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Abstract: Mesenchymal stem cells (MSCs) are a type of versatile adult stem cells present in various
organs. These cells give rise to extracellular vesicles (EVs) containing a diverse array of biologically
active elements, making them a promising approach for therapeutics and diagnostics. This article
examines the potential therapeutic applications of MSC-derived EVs in addressing neurodegenerative
disorders such as Alzheimer’s disease (AD), multiple sclerosis (MS), Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). Furthermore, the present state-of-
the-art for MSC-EV-based therapy in AD, HD, PD, ALS, and MS is discussed. Significant progress has
been made in understanding the etiology and potential treatments for a range of neurodegenerative
diseases (NDs) over the last few decades. The contents of EVs are carried across cells for intercellular
contact, which often results in the control of the recipient cell’s homeostasis. Since EVs represent the
therapeutically beneficial cargo of parent cells and are devoid of many ethical problems connected
with cell-based treatments, they offer a viable cell-free therapy alternative for tissue regeneration
and repair. Developing innovative EV-dependent medicines has proven difficult due to the lack of
standardized procedures in EV extraction processes as well as their pharmacological characteristics
and mechanisms of action. However, recent biotechnology and engineering research has greatly
enhanced the content and applicability of MSC-EVs.

Keywords: mesenchymal cell; extracellular vesicles; neurodegenerative diseases; treatment; MSCs-
based therapy

1. Introduction

Mesenchymal stem cells (MSCs) are a type of adult stem cell with the ability to develop
into different types of mesoderm-derived cells. MSCs can be located in various tissues like
bone marrow, adipose tissue, umbilical cord, dental tissue, connective tissues of muscle
and skin, and endometrial polyps [1,2]. Traditionally, MSCs were not considered to be
naturally present in the brain; however, recent studies have indicated that they might
exist as perivascular cells in nearly all adult tissues, including the brain [3]. MSCs can be
categorized into two main groups, namely embryonic or adult, depending on the specific
developmental phase from which they are derived [4]. These cells possess two crucial
characteristics: the capacity to transform into different cell lineages and the ability to
renew themselves. As multipotent stem cells, they show great potential in preclinical
investigations for treating diverse medical ailments [5].
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MSCs naturally produce a variety of active ingredients with trophic, immunomodula-
tory, pro-regenerative, anti-inflammatory, pro-angiogenic, and anti-apoptotic properties [6].
MSCs regulate immune function in a paracrine manner by producing immunomodulatory
factors such as transforming growth factor (TGF), hepatic growth factor (HGF), interleukin
(IL)6, and IL-10, as well as pro-angiogenic factors like basic fibroblast growth factor (bFGF)
and placental growth factor (PGF) [7,8].

MSCs have become a promising therapeutic option for treating neurological diseases
due to their distinctive characteristics [9]. These cells are plentiful and easily obtainable
from various tissues, and they exhibit low immunogenicity, allowing for allogeneic trans-
plantation without triggering significant immune responses. Additionally, MSCs possess
potent anti-inflammatory and immunomodulatory properties, which make them well-
suited for addressing neuroinflammatory conditions [10]. Through the secretion of trophic
factors [11], they actively promote tissue repair, neurogenesis, and neuronal survival. Their
unique ability to cross the blood–brain barrier facilitates delivery to the central nervous sys-
tem. Notably, clinical studies have demonstrated that MSC transplantation is well-tolerated
and associated with low adverse effects [12].

Extracellular vesicles (EVs), which are released by cells, have recently been revealed to
play an important role in cell-to-cell communication. Exosomes, microvesicles (MVs), and
apoptotic bodies (APBs) are all examples of EVs [13]. MSC-derived EVs (MSC-EVs) have
been found to provide therapeutic benefits comparable to their whole-MSC counterparts,
demonstrating that EVs are essential mediators of MSC treatment efficacy [14]. These nano-
sized vesicles have sparked optimism in curing intractable neurodegenerative illnesses
owing to their ability to carry a broad range of biomolecules across a long distance among
cells and to overcome biological barriers [15,16] (Figure 1).
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Figure 1. The various forms of extracellular vesicles. Exosomes, microvesicles, and apoptotic bodies
play critical roles in the diagnosis and treatment of neurological disorders. Extracellular vesicles can
easily pass across the blood–brain barrier and reach their destination in the injured cells. Extracellular
vesicles released from damaged cells have a dual role in neurological disorders. On the one hand,
they can contribute to the spread of pathogenesis, while on the other hand, they can serve as valuable
biomarkers for these diseases.

The term “neurological disability” refers to a variety of conditions that affect the
brain, spinal cord, and nerves throughout the body. Structure, metabolic, or electrical
anomalies in the nervous system can cause these illnesses [17]. Neurological disorders can
lead to various symptoms, such as paralysis, muscle weakness, impaired coordination,
diminished sensation, seizures, cognitive confusion, pain, altered levels of consciousness,
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and other related manifestations [18]. While certain neurological conditions may be mild
and temporary, others are more severe and may necessitate continuous or immediate
medical intervention. Behavioral or cognitive disabilities, as well as cognitive, thinking,
and reasoning deficits, are symptoms of neurocognitive disorders caused by gradual
loss and degeneration of the brain [19]. Neurodegenerative diseases (NDs) are a set of
neurological disorders marked by nervous system malfunction and gradual neuronal loss
that are linked to aging. Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic
lateral sclerosis (ALS), multiple sclerosis (MS), and Huntington’s disease (HD) are the
most frequent NDs. These disorders progress over time and are usually accompanied by
the buildup of protein aggregation, the composition of which varies depending on the
condition [20].

Cognitive impairment affects up to 50% of all MS patients and up to 20% of all PD
patients [21,22]. AD makes a considerable contribution to neurological disability because it
impairs thinking skills, memory, judgment, and decision-making [23].

The mechanisms of neurodegeneration and the ensuing neurological impairment
differ amongst different disorders, yet several characteristics are shared. Abnormal acti-
vation of programmed cell death (PCD) pathways, for example, is a typical hallmark of
neurodegenerative illnesses, leading to unintended loss of neuronal cells and function [24].
Axonal dysfunction and degeneration play significant roles in the advancement of diseases
such as ALS, MS, PD, and HD. They are acknowledged as prominent factors contributing
to the progression of these conditions [25]. This review examines various current factors
related to the therapeutic capabilities of MSC-EVs in addressing the treatment of AD, HD,
PD, ALS, and MS.

2. EVs Types and Biogenesis

EVs are nanoscale vesicles with different forms, sizes, contents, and surface marks that
are released into the extracellular environment via a variety of methods [26]. These vesicles
convey cytoplasm and cell membrane components that have been placed inside them
specially. They are produced by every living cell and perform critical roles in a wide range
of physiological and pathological processes [27]. Exosomes, MVs, and ABs are all examples
of EVs, according to the International Society of Extracellular Vesicles (ISEV) [13]. This
classification is based on their diameter size and origin; hence, each subclass of EVs reflects
distinct physicochemical features that play critical roles in both normal and pathological
circumstances [28].

The MVs, also known as ectosomes, are the first type of vesicle formed by the direct
budding of vesicles from the cell membrane to the cell’s exterior [29]. Exosomes are the
second type, which form by budding into endosomes to produce multivesicular bodies
(MVBs). These MVBs either bind to lysosomes, where the content is digested, or they bind
to the cell membrane, where it is ejected as exosomes [30]. Exosomes are 50 to 150 nm in
diameter, while MVs are 100 to 1000 nm in diameter [31].

