
Citation: Timakova, A.; Ananev, V.;

Fayzullin, A.; Makarov, V.;

Ivanova, E.; Shekhter, A.; Timashev, P.

Artificial Intelligence Assists in the

Detection of Blood Vessels in Whole

Slide Images: Practical Benefits for

Oncological Pathology. Biomolecules

2023, 13, 1327. https://doi.org/

10.3390/biom13091327

Academic Editor: William Cho

Received: 20 July 2023

Revised: 23 August 2023

Accepted: 28 August 2023

Published: 29 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Artificial Intelligence Assists in the Detection of Blood
Vessels in Whole Slide Images: Practical Benefits for
Oncological Pathology
Anna Timakova 1, Vladislav Ananev 2, Alexey Fayzullin 1 , Vladimir Makarov 2, Elena Ivanova 1,3,
Anatoly Shekhter 1,* and Peter Timashev 1,4

1 Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University),
8-2 Trubetskaya St., 119991 Moscow, Russia; timakova_a_a@staff.sechenov.ru (A.T.);
fayzullin_a_l@staff.sechenov.ru (A.F.); ivanova_e_i_1@staff.sechenov.ru (E.I.);
timashev_p_s@staff.sechenov.ru (P.T.)

2 Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 41 B. St. Petersburgskaya,
173003 Veliky Novgorod, Russia; vladislav.ananev@novsu.ru (V.A.); vladimir.makarov@novsu.ru (V.M.)

3 B.V. Petrovsky Russian Research Center of Surgery, 2 Abrikosovskiy Lane, 119991 Moscow, Russia
4 World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State

Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
* Correspondence: shekhter_a_b@staff.sechenov.ru

Abstract: The analysis of the microvasculature and the assessment of angiogenesis have significant
prognostic value in various diseases, including cancer. The search for invasion into the blood
and lymphatic vessels and the assessment of angiogenesis are important aspects of oncological
diagnosis. These features determine the prognosis and aggressiveness of the tumor. Traditional
manual evaluation methods are time consuming and subject to inter-observer variability. Blood vessel
detection is a perfect task for artificial intelligence, which is capable of rapid analyzing thousands of
tissue structures in whole slide images. The development of computer vision solutions requires the
segmentation of tissue regions, the extraction of features and the training of machine learning models.
In this review, we focus on the methodologies employed by researchers to identify blood vessels and
vascular invasion across a range of tumor localizations, including breast, lung, colon, brain, renal,
pancreatic, gastric and oral cavity cancers. Contemporary models herald a new era of computational
pathology in morphological diagnostics.

Keywords: digital pathology; deep learning; artificial intelligence; cancer; blood vessel detection

1. Introduction

Histopathological examination of tissue samples, particularly histological slides, is
a critical component of diagnosing and understanding the biological behavior of various
malignancies. One of the most significant aspects of histopathological analysis is the evalu-
ation of blood vessels, which play a crucial role in tumor growth, metastasis and response
to treatment [1]. Blood vessels within and surrounding the tumor microenvironment con-
tribute to the delivery of essential nutrients and oxygen, facilitating tumor growth and
progression. Furthermore, they serve as a route for cancer cells to disseminate from the
primary tumor to other sites in the body, leading to metastasis [1,2].

Vascular invasion is indicated as an important prognostic factor in the TNM 8 clas-
sification and is present in the College of American Pathologists (CAP) cancer protocol
templates [3,4]. The accurate detection and characterization of blood vessels in histological
slides is essential for determining tumor stage, predicting prognosis and guiding treat-
ment decisions. One of the commonly used scoring methods is microvessel density (MVD),
which measures the number of blood vessels in each area of the tumor. This can be achieved
by staining the tissue sample for markers that are specific to blood vessels, such as CD31 or
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CD34, and then counting the number of stained areas under a microscope [1,2]. High MVD
generally indicates a high level of angiogenesis and is often associated with more aggressive
tumors and poorer prognosis. Methods include counting vessels in ‘hotspots’ under the
microscope or quantifying the expression of angiogenic factors such as VEGF (Vascular
Endothelial Growth Factor) by immunohistochemistry (IHC). Some anticancer therapies
target angiogenesis, aiming to cut off the tumor’s blood supply and starve it of nutrients [4].
The use of IHC markers of the vascular wall makes the process of searching for blood
vessels more visual and faster in high-workflow conditions, reducing the number of errors,
while also having disadvantages in the form of the high cost of consumables, a long wait
time for staining results, and additional skill requirements for laboratory assistants. Blood
vessels possess significant prognostic and predictive value, defined by their role in tumor
growth and metastasis.

The presence of lymphovascular invasion (LVI), which refers to the infiltration of
tumor cells into the lymphatic or blood vessels, is considered an adverse prognostic factor
in many malignancies, including breast, lung and gastrointestinal cancers [5]. LVI has been
associated with higher rates of lymph node metastasis, increased risk of distant metastasis
and poorer overall survival. The search for lymphatic vessels on a stained hematoxylin
and eosin (H&E) preparation is more difficult than the search for blood vessels due to their
extremely thin walls and the absence of specific IHC markers, but it is extremely important,
for example, in breast cancer to assess the risk of lymphatic metastases.

Despite the importance of blood vessel detection and characterization in histological
slides, the manual evaluation of these features by pathologists is a time-consuming and
labor-intensive process, often prone to inter-observer variability and subjectivity. Moreover,
the assessment of blood vessels in histological slides can be challenging due to their complex
and heterogeneous morphology, as well as the presence of artifacts and other confounding
factors [4]. Automated search for blood vessels and regions of vascular invasion of tumors
can provide a fast and reliable solution for optimization of the routine work (Figure 1).

Artificial intelligence (AI) and deep learning techniques, such as convolutional neural
networks (CNNs), have emerged as promising tools for automating the analysis of his-
tological slides, including blood vessel detection. These methods have the potential to
overcome the limitations of manual evaluation, providing more accurate and consistent re-
sults while reducing the workload for pathologists [1,4]. Furthermore, AI-based algorithms
can be trained to recognize and quantify various blood vessel features, such as density,
morphology, and spatial distribution, which can be challenging for human observers to
assess consistently [5].

