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Abstract: Random Forest (RF) is a widely used machine learning method with good performance on
classification and regression tasks. It works well under low sample size situations, which benefits
applications in the field of biology. For example, gene expression data often involve much larger
numbers of features (p) compared to the size of samples (n). Though the predictive accuracy
using RF is often high, there are some problems when selecting important genes using RF. The
important genes selected by RF are usually scattered on the gene network, which conflicts with
the biological assumption of functional consistency between effective features. To improve feature
selection by incorporating external topological information between genes, we propose the Graph
Random Forest (GRF) for identifying highly connected important features by involving the known
biological network when constructing the forest. The algorithm can identify effective features that
form highly connected sub-graphs and achieve equivalent classification accuracy to RF. To evaluate
the capability of our proposed method, we conducted simulation experiments and applied the
method to two real datasets—non-small cell lung cancer RNA-seq data from The Cancer Genome
Atlas, and human embryonic stem cell RNA-seq dataset (GSE93593). The resulting high classification
accuracy, connectivity of selected sub-graphs, and interpretable feature selection results suggest the
method is a helpful addition to graph-based classification models and feature selection procedures.

Keywords: feature selection; random forest; gene network

1. Introduction

With the widespread use of high-throughput technologies, more gene expression
datasets are available for studying clinical outcomes in diseases. Accurate classification
models based on gene expression data are essential for identifying disease mechanisms
and potentially designing specific treatments and medical plans. Identifying genes that
determine different subtypes is essential for understanding the underlying biological
mechanisms of disease development and discovering new drug targets [1]. Therefore,
developing new methods to predict disease outcomes and identifying important features
that reveal biological mechanisms is of great interest. However, the challenge of analyzing
gene expression datasets lies in their structure, which often contains tens of thousands of
genes and only a few hundred observations.

Tree-based methods such as random forest and LightGBM provide a natural solution
to this problem, requiring little parameter tuning or data transformation [2]. Random forest,
in particular, provides an inherent measure of feature importance, making it a popular
choice for feature selection in the biological field [3]. Random forest algorithms have
been shown to achieve high classification accuracy in distinguishing benign breast cancer
from malignant [4], detecting biomarkers for prostate cancer progression based on DNA
methylation data [5], and identifying abnormal pap smear cervical cell images [6]. Random
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forest is also commonly used in predicting gene regulatory networks (GRNs). For instance,
the GENIE3 algorithm applies random forest to infer GRNs by solving a regression model
based on target genes and selecting the strongest predictor as the regulator [7].

Gene expression data can benefit from incorporating network structure information, as
functionally related genes tend to be dependent and close on the gene interaction network.
Networks such as gene interaction networks, metabolite networks, miRNA networks,
and protein–protein interaction (PPI) networks provide valuable information for disease
prediction and can improve predictive performance [8]. More importantly, using networks
to guide feature selection can result in models that are more interpretable. Integrating
gene expression data with PPI networks can identify a more accurate subnetwork with
markers [9]. Random forests have successfully incorporated network structure information
in various ways. For example, IRatNet [10] utilizes heterogeneous data, including the PPI
network, to derive preliminary information and integrate the information into a weighted
sampling scheme under random forest to infer the final gene regulatory network. In
the task of identifying predictive disease-related long non-coding RNA, GAERF [11] first
embeds graph information with observed expression data into low dimensions using
Graph Auto Encoder (GAE) and then performs random forest to predict the outcome.
Neural networks can also be utilized to incorporate network structure information, such as
GEDFN [12], which embeds a gene interaction graph in a feed-forward neural network, and
GLRP [13], which uses a graph convolutional neural network to learn gene expression data
with graph structure and then selects important features through the layer-wise relevance
propagation (LPR) method. However, due to the small sample size, the over-parameterized
problem in biological data remains a challenge for neural networks and requires more effort
during training.