Apoptotic bodies (APBs), the third kind, are formed when cells undergo apoptosis.
APBs are formed by the separation of membrane blebs or by the formation of apoptopodia
during the apoptotic process. Beaded apoptopodia and non-beaded apoptopodia are the
two forms of apoptopodia [32]. APBs have a significantly greater range of diameters,
ranging from 50 to 5000 nm [33] (Table 1).

The standardization and extraction of MSC-EVs revealed various characteristics [34].
The most popular isolation methods for MSC-EVs were based on the size of the EV and
included ultracentrifugation, differential ultracentrifugation, density gradient ultracentrifu-
gation, and ultrafiltration [35]. A larger yield is obtained while maintaining the biophysical
and functional characteristics of the EV isolated from stem cell culture using ultrafiltration
followed by size exclusion chromatography (SEC) [36]. Other methods were also used,
comprising immune affinity capture. However, it was less efficient than SEC [37].
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Table 1. Types of vesicles. A concise overview of the sizes and origins of different vesicles, highlight-
ing their unique characteristics and potential roles in cellular processes.

MSC-EV Structure Content Origin Applications

Exosomes Small lipid bilayer vesicles
(30–150 nm)

miRNAs, mRNAs,
proteins, lipids, and
signaling molecules

Luminal budding into
MVBs; release by

fusion of MVB with cell
membrane

Therapeutic delivery,
tissue regeneration,

immunomodulation, and
drug delivery

Microvesicles

Larger vesicles
(100–1000 nm) formed by

outward budding and
shedding from the cell

membrane

Proteins, lipids, mRNA,
miRNA, and DNA

Outward budding of
cell membrane

Tissue repair, wound
healing, and

immunomodulation

Apoptotic
bodies

Large vesicles (50 nm–1 µm)
released during apoptosis

Nucleic acids, histones,
and fragmented

organelles

Outward blebbing of
apoptotic cell

membrane

Immunomodulation,
tissue regeneration, and
biomarkers for cell death

Extracting EVs from MSC cultures is a critical process in biomedical research, and it
requires meticulous attention to multiple precautions to ensure the reliability and quality of
outcomes [38,39]. Maintaining a sterile environment throughout the culture and isolation
process is crucial to prevent contamination, while the quality and characteristics of the
MSCs used can significantly influence the composition and function of the isolated EVs [40].
Therefore, it is essential to utilize high-quality MSCs that meet specific criteria. Additionally,
proper handling of samples is of utmost importance to preserve the integrity and stability of
EVs. This involves careful collection, storage, and transportation to minimize degradation
or loss [41]. To enhance the yield and purity of EVs, optimizing the isolation method is
necessary, which may include adjusting centrifugation parameters based on study require-
ments and EV characteristics [42]. Lastly, to ensure the quality and purity of the isolated
EVs, thorough characterization using techniques like electron microscopy, nanoparticle
tracking analysis, and protein analysis is indispensable [42,43]. These measures collectively
contribute to the success of MSC culture and EV isolation, advancing the understanding
and potential applications of EVs in various biomedical fields with reliable and meaningful
results.

3. EVs Characteristics

Cells produce lipid-bound vesicles in the extracellular environment, which are re-
ferred to as EVs [44,45]. MicroRNAs (miRNAs), mRNAs, circular RNAs (circRNA), long
noncoding RNAs (lncRNA), proteins, lipids, and metabolites are all possible components
of EVs [46,47] (Figure 2). APBs also include entire cell organelles such as mitochondria,
endoplasmic reticulum fragments, and ribosomes [33].

3.1. Exosome

Exosomes, referred to as ILVs (Intraluminal Vesicles), are discharged by various cell
types and have been observed in multiple bodily fluids such as urine, plasma, sperm,
bronchial fluid, saliva, cerebral spinal fluid (CSF), serum, amniotic fluid, breast milk, tears,
stomach acid, synovial fluid, lymph, and bile [48–52]. Exosomes include a diverse range
of lipid-anchored membrane proteins, transmembrane proteins, exosome lumen soluble
proteins, and peripherally associated membrane proteins [53,54].

Exosomes have a role in cell survival, cell–cell comtenting vesicles [55,56]. Exosomes
have been reported to aid in neurite growth, production of myelin, and neuronal survival
in the nervous system, hence aiding in regeneration and tissue repair [57,58].

3.2. Microvesicles

The MVs (also known as microparticles or ectosomes) are EVs that are discharged
from cell membranes [45]. Megakaryocytes, the placenta, monocytes, blood platelets, tumor
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cells, and neutrophils are all sources of MVs [59]. They can be detected in both tissues and
bodily fluids [60].
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extracellular environment. EVs can contain microRNAs, mRNAs, circular RNAs, long noncoding
RNAs, proteins, lipids, and metabolites.

The MVs help cells communicate with one another by transporting chemicals, proteins,
miRNA, and mRNA between cells [61]. MVs, which were once discarded as cellular trash,
may now reflect the antigenic composition of the cell of origin and play a role in cell
signaling. Tumor immune suppression, anti-tumor effects, metastasis, angiogenesis, tissue
regeneration, and tumor-stroma interactions have all been linked to EVs [62–64]. MVs
can also help cells get rid of misfolded proteins, cytotoxic chemicals, and metabolic waste.
Variations in MVs levels can signal a variety of illnesses, including cancer [65,66].

3.3. Apoptotic Bodies

APBs are created exclusively when programmed cell death takes place [67,68]. Smaller
vesicles are indeed produced during this activity, which are distinguished by the existence
of organelles inside the vesicles [69]. MVs and exosomes have a completely different
makeup than APBs. Unlike MVs and exosomes, ABs include intact organelles, a minor
quantity of glycosylated proteins, and chromatin [31,70]. As a result, greater amounts of
proteins linked with the mitochondria (HSP60), nucleus (histones), Golgi apparatus, and
endoplasmic reticulum (i.e., GRP78) are anticipated. Furthermore, the proteome profiles
of cell lysate and APBs are quite similar, but the proteomic patterns of cell lysate and
exosomes are very different [71,72]. Phosphatidylserine (PS) is indeed the sole ApoBD
marker that has been found thus far [32].
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4. MSC-EVs Components
4.1. Pro-Angiogenic Factors

Angiogenesis refers to the formation of new capillaries from previously existing
blood vessels [73]. MSC-EVs are both anti- and pro-angiogenic [74] (Figure 3). Vascular
endothelial growth factor (VEGF), TGF-β, tumor necrosis factor-alpha (TNF-α), fibroblast
growth factor (FGF), and angiopoietins are some of the most well-known angiogenic
growth factors and cytokines. Endothelial cells, fibroblasts, smooth muscle cells, platelets,
inflammatory cells, and cancer cells are all the main sources of these growth factors [75].
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4.2. Immunomodulatory Factors

MSC-EVs have immunomodulatory activity and contain chemicals that affect immune
cells. They include inflammatory cytokines and chemokines that can influence both innate
(e.g., macrophages, dendritic cells, and natural killer (NK) cells) and adaptive immune
cells (T and B cells) [76,77] (Figure 3). Overexpression and knockdown procedures were
employed by several research groups to discover the active immunomodulatory molecules
essential for MSC-EVs’ treatment efficacy [78–80]. In their study involving pigs with renal
artery stenosis (RAS), Eirin and colleagues observed that the administration of MSC-EVs
containing IL-10 resulted in enhanced renal structure and function. Additionally, the
treatment led to a decrease in renal inflammation and an increase in the population of
reparative macrophages. These benefits were completely lost when EVs generated from
MSCs with knocked-down IL-10 were used to treat RAS [81].