Several studies have demonstrated the feasibility and effectiveness of AI-based meth-
ods for blood vessel detection in histological slides of various malignancies, such as breast
cancer, lung adenocarcinoma and oral squamous cell carcinoma. These methods have
shown potential in improving the accuracy of LVI detection, predicting lymph node metas-
tasis, and identifying novel morphometric features with prognostic value [2,6]. However,
the implementation of AI-based blood vessel detection in clinical practice still faces several
challenges, including the need for larger and more diverse datasets, the optimization of
algorithms for better performance and clinical utility, and the integration of AI-generated
results with existing pathological workflows [2,5,7].

The objective of this review is to provide a comprehensive and up-to-date synthe-
sis of the current literature on AI-based blood vessel detection methods in histological
slides, offering valuable insights for researchers, clinicians and decision makers in the field
of pathology and oncology. The review will discuss the challenges associated with the
implementation of these methods, including data annotation and model interpretability.
This review identifies the research gaps and future directions for the development and
refinement of AI-based methods, ultimately contributing to the improvement of diagnostic
accuracy, prognostic assessment, and personalized treatment strategies in oncology [3,7].
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logical features to address clinical problems: (1) recognizing morphological structures and patterns 
(“Morphology” in the figure stands for blood vessels—arteries and veins); (2) identifying 

Figure 1. Automated detection of blood vessels makes it possible to investigate a range of morpho-
logical features to address clinical problems: (1) recognizing morphological structures and patterns
(“Morphology” in the figure stands for blood vessels—arteries and veins); (2) identifying pathologi-
cal changes in blood vessels (“Pathology” in the figure stands for sclerosis (indicated by arrows));
(3) detection of cancer vascular invasion (the arrow shows tumor cells in the vessel lumen); (4) assess-
ment of the tumor vascularization pattern for the purpose of personalized therapy (“Personalized
therapy based on cancer vascularization pattern” stands for microvessel proliferation in the glioblas-
toma); (5) AI-assisted calculation of prognostic histological biomarkers (“Additional prognostic value”
stands for glioblastoma tumor cells palisading (indicated by arrows) around a central necrosis); (6) 3D
reconstruction on the cellular level for investigation of tumor growth and its connection to the blood
vessel system.

2. Automated Blood Vessel Detection in Cancer

Whole slide images (WSI) of cancer tissues allow integration of AI models trained to
detect blood vessels (Table 1). In general, segmentation of blood vessels in borders of their
walls is helpful for detecting LVI areas and characterizing angiogenesis associated with
tumor progression [8].



Biomolecules 2023, 13, 1327 4 of 21

Table 1. AI models that have been applied to detect tissue structures including blood vessels in WSI.

No. Article Title Cancer Site AI Model Name and
Description Accuracy Advantages (+)/

Disadvantages (−)

1

Chen, Y.; et al. Further predictive value of
lymphovascular invasion explored via

supervised deep learning for lymph node
metastases in breast cancer [9]

Breast
EEKT model (based on DeepLab

V3+)—
object detection model

0.9300

DL (Deep Learning) model showed the ability
to quantify LBVI and identify its added

predictive value (+)
Unable to segment small vessels (−)

2
Yi, F.; et al. Microvessel prediction in H&E

stained Pathology Images using fully
convolutional neural networks [10]

Lung FCN and FCN-8 models—object
detection model

FCN—0.9520;
FCN-8—0.9460

FCN
model algorithm may have a false

positive problem for
background regions where a large

number of blood cells
appear (−)

3
Vu, Q.D.; et al. Methods for Segmentation
and Classification of Digital Microscopy

Tissue Images [11]
Lung ResNet50—object

detection model 0.8100
Method primarily focuses on the diagnostic

areas within the image for determining
the cancer type (+)

4

Fraz, M.M.; et al. FABnet: feature
attention-based network for simultaneous

segmentation of microvessels and nerves in
routine histology images of oral cancer [12]

Oral cavity

FABnet (U-Net, SegNet,
DeepLabv3+, FCN-8)—

pixel segmentation (heatmaps)
plus object detection model

FABnet—0.9705;
U-Net—95.18;
SegNet—92.34;

DeepLabv3+—97.21;
FCN-8—94.46

Segments the microvessels and nerves in
routinely used H&E-stained images (+)

FCN-8, U-Net and DeepLabv3+ are unable to
segment small vessels; SegNet

merges the two closely
located by vessels into one large vessel

5

Fraz, M.M.; et al. Uncertainty Driven
Pooling Network for

Microvessel Segmentation
in Routine Histology

Images [6]

Oral cavity Xception model—the object
detection model 0.9694

The proposed method successfully
segments small vessels and closely
located vessels as different ones (+)

6
Rasool, A.; et al. Multiscale Unified Network

for Simultaneous Segmentation of Nerves
and Microvessels in Histology Images [13]

Oral cavity
ResNeXt 50, FCN8, U-Net,

SegNet, Deeplabv3+—object
detection models

ResNeXt 50—0.9785;
FCN8—0.9693;
U-Net—0.9518;
SegNet—0.9234;

Deeplabv3+—0.9721

It can generate
consistent and more refined shapes

of irregular dimensional
objects (+)

7

Kather, J.N.; et al. Continuous
representation of tumor microvessel density

and detection of angiogenic hotspots in
histological whole-slide images [14]

Colon MATLAB—pixel segmentation
model (heatmaps) Not reported

By turning from microscopic structures like
single, small vessels to angiogenic hotspots, it

seems to be possible to change
the measurement scale

from µm to mm. Consequently,
histological vascular patterns

could be compared with
radiological data (+)
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Table 1. Cont.