Most existing random forest methods integrate graph information in prior knowledge
and do not alter the tree-building procedure. Additionally, the topological properties of
the sub-graph created using selected features are often overlooked. Barabási [14] proposed
a model for disease prediction using a network-based approach and demonstrated that
disease-related components tend to be in proximity to already identified ones. In a protein–
protein interaction network, functionally related genes are closer or directly connected
to each other [15]. Ideally, a feature selection method should select features that form
cliques on the entire graph. However, important features chosen by a random forest models
are scattered on the feature network, which is inconsistent with our expectations. To
address this issue, we propose a Graph Random Forest (GRF) model that includes network
information in the tree-building process and identifies clustered important features on
the input network. Similar to our work, network-guided forest (NGF) [16] uses graph
information to construct a tree. However, NGF has limitations. Firstly, limiting the splitting
scope in the neighborhood reduces flexibility as the neighborhood size for each gene is
only sometimes significant. Secondly, the method requires prior knowledge to determine
the range of head-splitting nodes, while randomly selecting the splitting node can increase
the randomness of model performance. Thirdly, the algorithm is time-consuming as it
needs to determine the scope of available splitting nodes each time. Fourthly, the graph
structure selected by important features needs to be analyzed. Therefore, our approach
focuses on improving the flexibility and robustness of random forests while examining the
connectivity of feature selection sub-graphs.

2. Materials and Methods
2.1. Graph Random Forest

Our proposed method incorporates graph information in the process of generating
each decision tree in a random forest. This approach is based on two key assumptions:
first, that only a small fraction of features that form a sub-graph effectively affect the
outcome, and second, that features in a graph are dependent on their neighborhoods. These
assumptions have been concluded from real data and are widely used in previous works
reviewed in Section 1.
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We have developed a new method called Graph Random Forest (GRF) to effectively
integrate graph information into the random forest framework. The architecture of the
model is shown in Figure 1. The key idea behind GRF is to embed graph information in
the process of building a decision tree. When establishing a decision tree, we consider
features in the neighborhood of any number of hops to the head-splitting node. The head
node for each decision tree is determined through a data-driven approach, allowing for a
flexible and robust model that leverages the underlying graph structure. The source code is
available as a public repository on Github (https://github.com/tianlq-prog/GRF (accessed
on 26 June 2023)).

(a) (b)

Figure 1. (a) The overall architecture of Graph Random forest; (b) Visualization of one-step hop
vicinity and two-step hops vicinity.

2.2. Evaluation of Feature Importance

In addition to predicting labels on testing data, it is crucial to identify features that
significantly contribute to the classification and help uncover biological mechanisms. To
this end, we leverage the Gini importance metric used in the random forest and adapt it
for GRF.

In our implementation, we construct a random forest with ci decisions using features
in the vicinity of each node i ∈ V, making it easy to compute feature importance by
aggregating results from all forests. To compute feature importance, we initialize a vector
I = [imp1, imp2, . . ., impp]T with zeros for each element. For each node i with non-zero ci,
we build a random forest Fi with ci trees using nodes in Neighbor(v, k). From Fi, we obtain
the Gini importance Ii = [imp(i)

j ], forj ∈ Neighbor(v, k), where imp(i)
j represents the Gini

importance of node j estimated from forest Fi. We update I as impj = impj + imp(i)
j × ci for

j ∈ Neighbor(v, k). This process allows us to access the feature importance for all variables,
enabling us to select high-ranking features.

2.3. Details of Model Setting

The training of the GRF algorithm consists of two parts. In the first part, we trained a
simple random forest where each tree had a depth of one. Using this random forest fitted on
the training dataset, we recorded the number of occurrences of each node as a head-splitting
node and embedded this information in GRF. Then we trained GRF on the training dataset
with 500 trees and default parameter values in the second part. We did not fine-tune for

https://github.com/tianlq-prog/GRF
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the best model on specific data as our primary interest was in evaluating the ability to find
important variables and studying the clustering properties of the selected sub-graphs.

2.4. Simulation Setting

To simulate disease classification, we conducted a series of experiments using gene
expression data and a gene network. We compared the performance of GRF with that of
the standard random forest. The simulation study aimed to examine whether GRF could
identify an effective sub-graph more accurately.