The administration of MSC-EVs, which are capable of releasing the TSG-6 protein—a
protein that regulates the immune response and is produced during pathological conditions
in response to heightened inflammation—proved effective in reducing lung inflammation
and cell death in animals with bronchopulmonary dysplasia. However, the therapeutic
benefits were not observed when MSC-EVs lacking TSG-6 expression were utilized [82].

MSC-EVs harboring the C-C motif chemokine receptor-2 (CCR2) might prevent mono-
cyte and macrophage activity and protect mice from renal/ischemia harm. Several studies
have also shown that particular miRNAs that are overexpressed in MSC-EVs play an
immunomodulatory role [83]. In this regard, MSC-EVs containing miRNAs such as miR-
142-3p, miR-21-5p, miR-126-3p, and miR-223-3p are endowed with the capacity to regulate
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dendritic cell maturation and boost their anti-inflammatory activity [84]. Similarly, within
a mouse model of polymicrobial sepsis, MSC-EVs containing miR-223-3p demonstrated the
ability to reduce the release of pro-inflammatory cytokines in macrophages, suppress the
systemic inflammatory response, mitigate heart failure, and enhance overall survival [85].
Conversely, these beneficial therapeutic outcomes were absent when using MSC-EVs ob-
tained from miR-223 knockout mice [85].

MSC-EVs expressing miR-223, on the other hand, have been demonstrated to protect
against liver impairment in autoimmune hepatitis types and to down-regulate several
cytokines and inflammatory genes [84,86]. MSC-EVs harboring miRNAs, including miR-
146a, miR-21a-5p, miR-223, and miR-199a, regulated several inflammatory genes (e.g.,
NLRP3 and IL-6) and promoted macrophage polarity toward the anti-inflammatory M2
phenotype [87].

The miRNAs contained in MSC-EVs have been shown to play a vital role in the
therapeutic function of MSC-EVs in a number of diseases. miRNAs have a vital role in
controlling several infectious and non-infectious diseases by regulating gene expression [88].
They have immense potential and practical value in treating several diseases, including
neurodegenerative disorders. Table 2 provides a comprehensive overview of various
miRNAs found in MSC-EVs, along with their roles and potential applications. These
miRNAs demonstrate diverse functions and exhibit promising therapeutic potential in
different areas of regenerative medicine and disease treatment. One notable miRNA
is miR-22, which inhibits the inflammatory response and contributes to nerve function
recovery [89,90]. It has the potential to reduce the release of inflammatory factors and
minimize infarct size, suggesting its application in conditions associated with inflammation
and tissue damage. Another miRNA, miR-21, plays a crucial role in promoting cell survival
and proliferation. Its potential applications lie in tissue regeneration and wound healing,
indicating its therapeutic importance in the field of regenerative medicine [89,90].

MiR-let-7, a regulator of cell proliferation and differentiation, shows promise in tissue
regeneration and angiogenesis [91]. This miRNA holds potential for therapeutic interven-
tions aimed at promoting tissue repair and vascularization. Furthermore, miR-29b-3p is
involved in modulating extracellular matrix remodeling [92]. Its potential applications en-
compass fibrosis treatment, tissue repair, and fracture healing, highlighting its importance
in addressing conditions characterized by abnormal tissue remodeling.

MiR-126 demonstrates a role in promoting angiogenesis and neurogenesis. This
miRNA holds promise for cardiovascular regeneration and potential therapeutic appli-
cations in neurological disorders [93]. Additionally, miR-133 exhibits anti-inflammatory
properties and has the potential to reverse liver injury. Its application may be targeted
toward liver injury treatment [86]. MiR-146a-5p [94] and miR-155 [95] are involved in
modulating immune responses and inflammation. These miRNAs have the potential for
application in autoimmune diseases and inflammatory modulation therapies.

MiR-210 induces vascularization and promotes cellular adaptation to hypoxia. It
holds promise for the treatment of ischemic diseases, tissue repair, bone regeneration, and
selective regeneration of ischemic heart tissues [96,97]. MiR-223 regulates neuronal cell
apoptosis and immune cell reactions, presenting potential applications in conditions such
as ischemic kidney and myocardial infarction [98–100]. Moreover, the miR-17-92 cluster is
associated with increased neural plasticity and functional recovery, particularly in treating
stroke [101].

These findings on miRNAs found in MSC-EVs provide valuable insights into their
roles and potential applications in various therapeutic areas, paving the way for further
research and development in regenerative medicine and disease treatment.
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Table 2. The miRNAs found in MSC-EVs, their role, and their applications.

miRNA Role/Function in MSC-EVs Potential Applications Reference

miR-22
inhibits the inflammatory

response and nerve function
recovery

inhibit the release of inflammatory
factors, reduction of infarct size [89,90]

miR-21 Promotes cell survival and
proliferation

Tissue regeneration, wound
healing [102]

miR-let-7 Regulates cell proliferation
and differentiation tissue regeneration, angiogenesis [91]

miR-29b-3p Modulates extracellular matrix
remodeling

Fibrosis treatment, tissue repair,
and fracture healing [92]

miR-126 Promotes angiogenesis and
neurogenesis

Cardiovascular regeneration,
neurological disorders [93]

miR-133 Reduced inflammation and
reversed liver injury Liver injury [86]

miR-146a-5p Modulates immune responses
and inflammation

Autoimmune diseases,
inflammation modulation [94]

miR-155 Modulates immune responses
and inflammation

Immunomodulation, inflammatory
disease therapy [95]

miR-210
Induce vascularization,

Promotes cellular adaptation
to hypoxia

Ischemic diseases, tissue repair,
bone regeneration, selective

regeneration of ischemic heart
[96,97]

miR-223
Regulates neuronal cell

apoptosis and immune cells
reactions

Ischemic kidney, myocardial
infarction [98–100]

miR-335 Promotes osteoblast
differentiation bone fracture recovery [103]

miR-486 Promotes cardiac regeneration
and repair

Heart disease treatment, cardiac
tissue repair [104]

miR-499 Inhibit endometrial cancer
growth and metastasis anticancer [105]

miR-17-92 cluster Increases neural plasticity an
functional recovery In treating stroke [101]

4.3. Anti-Apoptotic Factors

MSCs have anti-apoptotic properties [106]. The conditioning medium of human MSC
culture has a paracrine anti-apoptotic impact on hypoxia-induced death of rat lung alveolar
cells. One of MSCs’ anti-apoptotic capabilities is the production of HGF and keratinocyte
growth factor, which inhibit pro-apoptotic signals induced by reactive oxygen species (ROS)
and hypoxia-inducible factor-1 alpha (HIF-1) [107].

MSCs simply release biologically active proteins and EVs that activate endogenous
lung stem/progenitor cells, causing them to proliferate and differentiate, impede apoptosis,
reduce inflammation, reestablish capillary barrier activity, and decrease fibrosis. They
can treat both acute and chronic lung injuries since they function similarly to parental
MSCs [108]. As a result, MSC-derived secretomes have anti-apoptotic properties, resulting
in improved tissue healing and regeneration [109].