No. Article Title Cancer Site AI Model Name and
Description Accuracy Advantages (+)/

Disadvantages (−)

8

Noh, M.-g.; et al. Ensemble Deep
Learning Model to Predict
Lymphovascular Invasion

in Gastric Cancer [15]

Stomach YOLOX—object
detection models 0.9648

YOLOX model can predict the LVI foci
using a bounding box (+)

A number of LVI(+) foci imbalances may exist
for each slide; LVI(+) foci always contain the
possibility of false positives or negatives (−)

9
de Castelbajac, M. Automated segmentation

of blood vessels in immuno-stained
whole slide images [16]

Brain

Segmentation based on
HSV color model and radial
algorithm for detecting open

vessels (object detection model)

0.8600

Obvious bright
and opened vessels are correctly retrieve (+),

but not when the lumen
is too small or partly stained like

on the right (−)

10

Zadeh Shirazi, A.; et al. A deep
convolutional neural network for

segmentation of whole-slide pathology
images identifies novel tumor

cell-perivascular niche interactions that are
associated with poor survival in

glioblastoma [17]

Brain DCNN—pixel
segmentation model 0.8600

The model can segment unclear regions in the
original slide (+), can tackle the problem of

over-segmentation of the cellular tumor
microvascular (+)

11
Li, X.; et al. Microvascularity detection and

quantification in glioma: a novel
deep-learning-based framework [18]

Brain GoogLeNet—object
detection model 0.9570

The accuracy of microvessel recognition has a
large margin of improvement due to the

segmentation error and the over counting,
especially in larger pathological images with

complex content (+)

12

Xiao, R.; et al. Multi-task Semi-supervised
Learning for Vascular Network

Segmentation and Renal Cell Carcinoma
Classification [19]

Kidney HRNet—patch-wise
segmentation approach 0.9369

Model
reduces the reliance on manually vascular

network masks and achieves automatic
segmentation (+). This model can
outperform the fully supervised

learning model and is versatile in other
types of tumors (+)

13

O’Toole, J.; et al. Development and
evaluation of deep learning–based

segmentation of histologic structures in the
kidney cortex with multiple

histologic stains [20]

Kidney U-net—object detection model 0.9705 Model correctly identified small fragments of
tunica media despite the lack of a lumen (+)



Biomolecules 2023, 13, 1327 6 of 21

Table 1. Cont.

No. Article Title Cancer Site AI Model Name and
Description Accuracy Advantages (+)/

Disadvantages (−)

14
Bouteldja, N.; et al. Deep Learning–Based

Segmentation and Quantification in
Experimental Kidney Histopathology [21]

Kidney U-Net—object detection model 0.8810

Multiclass segmentation of renal histology and
vascular pathology (+)

The nonsegmented area comprises peritubular
capillaries, arterial adventitia (−)

15
Klinkhammer, B.M.; et al. Next-Generation
Morphometry for pathomics-data mining in

histopathology [22]
Kidney U-Net—multiclass segmentation

model 0.8700

Multiclass segmentation of renal histology and
vascular pathology (+)

Model is unable to segment peritubular
capillaries (−)

16
Deng, R.; et al. Omni-Seg: A Scale-aware
Dynamic Network for Renal Pathological

Image Segmentation [23]
Kidney Omni-Seg+—object

detection model 0.9660

The proposed
method achieves superior segmentation

performance with less computational resource
consumption (+)

17
Hermsen, M.; et al. Hermsen, M.; et al. Deep

Learning–Based Histopathologic
Assessment of Kidney Tissue [24]

Kidney U-net—object detection model 0.8900 Unable to segment peritubular capillaries (−)

19

Bevilacqua, V.; et al. An innovative neural
network framework to classify blood vessels

and tubules based on Haralick features
evaluated in histological images of

kidney biopsy [25]

Kidney BPNN—object detection model 0.8920 High accuracy when trained on a
limited dataset (+)

20

Salvi, M.; et al. Karpinski Score under
Digital Investigation: A Fully Automated

Segmentation Algorithm to Identify
Vascular and Stromal Injury of

Donors’ Kidneys [26]

Kidney

RENFAST (Rapid EvaluatioN of
Fibrosis And vesselS

Thickness)—multiclass
segmentation model

0.9443 Detection of all structures of the blood vessel (+)

21 van der Laak, J.; et al. Deep learning in
histopathology: the path to the clinic [27] Kidney CPATH (combination of U-Net

models)—object detection model 0.9700 High accuracy in detecting arteriols (+)

22
Gadermayr, M.; et al. Segmenting renal

whole slide images virtually without
training data [28]

Kidney Polygon-fitting
segmentation method 0.8600 Gives an opportunity to segment structures

without training data

23

Lee, J.; et al. Unsupervised machine learning
for identifying important visual features

through bag-of-words using histopathology
data from chronic kidney disease [29]

Kidney

DeepLab V3+ with ResNet-18
architecture, pre-t
ImageNet—object
detection model

0.9500

Can help to discover previously unknown
features that are useful for categorizing and

predicting patient outcomes without
human input (+)
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Table 1. Cont.

No. Article Title Cancer Site AI Model Name and
Description Accuracy Advantages (+)/

Disadvantages (−)

24

Farris, A.B.; et al. Artificial intelligence and
algorithmic computational pathology: an

introduction with renal allograft
examples [30]

Kidney GoogLeNet—object
detection model 0.9500 DL segmentation of arteries, arterioles, and

peritubular capillaries (+)

25
Kiemen, A.L.; et al. CODA: quantitative 3D

reconstruction of large tissues at cellular
resolution [31]

Pancreas
CODA—multiclass

segmentation model with vessel
3D-reconstruction

>90%

CODA gives the pathologist a spatial
perspective of the course of blood vessels and
their branching, and also allows prediction of
the direction of tumor growth into the walls of

the blood vessels

26

Kiemen, A.L.; et al. Tissue clearing and
3D reconstruction

of digitized, serially sectioned slides
provide novel insights into

pancreatic cancer [32]