Synthetic Data Generation

In our simulation studies, we generated a scale-free graph for p features using the
Barab’asi–Albert (BA) model [17], which captures the degree distribution of biological
networks characterized by a power law with parameter m. We set the power law parameter
to 0.5 in our simulations. We then used the generated feature network to calculate the
shortest distances between all pairs of vertices, which we represented a matrix D ∈ Rp×p.
Finally, we derived the covariance matrix Σ for the p features using the formula:

Σi,j = 0.8Di,j , i, j = 1, . . ., p. (1)

The diagonal elements of Σ were one since the distance from one node to itself was
zero. With the feature graph and covariance matrix Σ, we simulated expression data
X = [x1, x2, . . ., xn]T with p features. A multivariate Gaussian distribution with mean zero
was used to generate X, for each sample xi,

xi ∼ N(0, Σ), i = 1, 2, . . ., n. (2)

In this way, two features tended to have more significant covariance if they were close
to each other.

We adopted a strategy that favored significant covariance between two features if
they were close to each other in the generated network. This approach allowed us to
select a subset of true predictors that generated the outcome Y, corresponding to different
disease outcomes. To identify potential core features, we first ranked the features according
to their node degree, denoting it as d1 ≥ d2 ≥, . . .,≥ np. We then used an average
strategy to calculate the average degree in three steps as d̄i = (di + di−1 + di−2)/3, i =
3, 4, . . ., p. We determined the change point as the first feature whose degree dt decreased
more than 10% compared to the averaged value, which was (dt − dt−1)/d̄t > −0.01.
Finally, we chose potential core features with a node degree more significant than dt. Our
approach considered the scales and characteristics of different graphs, which might vary,
and prioritized the identification of features with significantly higher node degrees.

In the simulation study, we conducted experiments with randomly chosen core fea-
tures from the pool of potential core features. To expand the clique starting from the core
features, we iteratively chose at most m neighboring features each time. To avoid the
selected sub-graph becoming too dense, we assigned an attenuation rate to the parameter
m. This process produced a collection of true predictors S, which formed a sub-graph. We
denoted the size of S as p0, and we sampled the parameter β = (β1, β2, . . ., βp0)

T from a
uniform distribution ranging from 0.1 to 0.8, with some of the values set to negative. We
generated the output Y using a generalized linear model as follows:

P(yi = 1|xi) = σ(xT
i β + β0), i = 1, 2, . . ., n (3)

yi = I(P(yi = 1|xi) > 0.5), i = 1, 2, . . ., n (4)
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where σ was the logistic link function or absolute link function,

σ(x) =
1

ex + 1
or σ(x) = abs(x− x̄) + 0.5. (5)

To evaluate the performance of our proposed method GRF, we conducted a compara-
tive study with RF using expression data X consisting of 4000 features and 500 samples. In
real gene data, the true predictors are typically a small fraction of the total number of genes,
typically around 0.5%. To simulate this scenario, we generated Y with varying numbers of
true predictors, namely 30, 60, 90, 120, 150, 180, and 210. In addition to the number of true
predictors, we also considered different sub-graph shapes. While a clustered sub-graph is
typically formed by one clique, in some cases, it may appear as two cliques with minimal
connection between them. Therefore, we evaluated the performance of our method on two
different clustering shapes of the sub-graph, namely, one core and two cores. In the case of
two core features, we ensured that the distance between the two core features was no less
than four to obtain two distinct cliques. We used logistic and absolute link functions to test
the GRF method’s effectiveness under different relationship assumptions between X and Y.

2.5. Real Datasets

For our study, we obtained gene expression data from two different datasets: the
Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Specifically, we
used data from the TCGA for two common subtypes of lung cancer—lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC). These datasets were accessed through
the TCGA website (https://www.cancer.gov/ccg/research/genome-sequencing/tcga (ac-
cessed on 26 June 2023)). In addition, we utilized the human embryonic stem cell RNA-seq
dataset (GSE93593) from the GEO database (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE93593 (accessed on 26 June 2023)).

3. Results
3.1. Simulation Results

In our simulation study, we first trained a simple random forest with one-depth trees
to determine head nodes in GRF and then built up 500 graph-embedded decision trees. For
the vanilla RF model, we also set the number of trees to 500, with a maximum depth of 10
for each tree.