Multiple recent studies have discovered that the secretome of MSCs can control cell
death, known as apoptosis, in both normal and diseased conditions. MSC-derived condi-
tioned medium (MSC-CM) therapy is a promising approach in regenerative medicine and
cell-based therapies [110]. It involves utilizing the secreted factors and soluble molecules
present in the conditioned medium, which is the culture medium in which MSCs have been
cultured. When MSCs are cultured in vitro, they release a variety of bioactive molecules
such as growth factors, cytokines, chemokines, and EVs into the surrounding medium [111].
These secreted factors have been found to possess therapeutic properties, including anti-
inflammatory, immunomodulatory, angiogenic, anti-fibrotic, and tissue repair-promoting
effects. The application of MSC-CM therapy has shown promising results in preclinical and
early clinical studies for various conditions, including but not limited to wound healing,
tissue regeneration, neurological disorders, and immunomodulation [112–114].

The application of MSC-CM therapy demonstrated a decrease in the presence of pro-
apoptotic markers, such as cleaved caspase-3 and Bax, within the main functional cells and con-
currently increased the synthesis of the anti-apoptotic protein B-cell lymphoma/leukemia-2



Biomolecules 2023, 13, 1250 9 of 29

(Bcl-2) [115,116]. This intervention prevented the elimination of these cells during instances
of chronic inflammation. Administering MSC-CM through injection facilitated the regen-
eration of the liver and enhanced the survival rate in mice involved in the research. This
effect was achieved by reducing the infiltration of inflammatory cells in the inflamed liver,
minimizing apoptosis, and promoting the proliferation of damaged hepatocytes [117–119].

The inhibition of cell death and enhancement of liver cell regeneration caused by
MSC-CM primarily occurred through the activation of signaling pathways such as HGF,
fibrinogen-like protein 1, IDO-1/KYN, and IL-6/gp130. These pathways, along with other
beneficial components derived from MSCs, exerted trophic and immunomodulatory effects,
ultimately protecting the liver. Similarly, MSC-exosomes contributed to a decrease in
negative immune responses and hepatocyte death in acute liver failure (ALF). Additionally,
they hindered the production of TGF-β by hepatic stellate cells (HSCs), resulting in a
reduction of liver fibrosis, similar to the effects observed with MSC-CM [120–122].

5. MSC-EVs as Diagnostics

Table 3 provides an overview of the diagnostic applications of EVs derived from
MSCs in various neurological disorders. It emphasizes the potential uses of MSC-EVs as
diagnostic tools and highlights specific examples supporting their application. In AD, MSC-
EVs present promising opportunities for diagnostics and biomarker identification [123,124].
These EVs carry specific proteins and microRNAs that can be analyzed to identify early
biomarkers of AD. Exosome-derived tau and amyloid-beta levels in CSF can indicate
AD progression, while the detection of Aβ42 in CSF or blood aids in early diagnosis.
Additionally, MSC-EVs can be utilized to track disease progression, monitor treatment
response, and assess the effectiveness of therapeutic interventions in AD [123–127].

In PD, MSC-EVs also serve as potential diagnostics. Levels of α-synuclein and DJ-1 in
MSC-EVs from CSF may indicate early signs of PD, and monitoring miR-34a levels in EVs
can help track disease progression. Moreover, LRRK2-enriched EVs and miR-124-enriched
EVs hold promise as potential biomarkers for PD detection [128–130].

In MS, quantification of myelin EVs in CSF shows promise as a potential biomarker for
disease activity and progression. These myelin-derived EVs offer valuable insights into the
disease’s status and advancement [131]. For ALS, MSC-EVs could aid in early diagnosis
and prediction of disease outcomes by analyzing ALS-related proteins, including SOD1,
TDP-43, pTDP-43, and FUS in these EVs [132]. Likewise, in HD, elevated total Huntingtin
levels in EVs from plasma of HD groups compared to controls suggest the potential use of
Huntingtin protein levels in EVs as a diagnostic biomarker for the disease [133].

These data highlight the immense diagnostic potential of MSC-EVs in neurological
disorders, showcasing their capability to provide valuable information for early detection,
disease monitoring, and treatment assessment.

Table 3. The diagnostic applications of MSC-EVs in neurological disorders.

Neurological Disorder Diagnostic Uses and Applications Examples Reference

Alzheimer’s Disease

Biomarker Identification: EVs derived from
MSCs carry specific proteins, microRNAs, and

other molecules that can be analyzed to identify
early biomarkers of Alzheimer’s disease.

Exosome-derived tau and
amyloid-beta levels in CSF can

indicate Alzheimer’s progression
[123,124]

Detection of Aβ42 in CSF or blood to aid in early
Alzheimer’s diagnosis. Aβ42. [127]

Tracking disease progression, monitoring
treatment response, and early detection.

Downregulation of miR-212 and
miR-132-enriched EVs in AD [126]

Assessing the effectiveness of therapeutic
interventions. EVs containing Tau protein [125]
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Table 3. Cont.

Neurological Disorder Diagnostic Uses and Applications Examples Reference

Parkinson’s Disease

Biomarker Detection: EVs released by MSCs
carry specific proteins and microRNAs that can

serve as biomarkers to detect early signs of
Parkinson’s disease.

α-synuclein and DJ-1 levels in
MSC-EVs from CSF as a potential

biomarker for Parkinson’s
[130]

Monitoring disease progression by assessing
miR-34a levels in EVs. miR-34a over-expression in PD [129]

Biomarkers to detect PD. miR-124-enriched EVs in PD [128]

Multiple Sclerosis
Quantification of myelin EVs in CSF as a

potential biomarker for disease activity and
progression.

Myelin-derived EVs [131]

Amyotrophic Lateral
Sclerosis Early diagnosis and predicting disease outcome. ALS-related proteins, including

SOD1, TDP-43, pTDP-43, and FUS [132]

Huntington’s Disease Elevated total Huntingtin levels in EVs from
plasma of HD groups compared to controls. Huntingtin protein [133]

6. MSC-EVs in Alzheimer’s Disease

AD is a kind of dementia that typically affects the elderly. AD is a progressive neuro-
logical illness and the most frequent cause of dementia [134]. Damage is pervasive in AD,
as many neurons cease to function, lose connections with other neurons, and die, affecting
activities critical to neurons and their networks, including communication, metabolism,
and repair. Initially, AD results in the deterioration of neurons and their synaptic con-
nections in the brain regions associated with memory. As the disease progresses, it also
impacts the regions of the cerebral cortex responsible for language, reasoning, and social
interactions [135].

This neurodegenerative condition gradually and irreversibly impairs brain functioning
(remembering, reasoning, and thinking), thought content, personality, and behavior [136].
The prevailing scientific explanations for the pathological features of AD involve the follow-
ing processes: accumulation of Aβ outside cells, the creation of neurofibrillary tangles (NFT)
caused by the buildup of hyperphosphorylated tau inside cells, and persistent neuroinflam-
mation. These factors are considered to be the primary contributors to the development
and progression of AD [137,138]. Modulation of the aberrant gene expression in AD can
effectively improve the cognitive response in animal models of AD [139]. Neurotic commu-
nication abnormalities and the loss of individual neurons are caused by aberrant protein
accumulations outside and inside nerve cells [138]. The first phases of AD pathogenesis
are assumed to be caused by the deposition of Aβ, the primary component of amyloid
plaque, within neurons [140]. These findings underline the importance of exosomes in the
progression of AD through the spread of amyloid plaques [141]. In addition, the content of
exosomes can modulate the gene expression of AD-associated genes.