Pancreas
CODA—multiclass

segmentation model with vessel
3D-reconstruction

>90%

CODA gives the pathologist a spatial
perspective of the course of blood vessels and
their branching, and also allows prediction of
the direction of tumor growth into the walls of

the blood vessels

27

Gao, E.; et al. Automatic multi-tissue
segmentation in pancreatic pathological

images with selected multi-scale attention
network [33]

Pancreas SMANet is based on U-Net with
5 levels—object detection mode 0.7690

Multi-scale attention network is proposed to
realize the segmentation of tumor cells, blood
vessels, nerves, islets and ducts in pancreatic

pathological images (+)

28

Niazi, M.K.K.; et al. Grading
vascularity from

histopathological images based on
traveling salesman distance and

vessel size [34]

Bone marrow MaxLink algorithm—object
detection mode 0.6820 Gives the opportunity to associate the grading

information with the patient outcome (+)
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2.1. Breast Cancer

Breast cancer is considered the leading cause of death worldwide among women. The
incidence of commonly diagnosed cancers worldwide is 2.26 million cases, or 11.7% [35].
The accurate detection and analysis of morphometric features in lymphatic and blood
vessel invasion (LBVI) are essential for understanding the progression of breast cancer and
predicting lymph node metastases (LNM) [3,4]. A reliable sign of the vascular invasion of
cancer is the presence of tumor cells in the lumen of the vessel. Currently, pathologists,
when assessing the presence of vascular invasion of breast cancer cells, adhere to a clear
distinction between lymphatic and blood vessels, since invasion in the former represents
an increased risk of LNM, and in the latter a worse prognosis for survival and the risk of
distant metastases [9,36,37]. Invasion is assessed both on the basis of biopsy specimens
and in the surgical material, where the presence of invasion is conditionally designated as
LBVI1, and the absence of its reliable signs as LBVI0 [3,4,9].

The morphometric features of LVI can provide important prognostic information that
may not be readily apparent through manual assessment [6,38,39]. The expert experience
embedded knowledge transfer learning (EEKT) model enables the extraction of these fea-
tures by segmenting LBVIs in breast cancer histopathological images. The predictive value
of morphometric features in LNM also extends to the location of LBVI within the tumor [9].
Peritumoral and intratumoral LBVIs have been found to exhibit distinct morphological
characteristics, with peritumoral LBVIs being more commonly associated with cancer cell
dissemination [9]. The EEKT model can quantify the location of LBVIs by calculating the
distance between the LBVI center and the tissue center and margin. This information can
provide further insight into the biological behavior of breast cancer and the probability
of LNM.

In a different approach, the problem was solved as a direct detection of pathological
LVI regions in whole slide images. The model segmented blood vessels with the presence
of tumor cells in lumens lined with endothelial cells. The described model demonstrated
the ability to predict the occurrence of LNM in a group of LBVI-positive patients. Currently,
the presence of LBVI has been demonstrated to possess high prognostic value in LNM
prediction, and is routinely evaluated in combination with category T in TNM8, Ki-67
index, histologic grade (G) and immunophenotype. The model made it possible to obtain
additional prognostic value from the shape features of LBVI areas: solidity, short-to-
long-side ratio of the minimum rectangle, and LBVI-to- minimum-rectangle-area ratio [9].
Another finding of the study was that the count of the LBVI areas did not have the same
predictive value as their morphology [9]. The use of this model means for the pathologist a
quick and accurate search for LVI, helps to increase the efficiency of the work, and reduces
the number of errors in the search for an important factor for predicting the disease [39].
For the patient, this means the selection of more personalized effective tactics for further
observation and treatment [20].

2.2. Lung Adenocarcinoma

The combined mortality caused by lung cancer is higher than for any other tumor
(worldwide statistics: 1.79 million deaths; 18% incidence of death) [35]. In the case of
lung cancer, including adenocarcinoma, there is no methodological separation of tumor
invasion into lymphatic and blood vessels [40]. The assessment of vascular invasion
(LV1 in the presence of invasion or LV0 in the absence of it) and microvascular density
(MVD) in the tumor is important for the prediction of tumor metastasis and survival
in histologic specimens [3,4]. To speed up the workflow and improve the accuracy of
diagnosis, it is necessary to automate the search for vessels with the presence of tumor
invasion, as well as the calculation of MVD. The application of AI and deep learning
techniques has shown great potential in the analysis of histopathological images for various
malignancies, including lung adenocarcinoma [10,11]. One such approach is the use of
CNNs for microvessel detection in hematoxylin and eosin (H&E)-stained images of lung
adenocarcinoma tissue [11]. This automated method can provide valuable insights into
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tumor angiogenesis, which plays a critical role in tumor growth, progression and metastasis
(Figure 2).
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The use of fully CNNs for microvessel detection has demonstrated promising results.
Yi et al. [10] developed a fully CNN that could accurately detect microvessels in H&E images
of lung adenocarcinoma. The model was trained on a dataset of manually annotated images
and was able to generalize well to new, unseen data. By detecting and quantifying the
microvessels within the tumor tissue, the model provided valuable information on the
tumor’s angiogenic activity, which has been linked to prognosis and treatment response.

The model was first trained on whole slide images from the TCGA database, and then
the model was tested on micropreparation images of patients from the CHCAMS cohort.
Segmentation masks were obtained, in which mainly the lumen of the vessel was captured,
often with blood cells, sometimes leading to incorrect results and the identification of all
structures with erythrocytes in the lumen (mostly, alveolas) as vessels. To increase the
accuracy of the neural network, the algorithm was subsequently tested on microprepara-
tion whole slide images that had additional IHC staining for CD34 (vascular endothelial
marker) [10].

Despite these advantages, there are some limitations and challenges associated with
the use of fully CNNs for microvessel detection in lung adenocarcinoma [10]. One key
challenge is the inherent heterogeneity of tumor-associated microvessels, which can exhibit
a wide range of cellular origins and morphological characteristics. This can make it
difficult for the CNN to accurately differentiate between true microvessels and other similar
structures, such as lymphatic vessels or stromal clefts [10]. To address this issue, further
research is needed to improve the model’s ability to recognize and distinguish between
different types of vessels and to develop more robust training datasets that capture the full
spectrum of microvessel morphologies [10].