In our simulation, we conducted experiments using Python as our programming
language. For each simulation setting, we generated ten datasets and then applied GRF
and RF. Each dataset was randomly divided into a training set and a testing set using a 7:3
ratio. The model was trained on the training set and made predictions on the testing set.
For each experiment, the computation time for GRF was around 7 s on a Linux workstation
with a 5950× CPU, 128 Gb RAM, and a GTX 3060 GPU. In the simulation study, we were
access to the specific list of true predictors contributing to the output Y. To evaluate the
classification models, we employed test accuracy as the performance metric. This measure
quantifies the classification ability of the models by comparing their predictions against the
ground truth labels. To estimate the power of estimated feature importance, we utilized
two widely recognized metrics: Area Under the Curve (AUC) and Precision-Recall AUC
(PR-AUC). These metrics were calculated based on the estimated feature importance values
and the ground truth effective feature list. The AUC provides a comprehensive measure of
overall model performance, while PR-AUC focuses on the relationship between precision
and recall. By incorporating both metrics, we aimed to obtain a comprehensive assessment
of feature importance.

Figure 2 shows the results with logistic link function. The first row demonstrates
the performance with a true sub-graph extended from one core node, and the second
row shows the results of a true sub-graph extended from two core nodes. The error bar
represents the estimated standard deviation estimated from ten experiments. Figure 2a,d
show the test accuracy using RF and GRF with hopping steps 1, 2, and 3. In the case of one

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93593
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core node, GRF with hopping step 3 had the highest test accuracy when the number of true
predictors was less than 100, and GRF 2 was higher when the size of true predictors grew
larger. RF achieved the highest score in the setting with 210 true predictors. In the case of
two core nodes, GRF with hopping steps 2 and 3 achieved the highest score in more than
half of the cases. In general, when the hopping step was set to one, the test accuracy was
lower compared to random forest. However, when the hopping step was set to two, both
methods showed similar performance. Notably, when the hopping step was increased to
three, our method outperformed random forest in terms of performance. Overall, there is
minimal variation in test accuracy among the different methods, and an upward trend in
prediction accuracy is evident as the number of true predictors increases.

Figure 2. Plots of classification and feature selection with the logistic link function. The first row
corresponds to one core node, and the second corresponds to two core nodes. Error bars represent
the mean value plus/minus the standard error. GRF with different numbers indicates various
parameters of selective range. (a,d) Test accuracy of classification task. (b,e) AUC of feature selection.
(c,f) PR-AUC of feature selection.

The second column and third column of Figure 2 are AUC and PR-AUC with different
sizes of core nodes. The estimated feature importance and a list with true predictors as
one and other features as 0 were used for calculating the two metrics. The results of AUC
using two/three hopping step GRF in one core simulation were mostly higher than 0.9,
which was a huge improvement compared to the value in RF, which is around 0.6–0.75.
Simulation results using the absolute link function are shown in Figure 3, which shows
similar patterns. In general, we observed that a higher hopping step resulted in better
feature selection performance. Overall, the simulation results verify that GRF has the
capability to identify more significant features without sacrificing prediction accuracy.

To explore the property of the sub-graph, which consists of high-ranking features,
we selected the top 100 most important features and extracted their connections from
the simulated network. Figure 4 shows the sub-graph density, number of connected
components, and size of the largest connected component in the setting with the logistic
link function. The two rows correspond to settings of the true sub-graph extended from one
or two core nodes. Figure 4a,d show the graph density, which is defined as the ratio between
the number of edges and the number of all possible edges. A larger density indicates a
more connected graph. Results show that GRF has a larger density in all experiments.
Figure 4b,e present the number of connected component. A connected component means
each pair of nodes in the component are connected through a certain pathway. A graph
with more connected components indicates it is more scattered. Figure 4c,f show the size of
largest connected component in different experiments. It is clear from the results that sub-
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graphs selected by RF are more separate, and the largest connected components are smaller.
On the contrary, sub-graphs generated using GRF are highly connected and have large
connected components. When the hopping step equals two or three, the largest connected
component contains more than 80 nodes in different experimental settings. Results of using
the absolute link function are shown in Figure 5, which demonstrate similar patterns.