Several research investigations have explored the use of exosomes as a potential
biomarker for the early detection of AD (Figure 4). Additionally, they have been investi-
gated as a means to transport therapeutic agents, such as small chemical molecule drugs,
miRNA, and siRNA [142,143]. For instance, Saman et al. employed tau-containing ex-
osomes generated from CSF for the initial diagnosis of AD [144]. Furthermore, since
CSF-derived exosomes contain both p-tau and Aβ, the discovery of both possible biomark-
ers in exosomes may indeed raise the value of the currently employed marker for the initial
detection of AD [145,146]. In this regard, using a combination of markers to diagnose AD
enhanced specificity and sensitivity by 86% [147].
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Figure 4. The applications and uses of MSCs-EVs in the diagnosis and treatment of AD. The most
widely accepted scientific explanations for the pathogenic hallmarks of AD are extracellular aggrega-
tion of beta-amyloid peptide (A), formation of neurofibrillary tangles due to intracellular deposition
of hyperphosphorylated tau, and persistent neuroinflammation. EVs can effectively alleviate these
negative circumstances during the development of AD.

The AD sufferers’ CSF-derived exosomes had greater levels of miR-598 and miR-9-5p
than their healthy counterparts [148]. Plasma, on the other hand, has long been evaluated
to distinguish markers; hence, plasma seems to be a more convenient and accessible
option [149]. Furthermore, the biological components of exosomes have demonstrated
great accuracy in the initial detection of AD [150]. When comparing plasma exosomal
protein expression among AD cases and healthy controls, researchers discovered that
patients with AD had higher levels of neuron-derived proteins such as Aβ and tau [146].

Several investigations have confirmed the neuroprotective properties of neuron-
derived exosomes. Exosomes generated from glia, for instance, protect neurons from
oxidative stress [151]. According to the findings of a study into the processes involved
with exosomes in Aβ clearance, neuron-derived exosomes injected into the brains of AD
transgenic mice aided in Aβ peptide elimination. Because of conformational changes, the
prion receptor on the exosomal surface can bind to amyloid plaques and convert them
to harmless forms. Exosomes also hasten the absorption of Aβ extracellular plaque by
microglia.

Exosomes released by MSCs obtained from connective tissues such as bone marrow
and adipose tissue not only effectively traverse the blood–brain barrier (BBB) but also
successfully degrade both intracellular and extracellular Aβ peptides in the brain. This
degradation is attributed to the presence of neprilysin enzymes [152,153]. MSC-EVs directly
interact with Aβ through their lipid membranes, promoting the clearance of Aβ plaques
by microglia. Additionally, MSC-EVs transport neprilysin, an enzyme that breaks down
Aβ, thereby indirectly reducing the accumulation of Aβ inside cells. In vivo studies inves-
tigating the therapeutic effects of MSC-EVs in animal models of AD have predominantly
employed long-term treatment regimens lasting for weeks or months. The administration
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of EVs in these studies has been done either systemically (via the bloodstream) [154] or
intracerebroventricular [155,156], demonstrating either partial recovery [154,155] or a pro-
tective function in diminishing the burden of Aβ plaque and the number of dystrophic
neurites [156].

The injection of MSCs or MSC-EVs into hippocampal neurons enhances their re-
silience against the synaptic degradation caused by Aβ and the harmful effects of ox-
idative stress [157]. The results proposed several potential mechanisms to explain this
phenomenon, including the decreased presence of extracellular Aβ due to the heightened
endocytic capability of MSCs, the secretion of EVs containing antioxidant enzymes like
catalase, and the paracrine activity resulting from the eventual release of trophic factors
and anti-inflammatory cytokines such as VEGF, IL-6, and IL-10. Although most studies on
AD treatment have primarily employed MSC-EVs, recent investigations suggest that differ-
ent sources of stem cells possess therapeutic potential in combating AD-related cognitive
disorders through distinct processes, such as reducing the extracellular and intracellular
deposition of Aβ oligomers [157].

In a recent study, novel insights into the therapeutic mechanism of MSCs in AD were
presented. They demonstrated that MSC-EVs derived from bone marrow transported
miR-29c-3p to neurons, inhibiting the expression of beta-secretase (BACE1) and activating
the Wnt/β-catenin pathway, ultimately leading to a beneficial effect in AD [158].

In their study, Wang et al. investigated the impact of MSC-EVs on neuronal impair-
ments in hippocampal neurons stimulated by Aβ, as well as in AD cell lines (SHSY5Y)
and AD animal models (APPswe/PS1dE9 mice) [159]. The results demonstrated that the
administration of MSC-EVs effectively improved cognitive deficits, reduced the accumu-
lation of Aβ in the hippocampus, and prevented neuronal loss in AD mice. Furthermore,
they identified the involvement of the nuclear factor-erythroid factor 2-related factor 2
(Nrf2) signaling pathway in mediating the effects of MSC-EVs in both cell lines and animal
models. These findings highlight the potential of MSC-EVs as promising nanotherapeutics
for restoring the structure and function of hippocampal neurons in APP/PS1 mice. Based
on the aforementioned findings, MSC-EVs demonstrate favorable effects in the context of
AD [159].

Although MSC-EVs hold promise for treating AD, their full potential is hindered
by several challenges. These issues include inadequate targeting efficiency, inconsistent
treatment results, and limited production yield [160]. To overcome these limitations and
enhance the effectiveness of MSC-EVs as AD treatments, it is essential to functionalize
and engineer the EVs structures. Various methods can be employed for this purpose,
such as preconditioning the parental cells to improve the natural treatment’s effectiveness,
incorporating therapeutic cargo or drug loading into MSC-EVs, modifying the surface of
MSC-EVs to enhance targeting capabilities, and utilizing artificial MSC-EVs to scale up
production [161].

MSC-EV-based AD treatments were accomplished using different types of mesenchy-
mal stem cells: bone marrow-derived MSCs (mBMSCs), adipose-derived MSCs (mADSCs),
and human umbilical cord-derived MSCs (hUCMSCs). To enhance the therapeutic efficacy
of MSC-EVs, they are modified with specific peptides like the rabies virus glycoprotein
(RVG) peptide or loaded with miRNAs like miR-29 and miR-22 [161]. MSC-EVs were
administered through various routes, including intravenous (IV), intracranial injection
(IN), and dorsal hippocampus injection. IV administration of RVG-modified MSC-EVs
has shown promise in improving learning and memory by reducing Aβ deposition and
astrocyte activation while promoting the production of anti-inflammatory factors. Simi-
larly, dorsal hippocampus injection of miR-29-loaded MSC-EVs reduces BACE1 expression
and activates PKA/CREB, leading to improved cognitive function [162]. Preconditioning
MSCs in an AD environment before administration is another promising strategy. Hypoxic
preconditioning of mADSCs shifts microglial M1/M2 polarization, reduces inflammatory
factors, and upregulates TREM2 expression, thereby improving cognitive function [163].
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Although most studies have used MSC-EVs for AD treatment, it is worth noting
that various stem cell sources have demonstrated therapeutic potential in alleviating AD-
associated cognitive deficits via multiple mechanisms, such as reducing extracellular and
intracellular oligomer deposition (Table 4).

Table 4. The use of extracellular vesicles produced from stem cells in neurodegenerative disorders.