The fully CNN can be easily adapted and fine-tuned for the analysis of other ma-
lignancies or histopathological features. By leveraging transfer learning techniques, the
pre-trained model can be fine-tuned on new datasets with minimal additional training,
making it a versatile tool for the analysis of various cancer types and histopathological
markers [10].

The described algorithm can be used in routine practice to automatically calculate
angiogenesis in a tumor. The problem of recognizing “false structures” can be solved
through a larger number of trainings with the presence of micropreparations of vessels of
various calibers in the whole slide images [10].

2.3. Oral Squamous Cell Carcinoma

Oral squamous cell carcinoma (OSCC) is a prevalent and aggressive malignancy with
a complex microvascular network [6]. The total incidence is 2%, and the total percentage
of deaths is 1.8% [35]. Hypoxia is commonly seen in many solid tumors, including OSCC,
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due to rapid tumor growth that outstrips the supply of oxygen from existing blood vessels.
Hypoxia can influence the behavior of tumor cells and contribute to angiogenesis and
metastasis. Tumors often induce angiogenesis in order to supply themselves with the
nutrients they need to grow. An increased number of blood vessels in and around the
tumor might therefore be indicative of a more aggressive tumor. According to TNM 8
and CAP cancer protocols, lymphovascular invasion (LVI) and tumor angiogenesis have
a strong correlation with cancer recurrence, metastasis and poor patient survival [3,4].
The accurate segmentation of microvessels in histological specimens can be considered a
preliminary step in the objective identification of LVI and tumor angiogenic analysis [6].

The uncertainty-driven pooling deep learning architecture was applied for the seg-
mentation of microvessels in H&E-stained images of OSCC tissue [6]. This novel approach
incorporates uncertainty estimation into the learning process, allowing the model to bet-
ter adapt to the inherent variability and noise present in histopathological images. This
is particularly relevant for microvessel segmentation in OSCC, as the tumor-associated
microvessels can exhibit a wide range of morphologies, sizes and staining characteristics,
making them challenging to accurately detect and delineate [6]. The trained model was
designed to incorporate spatial and morphological information from different pooling
scales, enabling it to capture both fine-grained details and larger contextual information.
By combining this multi-scale information with an uncertainty estimation mechanism, the
model was able to adaptively adjust its predictions based on the local context and the
degree of uncertainty in the image. The model achieved high accuracy and consistency,
outperforming other state-of-the-art methods in terms of segmentation performance. By
providing automated and objective measurements of microvessel density and distribution,
the model has the potential to improve prognostic and predictive assessments in OSCC
patients [6].

The same research group later reported the FABnet model, which was compared with
the most popular neural networks in pathology tasks [12]. The FABnet segmentation model
predicted uncertainty maps of nerves and microvessels. The prediction heatmaps obtained
by FCN-8, U-Net, Segnet, DeepLabv3+ and the FABnet were shown as overlays on the
original images. FABnet demonstrated a precision of 89.35%. The FABnet segmentation
mask included only the vessel lumen with blood cell elements, which could limit its efficacy
in cases where cancer cells invade the blood vessel wall [12]. The same group of researchers
created a more advanced ResNeXt model for the detection of blood vessels and nerves,
which showed 99.26% specificity. ResNeXt segmented both vessel lumens and walls, giving
it a practical advantage over FABnet [12,13].

2.4. Colorectal Cancer

Colorectal cancer (CRC) accounts for more than 1.85 million cases (9.8% of total cancer
cases) and causes 850,000 deaths (9.2% of total cancer-related deaths) annually. CRC is the
third-most common cause of cancer mortality worldwide [35]. During the colorectal cancer
histological specimen examination for predicting tumor metastasis and determining the
degree of its aggressiveness, parameters such as vascular density, angiogenesis and LVI are
evaluated [3]. In addition, there is an instruction to separate parameters such as budding
(tumor buds that are separated from the primary tumor), tumor satellites (these are tumor
nests or nodes (macro- or microscopic) that are localized within 2 cm of the primary tumor)
and deposits (isolated tumor foci not associated with the primary tumor and lymph node
tissue) [3,4]. AI-based methods have been utilized to detect and quantify tumor blood
vessels in CRC, and can provide valuable information regarding tumor aggressiveness,
metastatic potential and survival prognosis [14]. Both vascular and lymphatic invasion are
assessed, denoted by the single abbreviation LV1 [3,14].

A continuous hot spot probability map has been proposed to evaluate whole slide
images. First, the preparations are additionally stained for the endothelial marker CD34,
and the vessels in the tumor are extracted from the slides by segmentation (“hot spots”).
Each such point is taken as a probability. This value gives the probability that an angiogenic
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hot spot is present at the corresponding location in the original image. The method gives
three main results: first, it indicates whether the blood vessels in each tissue sample are
randomly distributed or form statistically significant hot spots. Secondly, these hotspots
can be accurately located in the image. Thirdly, each point is assigned an exact probabil-
ity value [14]. Adipose tissue served as a strict control in the study, and no significant
angiogenic points could be found in it.

This method has prospective application in vessel segmentation and the statistical
comparison of distributions in two- and three-dimensional space, making it possible to
obtain a 3D heatmap of microvasculature [14]. Moving from microscopic structures, such as
individual small vessels, to angiogenic hot spots of a certain size and distribution, it seems
possible to change the measurement scale from micrometers to millimeters. Therefore,
histological vascular patterns can be correlated with radiological findings (e.g., tumor
perfusion) [14].