Figure 3. Plots of classification and feature selection with the absolute link function. The first row
corresponds to one core node, and the second corresponds to two core nodes. Error bars represent
the mean value plus/minus the standard error. GRF with different numbers indicates various
parameters of selective range. (a,d) Test accuracy of classification task. (b,e) AUC of feature selection.
(c,f) PR-AUC of feature selection.

Figure 4. Plots of sub-graph properties with the logistic link function. The first row corresponds
to one core node, and the second corresponds to two core nodes. Error bars represent the mean
value plus/minus the standard error. GRF with different numbers indicates various parameters of
selective range. (a,d) The density of selected sub-graph. (b,e) The number of connected components
of selected sub-graph. (c,f) The size of connected components of selected sub-graph.

Concerning the robustness in reproducibility of feature selection using GRF, we
were curious whether selected features were stable across different model training times.
To explore this property, we simulated a dataset with 500 samples, 4000 features, and
210 true features that determined the classes Y using a logistic link function. A GRF with
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hopping step two was used here. We repeated the training 20 times and recorded the top
100 features each time. In the 20 sets of most important features, 58 appeared more than
14 times, and 86 appeared more than ten times. Among the 58 features that appeared more
than 14 times, 53 were on the list of true predictors, and the other five features were within
the neighborhood of one step to true predictors. Among the 86 features that appeared more
than ten times, 75 were true predictors, and the others were all around the true predictors
in one step. For the union of the 20 lists of selected features, 46.4% of them were true
predictors, and 89.3% of them were within one step neighborhood of true predictors.

Figure 5. Plots of sub-graph properties with the absolute link function. The first row corresponds
to one core node, and the second corresponds to two core nodes. Error bars represent the mean
value plus/minus the standard error. GRF with different numbers indicates various parameters of
selective range. (a,d) The density of selected sub-graph. (b,e) The number of connected components
of selected sub-graph. (c,f) The size of connected components of selected sub-graph.

3.2. Non-Small Cell Lung Cancer Data Results

We applied our GRF method to distinguish two types of most common subtypes
of lung cancer—lung adenocarcinoma (LUAD) [18] and lung squamous cell carcinoma
(LUSC) [19] from The Cancer Genome Atlas. Lung cancer is one of the deadliest cancers
nowadays. However, it is still unclear how these two subtypes differ in biological mecha-
nisms, and they are still treated equally as non-small cell lung cancer (NSCLC). We tried
to identify the differences between these two subtypes and analyze the biological mecha-
nisms using GRF. The LUAD dataset consisted of an expression matrix with 23,032 miRNA
expressions in 524 patients, and the LUSC dataset contained an expression matrix with
23,652 miRNA expressions in 496 observations. Combining the two datasets of different
subtypes using overlapped features and selecting the largest connected component of
miRNA network obtained from HINT [15], we eventually obtained an expression matrix
with 9819 miRNA features of 1020 samples. The label for LUAD was marked as one and
LUSC as zero, correspondingly. We used the processed data for downstream analysis.

Using the data with their corresponding network, we conducted GRF and RF for
comparison. When training the model, we split the dataset into the training set and
testing set with the ratio of 7:3. We used GRF with a hopping step of two and evaluated
the performance based on an averaged score. For each method, we conducted twenty
experiments and summarized the performances. The first row in Table 1 shows that
the two methods had good performance on the classification task with high predicting
accuracy. The accuracy of the testing dataset for GRF and RF was around 0.94, indicating a
different expression pattern of miRNA. It was reasonable to distinguish the two subtypes
of lung cancer using this dataset. From the result, we figured out that further accuracy
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improvement is difficult and meaningless since the performance almost reached an upper
bound. Though our proposed GRF had a tiny gap in accuracy compared to RF, GRF had
advantages in identifying potentially important features which had been proved in the
simulation study. Moreover, features selected by GRF were more likely to fall into cliques
on the original graph and could generate a sub-graph with fewer connected components.
A highly connected graph was preferred because of its similarity to the ones found in
experimental studies. By choosing 100 features with the highest importance scores, we
generated the sub-graph shown in Figure 6a. Table 1 also exhibits selected sub-graph
properties through GRF and RF. The second row is the number of connected components,
and the third row represents the size of the largest connected component. The fourth
and fifth rows are the average shortest distance and the average distance in the largest
components between each node. The results illustrate that the sub-graph selected by GRF
had fewer connected components and possessed a larger connected component with a
reasonable distance.