Disease Type of EVs and Origin Outcomes Ref

AD MSCs/exosomes Enhances neurogenesis, reduces Aβ, and the restoration of
cognitive function. [164,165]

PD MSCs/exosome

Transferring of the miR-133b regulates neurite outgrowth. [166]
Improved neuronal function and oligodendrogenesis

stimulation [101]

Reduction in α-syn aggregates [167]

MS

MSCs/exosomes MSCs/EVs

Drive peripheral resistance, activate apoptotic signaling
pathway in self-reactive lymphocytes, and stimulate

regulatory T cell differentiation by
- IL-10 and TGF-β secretion

- expression of PD-L1 and TGF-β

[168]

MSCs/exosomes
Reduce CNS inflammation and demyelination by

performing the following:
- Shifting microglial polarization toward an M2 phenotype

[169,170]

7. MSC-EVs in Parkinson’s Diseases

PD is the second most prevalent neurodegenerative disease worldwide, originally
discovered by James Parkinson in 1817. While the exact causes of PD are still unknown, both
genetic and environmental factors contribute to its development [171,172]. Degeneration of
dopaminergic neurons and impairment of dopamine production in multiple dopaminergic
networks characterize the disease. The formation of Lewy bodies in the neurological
system, which are protein clumps formed of α-synuclein (α-syn), is linked to the death of
dopaminergic neurons and the disturbance of their normal functioning. The nigrostriatal
pathway, which includes the substantia nigra pars compacta and the striatum, is the most
damaged [173]. There is currently no cure for PD, but researchers are exploring various
treatment options, including the use of MSCs and their EVs [174–177].

Exosomes can transport enzymatically active proteins like phosphatase and tensin
homolog (PTEN) and biologically active lipids, such as prostaglandins, to specific tar-
get cells [178,179]. Within exosomes, there are various proteins referred to as “exosome
markers,” which are primarily involved in their formation. These exosomes also carry
transmembrane molecules that assist in the immunoselection process, enabling the iden-
tification of exosomes with a specific biological origin and enhancing their sensitivity as
biomarkers. In the context of NDs like PD, exosomes have been found to contain misfolded
proteins such as α-syn [180,181].

The presence of genetic material, such as miRNAs, is one of the largest common
contents of exosomes [74]. Disorders like PD exhibit considerable disruption in gene
expression, especially at the miRNA level [182,183]. Exosomes derived from MSCs can
transfer miRNAs to neuronal cells. Notably, exosomes rich in miR-133b have been found to
promote neurite outgrowth, which is advantageous for PD since this particular miRNA
is generally suppressed in PD cases [166]. However, it should be noted that MSC-derived
exosomes also contain miR-143 and miR-21, which are known to play significant roles in
regulating immune responses and contributing to neuronal loss associated with chronic
inflammation [184].

The α-syn can be released either directly into the extracellular space or enclosed within
exosomes [185]. Furthermore, α-syn has been observed to engage with synaptic vesicles,
leading to an augmentation of neurotransmitter release and assisting in the assembly of
SNARE proteins. Typically, synaptic vesicles that contain α-syn are sorted into early endo-
somes either through Golgi or clathrin-mediated endocytosis [186,187]. The endosomes
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that contain α-syn progress and develop into multivesicular bodies (MVBs). These MVBs
eventually merge with the cell membrane and release their contents as exosomes, aided by
VPS4 and small ubiquitin-like modifier (SUMO) proteins. Another possibility is that the
α-syn-containing endosomes are directed towards recycling endosomes, where they are re-
leased from the cell as secretory granules through a process dependent on Rab11a [188,189].
While engaged in these processes, the level of calcium in the cytoplasm governs the dis-
charge of α-syn from viable cells. Although the quantity of α-syn found in exosomes is
limited, recent studies propose that exosomes create a favorable setting for the aggregation
of α-syn, potentially contributing to the propagation of PD (Figure 5). The toxic variant
of α-syn, known for its ability to trigger neuronal cell demise, is typically recognized as
oligomeric α-syn [190,191].
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Figure 5. The various applications and uses of extracellular vesicles derived from mesenchymal stem
cells in the diagnosis and treatment of PD. PD is characterized by the degeneration of dopaminergic
neurons and impaired dopamine production within multiple dopaminergic networks. This condition
is linked to the formation of Lewy bodies in the nervous system, which are aggregates of α-synuclein
protein and result in the degeneration of dopaminergic neurons and disruption of their normal
functioning. The nigrostriatal pathway, consisting of the substantia nigra pars compacta and the
striatum, is particularly affected in PD. α-syn-containing synaptic vesicles are usually sorted into
early endosomes through Golgi or clathrin-mediated endocytosis. However, extracellular vesicles
show promise in effectively alleviating these detrimental conditions during the pathogenesis of PD.

Currently, the identification of PD primarily relies on the observation of visible motor
symptoms during clinical examination. Unfortunately, there are no reliable diagnostic
methods available for detecting PD in its early stages. Developing a technique for early
detection would be a significant advancement in the field. Previous studies have indicated
that certain components of EVs, such as exosomes obtained from the blood or CSF of
PD patients, can serve as effective biomarkers for the disease [192–194]. It is crucial
to comprehend the complexity of exosomes derived from MSCs and how their miRNA
contents interact with the cellular and molecular pathways associated with PD.



Biomolecules 2023, 13, 1250 15 of 29

MSC-EVs have been proposed as a promising therapeutic tool for PD, as they can act
as a vehicle for the delivery of therapeutic molecules, such as miRNAs, to the brain [174].
MSC-EVs could be modified using molecular engineering techniques to carry protein and
RNA cargoes, making them a promising therapeutic option for PD [175]. MSC-derived
secretome treatment has shown encouraging results in experimental models of PD [176].

MSCs and the EVs they produce have been suggested as a viable treatment approach
for various neurodegenerative conditions such as PD. This is because they possess the
capability to support the survival of dopaminergic neurons, encourage the formation of
new neurons, decrease neuroinflammation, and improve overall functional recuperation
in animal models [177]. In a pilot investigation, individuals diagnosed with progressive
supranuclear palsy (a rare and serious type of parkinsonism) received mesenchymal stem
cells derived from bone marrow. These cells were administered through the cerebral
arteries. The results showed that all of the treated patients survived for a year following
the infusion of the cells, except for one patient who passed away nine months later due to
reasons unrelated to the delivery of cells or the progression of their illness [195].

One of the major obstacles to PD treatment is access to the damaged cells. However,
recent bioengineering research has led to the production of genetically modified cells with
improved therapeutic efficiency. Improved adhesion, migration, and survival are new
methods for not only preserving but also increasing the biological properties and ther-
apeutic potential of MSCs [196]. MSCs that have been genetically designed to produce
specific neurotrophic factors, such as brain-derived neurotrophic factors, or MSCs that
have been modified to boost their survival and ability to migrate toward the lesion loca-
tion. Concerning PD, various studies have utilized engineered MSCs expressing vascular
endothelial growth factor, tyrosine hydroxylase, or modified to enhance the production
of cerebral dopamine neurotrophic factor or glial cell-derived neurotrophic factor. These
experiments have shown promising outcomes in preclinical rodent models [197]. Further-
more, genetically engineered EVs showed promising results in PD animal models. When
subjected to catalase-loaded EVs in a cell culture environment, macrophages that were
activated with lipopolysaccharide (LPS) and tumor necrosis factor (TNF) demonstrated
decreased levels of reactive oxygen species (ROS). In a mouse model of PD using 6-OHDA,
administering catalase-loaded EVs resulted in reduced activation of microglia compared
to the application of free catalase. These findings suggest that delivering catalase through
EVs has the potential to effectively decrease oxidative stress and neuroinflammation in
PD [198]. Interestingly, the introduction of dopamine-loaded EVs led to a remarkable
15-fold increase in dopamine distribution within the brain. This heightened distribution
not only resulted in improved therapeutic effectiveness but also significantly reduced
systemic toxicity compared to the administration of free dopamine. These findings suggest
that utilizing EV-based drug delivery holds promising potential as a viable and effective
treatment option for PD [199].