2.5. Gastric Cancer

The total incidence of gastric cancer is 5.6%, and the total percentage of deaths is
7.7% [35]. In gastric cancer, the depth of invasion is an important prognostic factor that
guides the course of treatment. Tumors that have invaded blood vessels may suggest a
deeper and more advanced stage of disease. By assessing the involvement of blood vessels
in the tumor tissue, pathologists can help determine the depth of invasion of the cancer.
Lymphovascular invasion (LVI) is one of the most important prognostic factors in gastric
cancer, as it indicates a higher probability of lymph node metastasis and a poorer overall
outcome for the patient [15]. Both vascular and lymphatic invasion are assessed, denoted
by the single abbreviation LV1 [4,10].

The blood vessels were segmented using an AI model for the purpose of LVI detection.
The study used 88 whole slide images of histological specimens of gastric adenocarcinoma,
which were additionally stained for CD34 and D2-40 vessel markers in a group of LVI+
patients. The ResNet 50, EfficeientNet B3, ConViT (Small) models were fine-tuned on the
LVI datasets (Figure 3). For simultaneous localization of LVI regions, a single-stage YOLO
object detection model was used, which significantly increased the accuracy of diagnosis.
As a result, all LVI(+) patients were identified by the program [15]. This ensemble deep
learning model was demonstrated to be robust and accurate, and it can be used as a
valuable tool for pathologists in diagnosing gastric cancer and may help improve the
accuracy of diagnosis and prognosis of the disease. This approach can be considered an
alternative to traditional methods, and as a step toward computer-aided diagnosis systems
in histopathology [10,15].

2.6. Glioblastoma

Glioblastoma is a highly aggressive brain tumor with poor prognosis. The total
incidence of glioblastoma is 1.6%, the total percentage of deaths is 2.5% [35]. A characteristic
feature of glioblastoma is pseudopalisading necrosis, which consists of zones of dead cells
that appear to line up around areas of vascular necrosis. This pattern is related to the
unique way these tumors grow by co-opting the brain’s blood vessels and then causing
them to die. Glioblastoma is known for its ability to stimulate angiogenesis. A highly
vascularized tumor is characterized by rapid growth and an aggressive course and requires
the use of anti-angiogenetic drugs, such as bevacizumab [36]. Glioblastomas often exhibit
microvascular proliferation with multiple layers of endothelial cells forming haphazardly
arranged, thickened, and distorted vessels. The evaluation of blood vessels, along with
other features, helps in grading the tumor, which is important for determining treatment
plans and prognostication.

In whole slide images with stains for CD31 and CD34 of glioblastoma histological
preparations, microvasculature vessels were detected by creating segmentation masks.
Remarkably, the model correctly detected vessels with and without slit-like lumen [16].
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AI-based methods have shown the ability to accurately detect microvessels and assess
their morphological features in glioblastoma, which can be associated with patient survival
and response to therapy [17,18]. In both studies, CNNs were applied to classify glioma and
glioblastoma biopsy images according to their grade of malignancy. The trained algorithm
reached 96% accuracy, providing reliable support in decision making for pathologists
when diagnosing tumor type [17,18]. A more difficult task for artificial intelligence was
to determine the cellular subtypes of gliomas: oligodendrocytoma, anaplastic oligoden-
droma, astrocytoma, anaplastic astrocytoma and glioblastoma. The accuracy achieved was
87%, and the algorithm itself did not contain a mechanism for interpreting the obtained
results [17,18]. One of the key benefits of using machine learning in oncological pathology
is the integration of different types of data. A neural network was developed for predicting
patient survival based on an analysis of the histological and genetic profiles of the tumor.
Although the original architecture of the CNN was developed for the program, it has
significant potential due to the function of interpreting the results of the analysis [17,18].

2.7. Renal Cell Carcinoma

Renal cell carcinoma (RCC) is the most common type of kidney cancer, and it typically
manifests as a highly vascular tumor. The total incidence of RCC is 2.2%, and the total
percentage of deaths is 1.8% [35]. The presence, shape and size of blood vessels can help in
distinguishing between different subtypes of RCC. For example, clear-cell RCC often has
a rich network of tiny, thin-walled blood vessels, while papillary RCC might exhibit less
vascularization [19].

AI-based methods have been employed to segment and quantify blood vessels in RCC
tissue samples, demonstrating their ability to accurately detect microvessels and assess
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their morphological features. These findings can be associated with tumor stage, grade and
patient survival, and can potentially inform treatment decisions and patient management
strategies [19]. Leveraging the power of artificial intelligence, the proposed multi-task
semi-supervised learning model achieved significant advancements in the area of blood
vessel detection. By incorporating both labeled and unlabeled data, this model was able
to minimize the dependency on the manual annotation of vascular networks, thereby
streamlining the process of automatic segmentation. The model showcased an impressive
performance, surpassing that of fully supervised learning models, and exhibited flexibility
in its application across various types of tumor, including RCC. The model’s application
accuracy for RCC stood at 0.78. The minor loss experienced was likely attributable to
the intricate detection of smaller branches of blood vessels and slight variations in blood
vessel thickness.

The bulk of research in the digital pathology of kidneys that involves the segmentation
of blood vessels addresses the problem of non-tumor diseases. It is important to detect
blood vessels, distinguish elements such as the endothelium, measure wall thickness and
hyalinosis level, and determine the presence or absence of inflammatory cells in a range of
kidney pathologies [26,41,42]. These features are strictly necessary in order to perform a
diagnosis of acute or chronic transplant rejection, some glomerulo- and vasculopathies, and
level of kidney failure in patients with long-term primary of symptomatic hypertension
(Figures 3 and 4). In addition, a possible promising task may be the definition of arteritis
and the degree of its severity [27,29,30].
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2.8. Pancreatic Cancer

The total incidence of pancreatic cancer is 2.6%, and the total percentage of deaths
is 4.7% [35]. In pancreatic cancer, the invasion of major blood vessels (e.g., the superior
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mesenteric artery or vein) can be a factor that makes the disease unresectable, meaning it
cannot be completely removed by surgery [3,4]. This would typically be associated with a
worse prognosis. Specific histologic subtypes of pancreatic cancer may have characteristic
patterns of vascular invasion or angiogenesis. Identifying these can help in confirming the
diagnosis. An important prognostic marker is the presence or absence of lymphovascular
invasion: the tumor spreads along the collagen fibers of the stroma to the membranes of
the vessels, and then into their lumen through the bloodstream. There are frequent cases
of the detection of tumor cells in the tunica media and tunica adventitia in the absence of
tumor emboli.

