despite the similarity in microbiota composition,
both diets affected gut microbiota metabolism and urinary metabolite profiles differently.
After the FMD, metabolic pathways studied showed higher expression compared to WD.
According to the authors, these findings suggest that residential microbiota can easily
adapt to dietary shifts by changing their metabolic functions. Examples of such changes
caused by FMD are increased urinary excretion of TMAO after consumption of choline-rich
legumes and increased urinary concentrations of metabolites of carnitine and tyramine
after consumption of meat and cheese in WD, as well as metabolites with proinflamma-
tory potential such as metabolites of cortisol and prostaglandins. Another MD study by
Galie et al. [57] was carried out in overweight/obese individuals with metabolic syndrome
(MetS) for two months. The research identified two clusters of microorganisms showing
different metabolic patterns depending on the diet. The first one, which was associated
with MD, constituted fecal bacteria belonging to the type Firmicutes and the family Pre-
votellaceae. Of the 378 plasma metabolites studied, 65, mainly lipids, acylcarnitines, amino
acids, steroids, and intermediates of tricarboxylic acids, were found to be associated with
MD. This metabolic profile was associated with metabolic improvement in MetS. The
second cluster that seemed to reflect nuts’ consumption was found for the non-MD diet
supplemented with nuts and constituted Oxalobacter and genera from Christensenellaceae
and Clostridiales. Another 2-month study carried out on overweight/obese healthy individ-
uals with cardiometabolic risk who shifted their dietary patterns from the Western to the
Mediterranean diet showed that higher adherence to the MD pattern was associated with
increased fecal concentrations of SCFAs [64]. Although microbial richness was preserved,
it was found that MD dynamically modulated the gut microbiome composition and that
the microbiome changes followed the increases in MD adherence.

Dietary patterns significantly impact fecal microbiota, microbiota-derived metabolites,
and cardiometabolic health. Plant-based diets promote butyrate-producing microbiota.
Asnicar et al. [61] examined more than 1200 microbiomes from non-diseased individuals
as well as their long-term habitual dietary patterns in the large-scale Personalized Re-
sponses to Dietary Composition Trial (PREDICT 1). They divided dietary patterns into
more and less healthy categories, e.g., plant-based patterns vs. less healthy plant foods and
animal products. In this study, bacterial taxa such as Roseburia hominis, Agathobaculum bu-
tyriciproducens, Faecalibacterium prausnitzii, and Anaerostipes hadrus were associated with the
consumption of healthy foods. Less-healthy diets are correlated with Clostridia (Clostridium
innocuum, Clostridium symbiosum, Clostridium spiroforme, Clostridium leptum, and Clostridium
saccharolyticum). Of the metabolites tested, circulating monounsaturated fatty acids (MU-
FAs), as opposed to dietary MUFAs, which are a healthy part of the diet, were associated
with a less healthy diet. Firmicutes CAG:170 species showed the strongest negative associ-
ation with circulating MUFAs and were negatively related to proinflammatory markers,
while Clostridium bolteae showed the strongest positive association. Li et al. evaluated
the relationship between a healthy plant-based diet and metabolic risk, gut microbiota,
and plasma metabolites in a smaller cohort study of older men [58]. This study identified
several bacterial species and metabolic pathways that were associated with lower metabolic
risk. Examples of such associations include the abundance of F. prausnitzii and the degra-
dation pathways of d-galacturonate I and 4-deoxyl-threo-hex-4-enopyranuronate; a higher
abundance of Bacteroides cellulosilyticus and Eubacterium eligens; and metabolic pathways of
amino acids and pyruvate fermentation. According to this study, a healthy plant-based diet
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reduces metabolic risk, and this effect may depend in part on the composition of the gut
microbiota. The same group of researchers analyzed the relationship between red meat con-
sumption, microbiota-mediated meat-derived trimethylamine N-oxide (TMAO), metabolic
health among men, and the potential role of gut microbiota in this relationship [54]. A
growing number of studies have identified TMAO and its precursors (choline and carni-
tine) as cardiometabolic risk factors [85–88]. Li et al. [54] identified 10 bacterial species,
including Firmicutes species (Clostridium citroniae, C. nexile, C. clostridioforme, Clostridiales
bacterium 1 7 47FAA, Eubacterium hallii, E. biforme, Erysipelotrichaceae bacterium 21–3, and
Roseburia hominis), one Bacteroidetes species (Alistipes shahii), and one Actinobacteria species
(Eggerthella unclassified) that have been linked to TMAO production. In this study, higher
habitual consumption of red meat and choline increased TMAO; however, only among
those participants whose microbial profiles consisted of abundant species that predicted
TMAO concentrations. Of these species, Alistipes shahii was the most potent contributor to
associations between the consumption of red meat and TMAO production.