8. MSC-EVs in Multiple Sclerosis

MS is inflammatory demyelination of the central nervous system [200] (Figure 6). In
addition to inflammation and demyelination in the spinal cord and brain, other pathological
biomarkers of MS include BBB disruption, reactive gliosis, oligodendrocyte loss, and neuron
and axonal degeneration [201]. According to the National MS Society, the four major types
of MS are primary progressive MS (PPMS), secondary progressive MS (SPMS), relapsing–
remitting MS (RRMS), and clinically isolated syndrome (CIS) (NMSS) [202].

Autoimmune attacks are the most significant reason for axon demyelination in illnesses
like MS. Ideally, tissue restoration via stem cell transplantation may lead not only to axon
reconstruction by replacing lost and destroyed cells but also to anti-inflammatory and
paracrine neuroprotective effects, potentially preventing progressive neural and axonal
degeneration [203,204].
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Figure 6. The applications and uses of mesenchymal stem cell-derived extracellular vesicles in the
diagnosis and treatment of multiple sclerosis (MS). MS is central nervous system demyelination
caused by inflammation. Other pathological biomarkers of MS, in addition to inflammation and
demyelination in the spinal cord and brain, include BBB disruption, reactive gliosis, oligodendrocyte
loss, and neuron and axonal degeneration. EVs can effectively relieve these adverse conditions during
MS pathogenesis through several mechanisms of action.

The exosomes derived from periodontal ligament stem cells and present in the condi-
tioned medium demonstrated anti-inflammatory and suppressive effects in mice models
of MS called experimental autoimmune encephalomyelitis (EAE). The study indicated
that the exosomes promoted significant remyelination in the spinal cord and reversed the
progression of MS by increasing the levels of anti-inflammatory cytokines, specifically IL-10.
Moreover, the impaired activation of T cells, which is a key factor in regulating the balance
between T helper (Th)1 and Th2 cells, was identified as one of the pathological features of
MS [205].

The EVs produced by placental-derived MSCs (PMSCs) could achieve therapeutic
effects similar to individual EAE therapy if administered in high doses. Also, according
to VEGF proteomic analyses, the HGF was found in EVs produced from PMSC. PMSCs
regulate the immune system by triggering regulatory T cells (Tregs) with large amounts of
these substances that they release. This discovery indicated that PMSC-EV can stimulate
myelin regeneration and elicit immunomodulatory effects comparable to PMSC therapy
in the EAE mice model [170]. Likewise, the administration of MSC-EVs obtained from
adipose tissue of humans through intravenous treatment improves the condition of animals
with EAE. This is achieved by inhibiting the infiltration of immune cells, modulating their
activation, and reducing the secretion of inflammatory cytokines [206].
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Induction and maintenance of immunological tolerance is a major goal in the treat-
ment of autoimmune conditions. Maintenance and progression of regulatory molecules
like TGF-β, programmed death ligand-1 (PD-L1), and galectin-1 via biological interven-
tions in the host immune system are one of the most current approaches for peripheral
tolerance [206,207]. The ability of MSC-MV to enhance environmental resilience in splenic
mononuclear cells (MNCs) from mice with EAE was investigated. The MVs derived from
MSCs trigger apoptotic signaling in self-reactive lymphocytes, prompting them to release
IL-10 and TGF-β. Additionally, they upregulate the expression of regulatory molecules like
TGF-β and PD-L1 on the surface of MVs, which promotes the differentiation of regulatory
T cells (Tregs). This ultimately contributes to the development of peripheral immune
tolerance [168].

A different developing approach to induce immunological tolerance in individuals
with MS involves directing microglia to adopt the M2 phenotype [208]. Microglia are the
CNS’s resident macrophages that are rapidly activated by microenvironments (like infec-
tion, ischemic injury, and pro-inflammatory cytokines such as TNF-α and IL-1β) to make
a differentiation either into the M1 phenotype, which causes CNS damage and generates
pro-inflammatory cytokines, or the M2 phenotype, which fosters tissue regeneration by
producing anti-inflammatory cytokines [209].

In the early stages of MS, an imbalance of M1/M2 macrophages and a shift toward
pro-inflammatory M1 phenotypes was considered to be one of the major drivers of tissue
injury in the CNS. As a result, it is thought that prompting microglia to polarize toward
the M2 phenotypes might improve MS patients’ neurological symptoms [208]. In this
regard, Li et al. investigated the impact of BMSC paracrine pathways, namely exosome
mediation, on microglial polarization and motor functional improvements in an EAE mouse
model [169]. They found that exosomes derived from BMSC can decrease demyelination
and inflammation of the CNS while improving neural behavioral ratings in the EAE
animal model via shifting the polarity of microglia toward an M2 phenotype. Furthermore,
MSC exosome therapy decreased M1-associated TNF and IL-12 levels while increasing
M2-associated cytokines (IL-10 and TGF-β) [169,210].

EVs derived from MSCs of adipose tissue promote recovery from demyelination in an
animal model for progressive MS, and lab animals induced recovery from demyelination
and curation of brain atrophy [104]. MSC- EVs have the potential to exert positive effects by
transporting crucial molecules, including DNA, enzymes, proteins, mRNA, ncRNAs, and
different ligands, to the intended recipient cells [211]. The field of molecular engineering has
made alterations to EVs by incorporating myelin antigens. This modification transforms
EVs into platforms capable of presenting antigens, thereby enabling the restoration of
antigen-specific peripheral immune tolerance in autoreactive T cells. This innovative
technique can be regarded as a groundbreaking “EV-based vaccine” that holds significant
potential in the treatment of MS by reinstating immune tolerance. Antigen-presenting EVs
could decrease harmful immune reactions while preserving the integrity of the remaining
immune system, thereby minimizing the likelihood of adverse outcomes [211].

Exosomes can carry medications to MS patients because of their capacity to cross
the BBB. Diverse functional elements on the surfaces of exosomes, such as aptamers and
antibodies, dramatically improve the exosomes’ specificity [212]. Based on these findings,
it’s safe to say that MSC-EVs will represent the future of the MS therapy approaches for
various reasons, such as their safety and capacity to cross the BBB.

The therapeutic effects of genetically engineered MSCs in different MS models were
investigated. Female mice were treated with Mouse MSCs expressing the Mouse IFN-β
gene. Intravenous administration of engineered MSCs resulted in increased Tregs and IL-10
production while reducing inflammatory cell infiltration, suggesting potential therapeutic
benefits for MS [213]. Furthermore, treatment with human BM-MSCs engineered to ex-
press PSGL-1, FUT-7, and IL-10 resulted in an increase in clinical score and myelination,
coupled with reduced inflammatory infiltration. However, the observed impact of the
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engineered MSCs on MS pathogenesis appears complex, necessitating further research for
a comprehensive understanding [214].

9. MSC-EVs in Amyotrophic Lateral Sclerosis

ALS is a fatal neurodegenerative condition that typically develops in adulthood and
was first identified in the 1870s. While around 5% to 10% of people with ALS have a family
history of the disease (known as familial ALS or fALS), the remaining 90% to 95% of cases
(referred to as sporadic ALS or sALS) do not seem to have a clear genetic connection [215].
The patient’s condition worsens and becomes life-threatening within a period of 2 to 5 years
after the disease begins. Both sporadic sALS and familial fALS have a shared characteristic
of experiencing a targeted loss of upper motoneurons in the primary motor cortex, as well
as lower motoneurons in the brainstem and spinal cord. However, the disease does not
affect specific motoneurons that control pelvic muscles and eye movements. The exact
reason for this differing vulnerability of motoneurons is presently unknown [216].