For a reliable and accurate assessment of vascular invasion of carcinoma in such
cases, the CODA model was proposed, which can restore large gaps in ductal and vascular
structures in 3D format [31]. The principle of operation of the model is universal and can
be applied in the diagnosis of other malignant tumors, such as breast cancer [31,32].

CODA stands for “Cellular Object Detection, Segmentation, and Classification”. It
is a framework or methodology used to analyze and interpret digital pathology images
with the goal of automating or assisting in the detection, segmentation, and classification of
cellular objects within the images. CODA makes it possible to assess the extent of vascular
or perineural invasion and precancerous lesions of the pancreas [31]. CODA gives the
pathologist a spatial perspective of the course of blood vessels and their branching, and
also allows the prediction of the direction of tumor growth into the walls of the blood
vessels. Visualization of the bloodstream allows more objective measurements compared
to the values of microvessel density. In addition, CODA makes complicated pathological
features significantly more understandable, such as leaking vessels [31,32].

It is impossible to adequately stage pancreatic cancer without assessing the blood
vessels. Automatic search for regions of lymphovascular invasion and areas of neoangio-
genesis will improve the quality of diagnosis, which will undoubtedly have a positive effect
on the further treatment of patients [32].

3. Machine Learning Approaches to Blood Vessel Detection

AI models can be applied to extract a range of valuable metrics from images containing
blood vessels. For example, information about the exact location and morphology of blood
vessels is important for LBVI detection and MVD calculation. When comparing machine
learning models, it is convenient to use a formal description of the task of finding vessels in
a histological image: “the process of extracting regions of interest relevant to the diagnosed
disease”. Semantic segmentation methods based on deep learning are most often used to
solve problems related to the selection of areas of interest on WSIs. One of the reasons
for this is that when selecting objects on WSIs, it is often necessary to calculate their
morphometric parameters. In addition, the shape and size of objects on WSIs often vary
greatly (Figure 5a).

Deep-learning-based semantic segmentation models are highly accurate and can be
trained using a small amount of data. With regard to histological images, the essence of
semantic segmentation is the assignment of each pixel to a specific tissue class (gland, cell,
vessel, etc.). The use of semantic segmentation models assumes the presence of a qualita-
tively labeled dataset, where each image pixel is assigned to a certain class (Supervised
Semantic Segmentation, SSS). For example, a modified U-Net model was used to solve the
problem of semantic segmentation of blood vessels and achieved good performance, with
0.89 accuracy and an F1-score of 0.86 [26]. Our review identified the most promising neural
network models in the context of solving the problem of semantic segmentation of objects
on WSIs:

- DeepLab V3/V3+ [29];
- FPN (Feature Pyramid Network) [10,13];
- HistoSegNet [12,13];
- U-Net/U-Net++/nnU-Net [12,18,20–22,24];
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selected as green: (a) an example of accurate segmentation of blood vessel geometry; (b) an example
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With respect to the SSS task, a number of the most popular approaches were distin-
guished (Figure 6):
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- Approaches based on pixel-wise segmentation (classification of each pixel in the
image), referred to as the pixel-wise segmentation approach [43];

- Approaches based on the use of superpixels, where a superpixel is a relatively ho-
mogeneous group of adjacent pixels (atomic region), referred to as the superpixel
segmentation approach [44];

- Approaches based on selecting the center of an object in a sliding window, followed
by segmentation of the object’s boundaries, referred to as the patch-wise segmentation
approach [45,46];

Pixel-by-pixel segmentation is the most popular approach in the problems of segmen-
tation of tissue structures on WSIs and is able to accurately determine the boundaries of
objects in the image. However, the effectiveness of such approaches is largely influenced by
factors such as the size and quality of the dataset and the complexity of the model. Since
different tissue structures are adjacent to each other and often lack clear visual boundaries,
pixel-by-pixel segmentation models are prone to inaccurate segmentation of such areas
(for example, incorrect segmentation of the borders of blood vessels, Figure 5b). An alter-
native approach in such situations is to use superpixels. Compared to traditional pixel
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approaches, the atomic regions (superpixels, Figure 2b) produced by superpixel generation
algorithms represent a natural division of visuals into WSIs. Superpixel-based approaches
are often used in combination with CNN models and serve as WSI preprocessing. The use
of superpixels allows CNNs to more accurately segment the boundaries of objects, and also
increases the computational efficiency of the model. In addition, the effect of superpixel
regularization makes it possible to smooth out differences between images obtained from
different sources, improving the performance of the model on test data (improving the
model generalization ability) [47]. When using patch-wise segmentation approaches, the
segmentation result is represented as a rough heatmap (Figure 6b), on which each patch
is assigned a binary label indicating the presence/absence of the desired object in the
area of this patch. This approach makes it possible to obtain a localization map of the
areas of the WSI (i.e., a patch-based heatmap) in which the desired object is supposedly
located. However, since this approach does not allow accurate localization of the object
boundaries, the results need further processing to refine the object boundaries. For this
reason, patch-wise algorithms use WSIs for preliminary analysis to narrow the search
area, which in turn allows the efficient use of powerful resource-intensive pixel/superpixel
segmentation models.