Other animal-derived foods, such as dairy products, may presumably reduce
cardiometabolic risk by affecting the gut microbiota and the metabolites it produces.
Shuai et al. [60] in a prospective cohort study of 1780 middle-aged and elderly Chinese par-
ticipants with a relatively low intake of dairy products (milk and yogurt) found that habitual
consumption of dairy products was positively associated with gut microbiome diversity
and the abundance of genera, which were positively related to lipid and metabolomic
profiles showing a beneficial effect. In the group with the highest intake of yogurt, un-
classified genera of the families Ruminococcaceae, Rikenellaceae, and Barnesiellaceae were
enriched. In this study, a microbiota-derived metabolite, the amino acid L-alanine, was neg-
atively associated with the yogurt-microbial score. Previous studies have found a positive
association between alanine and the risk of T2DM and CVD [89,90]. Other microbiota-
derived metabolites, such as 2-hydroxy-3-methylbutyric acid and 2-hydroxybutyric acid,
were negatively associated with dairy consumption and dairy-microbial scores. In recent
studies, 2-hydroxybutyric acid has been shown to be associated with impaired glucose
metabolism [91,92].

Research suggests that dietary sodium affects the composition and function of the
fecal microbiota [93]. A longitudinal study conducted by Wang et al. [63] in 392 adults with
habitual excessive sodium intake and deficient potassium intake has shown that dietary
sodium is associated with microbiota related to inflammation and CVD factors, such as
Dorea, Ruminococcus, Ruminococcaceae, and Lachnospiraceae. In this study, microbiota-derived
phenolic metabolites resulting from dietary polyphenols, such as 1,2,3-benzenetriol sulfate,
3-methoxycatechol sulfate, and 4-methylcatechol sulfate, were negatively related to sodium
intake, while SCFAs such as butyrate/isobutyrate and isovalerate were positively associated
with the Na/K ratio. Previous studies have shown conflicting results regarding SCFA.
However, some studies have pointed to elevated fecal and plasma SCFA concentrations as
positively associated with obesity [94].

3.2.2. Food and Supplements

The few articles identified in this review using the search criteria focused on specific foods
(raspberries, soy, dairy products) and supplement ingredients (dietary fiber, berberine, probiotics).

Food is a source of many nutrients and secondary metabolites (polyphenols, fibers,
etc.) that can have beneficial effects on humans and animals. Valuable components of
raspberries include vitamin C, fiber, and polyphenols (ellagitannins and anthocyanins) [95].
Raspberries exhibit beneficial properties for cardiometabolic health [96,97]. The results of
the studies cannot always be interpreted unambiguously due to the heterogeneity of the
study samples. Therefore, Franck et al. [52] used a transcriptomic technique to identify
individuals whose raspberry consumption was associated with metabolic effects and those
who did not respond to the intervention. In this 8-week intervention study of 24 responders
and non-responders to raspberries, the Firmicutes to Bacteroidetes ratio was found to be
significantly lower in responders at week 0 and unchanged at week 8, while it decreased
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in non-responders after the intervention. After consuming raspberries, the responders’
plasma lipidomic profile was characterized by a significant reduction in triglycerides and
an increase in phosphatidylcholine.

One human study examined interactions between habitual soy intake, the gut micro-
biome, and metabolites in plasma and feces [65]. Research shows that the consumption of
soy products is associated with better cardiometabolic health in humans and animals [98,99];
however, the mechanisms of this effect have not been completely investigated. Regarding
this, Shah et al. [65] found that reactivity to soy may depend on the microbiome’s composi-
tion. They identified two bacterial taxa, such as Prevotella and Dialister, with different effects
on systolic blood pressure. Although both taxa were suppressed by soy consumption,
Prevotella showed a positive correlation with blood pressure, as opposed to Dialister. In
terms of metabolites, Prevotella was associated with bacterial-derived tryptophane metabo-
lites, indoleacetyl glutamine, enrichment in sphingolipid and nitrogen metabolism, and the
biosynthesis of aminoacyl-tRNA.