Table 1. Classification result and properties of selected sub-graph for NSCLC data.

Methods GRF 1 RF 1

Mean accuracy 0.9457 (0.0116) 0.9483 (0.0097)
Number of connected components 20.65 (3.63) 94.9 (1.92)
Size of the largest connected component 73.75 (6.63) 3.7 (1.22)
Average distance 4.29 (0.25) 1.38 (0.38)
Average distance in the largest component 4.31 (0.25) 1.53 (0.33)
1 The values in brackets correspond to the standard deviations.

(a) (b)

Figure 6. Sub-graph selected by GRF on real dataset. (a) On non-small cell lung cancer dataset; (b) On
human embryonic stem cell dataset.

Functional analysis of genes selected by GRF was conducted by testing the enrichment
of gene ontology (GO) biological processes using the clusterProfiler package [20]. The
biological processes with p-values less than 0.01 and adjusted p-values less than 0.05
were considered significant pathways in our study. The top 15 GO terms are shown in
Table 2. Twelve of the 100 selected genes belonged to the regulation of DNA metabolic
process, which was the most important GO term. In addition, ‘DNA ligation’, ‘somatic
DNA recombination’, and ‘regulation of DNA biosynthesis processes’ were among the top
terms. Changes in DNA function and damage affect cell proliferation and differentiation,
which may influence cancer progression [21]. Meanwhile, overexpression of CDK2 and
CDK16 in LUSC has been proved to cause abnormal regulation of cell cycle and promote
cell proliferation. These effects may increase the malignant potential of the tumor and lead
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to a faster growth speed compared to the progression of LUAD [22,23]. The second-most
important term was ‘telomere maintenance’, and there were many terms among the top
ones related to telomeres, such as ‘telomere organization’, ‘negative regulation of telomere
maintenance via telomerase’, and ‘telomere elongation control’. Limiting telomeres from
shortening is one of the significant mechanisms by which cancer cells gain resistance to
inhibition. The ability to maintain telomeres above a critical length represents the degree of
cell deterioration [24]. Cancer cells can resist death and realize the immortality of replication
through activating the telomerase [25]. LUAD and LUSC have different expression levels
of telomere-related genes, so telomere maintenance genes are considered to be potential
biomarkers for two subtypes. At the same time, a vaccine against telomerase named
GV1001 has been proved to be beneficial to immunotherapy for NSCLC patients [26].

The remaining significant GO terms include ‘T cell proliferation and activation’, ‘im-
mune response modulation’, ‘embryonic morphological development’, ‘endoderm de-
velopment’, and so on. Studies on immune-related genes (IRGs) have found that T-cell
receptor signaling expresses differently in two subtypes [27]. The MHC molecule, which
is crucial for antigen processing in immune responses, and chemokine, which guides cell
migration, are found to be inhibited more rapidly in LUSC. These observations confirm
that LUSC grows faster by suppressing the immune system. HOX gene encoding is an
important transcription factor in the embryonic development and differentiation of adult
cells. Recent studies have shown that HOXA1 is significantly up-regulated and hyper-
methylated in LUAD [28]. The genes Hh and ErbB are found to be strongly correlated
with two subtypes, which are related to lung development [29]. Hh maintains stem cells,
responds to injury, and affects the formation of bronchial numbers. ErbB can cause defects
of type II epithelial cells in the alveolar lining and reduce branching morphogenesis in
embryos by affecting the expression level of anti-EGF antisense oligonucleotides. The
whole table containing all GO terms for functional analysis using GRF and RF can be
found in https://github.com/tianlq-prog/GRF/blob/main/Supplementary.pdf (accessed
on 26 June 2023).