Neurodegeneration is characterized by a complex underlying mechanism involving
various pathways. One such pathway involves the increased entry of calcium ions (Ca2+)
into motoneurons, which is triggered by elevated levels of the neurotransmitter glutamate
in the synaptic cleft (known as glutamate excitotoxicity) caused by dysfunction in the uptake
process by astrocytes. Due to problems with mitochondrial function, the concentration of
Ca2+ remains elevated within the cytoplasm, leading to the activation of enzyme pathways
dependent on Ca2+ and contributing to oxidative stress, potentially leading to dementia.

Exosomes and MVs have received increased attention as boosters and suppressors
of disease processes due to their ability to transmit biological information across large
distances. Exosomes derived from primary neurons or neuroblastoma have been shown to
improve the course of AD in a mouse model by sequestering intracerebral substances. After
oxidative stress, the neuroprotective effect of exosomes produced from adipose-derived
stromal cells (ASC) was also established in primary murine hippocampus neurons and
human neuroblastoma cells. Exosomes derived from BM-MSC have also been used to aid
recovery and neuroregeneration following strokes and traumatic brain injuries. Exosomes
derived from ASC have recently been shown to protect neurons in an in vitro model of
ALS [16,217,218].

The NSC-34 cell line, which mimics motoneurons affected by ALS, was genetically
modified with different SOD1 point mutations to replicate the characteristics of the disease.
In the research, H2O2 was utilized as a harmful stimulus. The lifespan of ALS motoneurons
was enhanced by exosomes, which inhibited the apoptotic pathway. This suggests that
exosomes have the potential to be utilized as a therapeutic approach for ALS. Another
investigation demonstrated that exosomes derived from ASCs could potentially treat ALS
by reducing the presence of mutant SOD1 and enhancing the functioning of mitochondrial
proteins involved in aggregation [219]. Although the researchers still have a long path
ahead of them, the recent discovery of EVs gives patients with ALS new hope and should
stimulate more research in this approach.

Using EVs derived from MSCs in ALS treatment has several advantages over using
MSCs themselves. EVs can cross the blood–brain barrier, which is a significant challenge
for MSCs [220]. EVs can be stored and transported more easily than MSCs [221]. EVs can
be produced in large quantities and standardized more easily than MSCs, and EVs have a
lower risk of immune rejection than MSCs [221]. In addition, EVs can deliver therapeutic
molecules to target cells, such as microRNAs, which can regulate gene expression and
promote neuroprotection [222].

10. MSC-EVs in Huntington’s Disease

The progressive loss of brain cells in the putamen, caudate, and cerebral cortex caused
by HD, a hereditary neurodegenerative condition, results in physical, mental, and emotional
problems. The IT-15 gene has dominant mutations that encourage the development of
poly-glutamine (polyQ) repeat sequences in Huntingtin proteins, specifically by boosting
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the number of CAG repeats inside a polyQ repeat gene sequence. Huntingtin interacts
with about 100 other proteins, which suggests that it participates in a variety of biological
activities [223]. Polyglutamine Huntingtin protein is indeed transported to other cells by the
exosome in HD. As a result, exosomes are crucial in the advancement of HD pathogenesis.

Exosomes have been explored as potential treatments for HD [224,225]. Lee and
colleagues conducted research in this area and observed that exosomes derived from
adipose-derived mesenchymal stem cells (ADMSC) can regulate harmful characteristics in
HD cell models. These exosomes were found to reduce the presence of mHtt intracellular
aggregates and increase the expression levels of PGC-1 and phospho-CREB (cAMP response
element-binding) [226]. Additionally, the same research group investigated the delivery of
miR-124 through exosomes to the striatum of R6/2 HD transgenic mice. Despite observing
a decrease in the intracellular expression of the miR-124 targeted gene, REST, the effects on
the mice’s behavior were minimal [227].

Studies have shown that MSC-EVs have particular effects on HD. In vitro analysis has
revealed that MSC-EVs can constrain motor function and striatal atrophy in a rat model
of HD [228]. In their study, Ebrahimi and colleagues showed that the release of GDNF
and vascular endothelial growth factor (VEGF) from MSCs had a positive effect on motor
coordination and muscle functions in animal models of HD [229].

A scalable and dependable technique for loading therapeutic RNA into extracellular
vesicles (EVs) has been devised. This method involved incorporating a hydrophobically
modified siRNA, designed to target Huntington RNA, into the EVs without causing any
adverse effects on their size or structural integrity. The effectiveness of this approach
was demonstrated by efficiently silencing Huntington mRNA both in vitro using mouse
primary cortical neurons and in vivo after administration into the mouse striatum [230].

11. Challenge and Future Perspectives

Caution should be exercised when interpreting studies comparing the effectiveness
of MSC-EVs and their cellular counterparts due to limitations in current methods of EV
quantification [231]. Furthermore, there is insufficient evidence regarding the optimal ther-
apeutic dosage of EVs and their long-term effects [232]. Some types of tissue damage may
not require multiple administrations of MSC-EVs, while others may necessitate repeated
treatments, which can increase the burden and expenses for the patient. Addressing the
challenge of heterogeneity among MSC-EVs is crucial before their widespread clinical
application. Different types of MSC-EVs have varying levels of treatment efficacy, under-
scoring the need for further research to identify subgroups with the greatest therapeutic
potential. Improved methodologies and research in genomics, proteomics, and other fields
are necessary to accurately classify and differentiate EV subtypes. Additionally, it is im-
portant to enhance the reproducibility of large-scale EV production with high purity and
specific therapeutic activity. This calls for the development of robust in vitro quality control
systems tailored to the specific requirements of EV-based treatments [232].

The MSC-EVs have emerged as a promising area of research in regenerative medicine
and therapeutic applications [233,234]. These tiny membrane-bound vesicles carry bioac-
tive molecules and can influence the behavior of target cells and tissues. Despite their
potential, MSC-EVs face challenges in standardization, scalability, payload loading, storage,
and targeting [235,236]. However, the future prospects for MSC-EVs are exciting, with
potential applications in treating various diseases, tissue regeneration, immunomodulation,
personalized medicine, drug delivery, and as biomarkers for diagnostics. The study of
MSC-EVs has also advanced nanomedicine and drug delivery systems. Ongoing research
and clinical trials may lead to the approval of MSC-EV-based therapies and contribute to
significant advancements in the field of regenerative medicine and therapeutics.

12. Conclusions

The therapeutic potential of MSC-EVs has been demonstrated in various cases of
tissue injury. In vivo studies have shown that MSC-EVs are as effective as the parent cells



Biomolecules 2023, 13, 1250 20 of 29

in promoting tissue regeneration. This finding is intriguing for the potential clinical use of
MSC-EVs, suggesting that they could be a cost-effective alternative to MSC-based therapies.
Current preclinical research suggests that MSC-EVs directly target macrophages and the
injured tissue, indicating that their positive impact on tissue regeneration is achieved
through the modulation of immune responses and direct interaction with the tissue. A
deeper understanding of this combined activity of MSC-EVs can facilitate better targeting
of specific tissues and enhance treatment efficacy. Importantly, uncovering the mechanism
of action of MSC-EVs is crucial for determining their legal status and maximizing their
therapeutic effects, which are vital considerations for their potential clinical applications.
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