Dietary fiber is mostly polysaccharide polymers undigested in the intestines but
fermented by the gut microbiota, being a source of energy and nutrients for colonies of
microbes, humans, and animals. As a recent study shows, the host’s metabolic response
may depend on the type of dietary fiber and on the composition of the gut microbiome [59].
Murga-Garrido et al. [59] found that in germ-free mice colonized with two distinct human
fecal communities (low-butyrate and high-butyrate-producing bacteria), fermentable fibers
(cellulose, inulin, pectin, and mixed fibers) elicited different metabolic responses. The mi-
crobiota, which was engaged in most of the associations between microbiota and metabolic
pathways, represented the Firmicutes phylum. For example, the genus Anaerotruncus was
positively associated with some metabolites of the lipid metabolic pathway and negatively
associated with metabolites of the amino acid and nucleotide pathways, while Ruminococ-
cus was negatively associated with metabolites of the amino acid and lipid metabolic
pathways. Of the Bacteroidetes, Parabacteroides was inversely related to metabolites of the
arginine-proline and dihydroxy fatty acid pathways. Anaerotruncus, Ruminococcus, and
Parabacteroides showed higher abundance in mice receiving inulin colonized with micro-
biota producing little butyrate and were associated with adverse outcomes such as higher
adiposity, liver triglycerides, and glucose compared to mice colonized with high-butyrate-
producing bacteria [59].

Berberine is a naturally occurring compound that belongs to the isoquinoline alkaloids.
It has been used for centuries in Chinese medicine to treat several diseases, including
diabetes. The hypoglycemic effect of berberine is well known, and berberine is now
found as one of the more potent ingredients in supplements. The effect of berberine
(BBR) on metagenomics and metabolomics was studied by Zhang et al. [62] in a 12-week
randomized clinical trial conducted in China. This study divided 409 newly diagnosed
T2DM individuals into four groups: BBR-alone, probiotics + BBR, probiotics-alone, or
placebo. A dual-omics approach identified a plausible mechanism underlying berberine’s
hypoglycemic effect, with Ruminococcus bromii as a key microbial player in deoxycholic acid
production. Bile acids have been known for decades as signaling molecules that activate
several nuclear receptors and thus may participate in lipid metabolic pathways [100].

Probiotics support intestinal function and integrity and reduce inflammation and
intestinal permeability [101]. Probiotics have recently been found to reduce body fat accu-
mulation [102,103]; however, the mechanisms are not fully understood. Hibberd et al. [67]
in a randomized, double-blind, placebo-controlled clinical trial studied the effects of the
probiotic bacterial strain Bifidobacterium animalis subsp. Lactis 420 TM (B420) with or with-
out the prebiotic polydextrose on fecal microbiota and fecal and plasma metabolites in
overweight and obese adults. After 6 months of intervention, they found that Lactobacillus
and Akkermansia were more prevalent with B420 intake, and Bifidobacterium was positively
correlated with lean body mass. Christensenellaceae spp., correlated negatively with fat
mass in the waist area and energy intake at baseline and increased after the intervention in
both prebiotic and prebiotic and probiotic supplemented subjects. Variability was found
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in fecal metabolomics results; however, there was some reduction in plasma bile acids:
glycolic acid, glycocholic acid, taurohydrocholic acid, and tauroursodeoxycholic acid, in
participants supplemented with probiotics and prebiotics taken together.

4. Conclusions

The literature search performed for this review indicates that the combined approach
of metagenomics and metabolomics in cardiometabolic diseases is a new and expanding
field. The number of papers combining metagenomic and metabolomic technologies is still
limited from the perspective of cardiometabolic diseases; however, in recent years there
has been a surge of studies using the combination of metagenomics and metabolomics
to investigate pharmacotherapy and nutrition in cardiometabolic diseases. Most of the
papers identified involved human studies, covering the last three years. Only three studies
involved rodent research. While animal models may have advantages in studying host-
microbiota interactions, they often do not provide reliable preclinical results that can be
easily translated into effective human treatments.

There is growing evidence that drugs and foods, through metabolites of the micro-
biota, can modulate the cardiometabolic health of the host. A whole range of interactions
occur between drugs and food, and it is now a matter of time before metagenomic and
metabolomic studies examining such interactions begin.
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