The data-hungry nature of deep models suggests that in order to obtain a segmentation
model with outstanding characteristics, it is necessary to have a large number of images
with a high-quality pixel-by-pixel markup. However, due to the large number of problems
that arise during the annotation process, for example, due to the low agreement rate of
annotators and also due to the high cost of annotation in terms of time and money, it
is not always possible to obtain a sufficient number of correctly labeled samples, which,
as mentioned earlier, leads to a decrease in the effectiveness of SSS methods [48–50]. To
solve this problem, image segmentation models have been developed that can be trained
with weaker and cheaper labels [51,52]. These studies have led to the emergence of the
Weakly Supervised Semantic Segmentation (WSSS) approach [53,54]. WSS is a general term
covering a variety of approaches aimed at building predictive models that can be trained
on limited datasets. Typically, WSSS is used in the following situations:

- Only a small part of the dataset has been annotated;
- Presence of samples with rough/inaccurate labeling;
- Presence of samples with mistakes in the annotation (incorrect markup).

SSS methods show high accuracy due to their pixel-wise classification, taking into
account the presence of a well-labeled dataset [55]. However, SSS models show a significant
decrease in predictive performance when trained using incorrectly or roughly labeled data,
while the performance of WSS models trained on the same data decreases slightly [51,53].
To solve the LBVI problem, it is necessary to find the boundaries of the blood vessels as
accurately as possible. Considering this, as well as the fact that there are no large WSI
datasets with blood vessel labeling in the public domain, the development of blood vessel
segmentation models that can be translated into practice requires the combination of a range
of approaches. For example, a patch-wise segmentation approach can be applied to obtain
a heatmap of the areas in which the vessels are located at the first stage for the reduction
of computational cost. In the second step, each segment from the WSI heatmap can be
segmented using a pixel-/superpixel-wise model to obtain more accurate segmentation
masks corresponding to blood vessel morphology. It is recommended that WSSS be used
in situations where non-SSS methods do not achieve the required metric or the amount of
data labeled by the experts is limited.

4. Challenges and Perspectives

Despite the numerous advantages of and advances in AI-based methods for blood
vessel detection in histological slides, several challenges remain to be addressed for their
effective implementation in clinical practice. This section discusses the key challenges to be
faced in implementing these methods, and possible solutions for overcoming them.
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(1) Variability in slide preparation and staining techniques can lead to inconsistencies
in the appearance of blood vessels, which may negatively impact the performance
of AI-based methods. This challenge can be mitigated by developing robust models
that can handle such variations, incorporating data augmentation techniques during
training, and standardizing slide preparation and staining procedures.

(2) AI-based methods, especially deep learning approaches, require large amounts of
annotated data for training [21]. The manual annotation of blood vessels in histological
slides is time consuming and prone to inter-observer variability. To address this
challenge, researchers can employ active learning strategies to optimize the use of
annotated data, develop semi-automated annotation tools to assist pathologists and
explore the potential of synthetic or simulated data to augment the training dataset.
The generalizability of AI models relies on their ability to perform well across different
patient populations, histological slide preparations, and staining techniques. Larger
and more diverse datasets ensure that AI algorithms are trained and tested on a wider
range of variations, which in turn improves the model’s ability to accurately detect
blood vessels in different clinical scenarios [22].

(3) Deep learning models can be difficult to interpret and explain, which can hinder
their adoption in clinical practice [23]. To overcome this, researchers should focus
on developing explainable AI (XAI) methods that provide insights into the underly-
ing decision-making process of the model [56]. Techniques such as saliency maps,
layer-wise relevance propagation and attention mechanisms can help improve the
interpretability of AI-based methods for blood vessel detection. For AI-based blood
vessel detection methods to be successfully adopted in clinical practice, they must be
seamlessly integrated into existing clinical workflows [57].

(4) The implementation of AI-based methods in clinical practice raises ethical and legal
concerns, such as data privacy, informed consent, and liability for misdiagnosis.
Researchers and healthcare professionals should work together to establish guidelines
and policies that address these concerns, ensuring the responsible and ethical use of
AI-based methods for blood vessel detection.

(5) One of the major challenges associated with AI models, particularly deep learning
methods, is their black-box nature, meaning that the decision-making process of the
model is not easily understandable by humans. A human-in-the-loop approach can
address this issue by involving clinicians in the model development and validation
process. By providing feedback on AI-generated results, clinicians can help improve
the transparency and interpretability of the models, ensuring that AI technology is
more clinically relevant and applicable [24].

Researchers and clinicians should carefully weigh the advantages and limitations
of different AI methods in order to select the most suitable approach for their specific
application. Future studies should continue to explore novel AI-based methods that address
current limitations and enhance the overall performance and usability of automated blood
vessel detection in the histological slides of various malignancies.

5. Projections for Clinical Translation

AI-based blood vessel detection can offer insights into the biology and microenviron-
ment of tumors, which can be critical for predicting treatment response. For example, blood
vessel characteristics can be used to predict the response to anti-angiogenic therapy or to
identify patients who may benefit from specific therapeutic strategies [58]. AI can be used
to monitor changes in blood vessel features during treatment, providing early indicators of
treatment efficacy and allowing for timely adjustments in therapy.

The predictive power of AI-based blood vessel detection can be further enhanced by
integrating it with genomic and proteomic data [28]. Combining these different data types
could provide a more comprehensive understanding of the biology and microenvironment
of tumors, leading to improved prognostic and predictive models. For example, the
integration of AI-based blood vessel features with gene expression profiles can help identify
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specific molecular subtypes of cancer that could be associated with distinct prognostic and
treatment response profiles.

While the focus of this review was on blood vessel detection, it is worth noting
that AI-generated morphometric features can be extended to other histological structures,
such as immune cell infiltrates and stromal components. The evaluation of the tumor
microenvironment may provide additional insights into tumor behavior and prognosis.

6. Conclusions

This review provides a comprehensive overview of AI-based solutions for blood
vessel detection in whole slide images of histological slides for various malignancies.
The studies reviewed have demonstrated the potential of AI algorithms to enhance the
accuracy, efficiency, and reproducibility of blood vessel detection, contributing to improved
diagnostic and prognostic assessments in oncology. The integration of AI with clinical
practice can help pathologists make well-informed decisions, reducing inter-observer
variability and improving patient management. Furthermore, the predictive value of AI-
generated morphometric features may uncover novel insights into tumor biology and
treatment response.
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