Table 2. Top 10 GO biological process for the sub-graph selected by GRF on NSCLC data.

GOBPID 1 Adj-p 2 Term

GO:0051052 0.015 regulation of DNA metabolic process
GO:0000723 0.015 telomere maintenance
GO:0032069 0.015 regulation of nuclease activity
GO:0032200 0.015 telomere organization
GO:0032211 0.015 negative regulation of telomere maintenance via telomerase
GO:0051098 0.015 regulation of binding
GO:0048598 0.028 embryonic morphogenesis
GO:1904357 0.028 negative regulation of telomere maintenance via telomere lengthening
GO:0042098 0.028 T cell proliferation
GO:0006303 0.028 double-strand break repair via nonhomologous end joining
1 Manual pruning of partially overlapping GO terms was performed. 2 Adj-p represents the adjusted p-value.

3.3. Human Embryonic Stem Cell Data Results

We also applied GRF on the human embryonic stem cell RNA-seq dataset from GEO
(GSE93593) [30]. The dataset contained 23,045 genes from 1733 observations and their
corresponding clinic information, including doublecortin (DCX) status and days of culture.
We obtained the gene network from the HINT database [15]. After screening the genes
in the HINT database and selecting the largest connected component of the network,
12,215 genes were finally selected. A log transformation was conducted on the expression
value of each gene. Our goal was to explore the relationship between gene expression
and the status of DCX, whether positive or negative. Therefore, the task became a binary
classification problem.

Doublecortin (DCX) is a microtubule-associated protein expressed explicitly by imma-
ture neurons in embryonic and adult cortical structures. It is necessary for neuron migration

https://github.com/tianlq-prog/GRF/blob/main/Supplementary.pdf


Biomolecules 2023, 13, 1153 11 of 14

and differentiation and is closely related to the development of the central nervous system.
Since the expression of DCX changes two weeks before the appearance of new neurons, the
richness of neurogenesis in the brain cannot be directly quantified. So, DCX is a powerful
tool for identifying early and immature neurons. Therefore, research on the transient
expression of DCX to help understand the development of the nervous system has received
extensive attention.

We tested GRF and RF on a human embryonic stem cell dataset with twenty repeated
experiments. The computation time for each experiment using GRF on the workstation
was around 100 s. The classification accuracy results are shown in the first row of Table 3.
The mean accuracy was high for each method, and GRF had slightly lower accuracy than
RF. However, as shown in Table 3, the sub-graphs generated by GRF with the top 100 most
important genes had higher connected properties than the ones using RF. Specifically, when
using GRF, the number of connected components was much smaller, and the sub-graphs
had larger connected components with an average value achieving 67.

Table 3. Sub-graph property for GSE data. The values in brackets correspond to the standard deviations.

Methods GRF 1 RF 1

Mean accuracy 0.9280 (0.0089) 0.9301 (0.008)
Number of connected component 31.15 (4.83) 83.85 (3.73)
Size of the largest connected component 67.00 (6.10) 7.95 (3.32)
Average distance 3.67 (0.30) 2.17 (0.62)
Average distance in the largest component 3.68 (0.30) 2.54 (0.62)
1 The values in brackets correspond to the standard deviations.

Figure 6b is the sub-graph of the top 100 genes with the highest averaged importance
score using GRF. GO enrichment analysis was performed on the sub-graph, and the top
10 pathways are shown in Table 4. The top GO term was ‘positive regulation of epithelial
to mesenchymal transition’. In addition, ‘homotypic cell–cell adhesion’ and ‘epithelial
cell differentiation’ were among the top terms. Epithelial cells have regular cell–cell con-
tacts and adhesion to surrounding cellular structures, thus can avoid the separation of
individual cells [31]. However, during embryonic development, cells need to migrate to
adjacent tissues to form new organs, and tissues [32], so quiescent epithelial cells undergo
epithelial–mesenchymal transition (EMT), thereby differentiate into motile mesenchymal
cells [33] and possess the invasive ability. The response to EMT comes from stromal cells
such as fibroblasts and mesenchymal stem cells. These stromal cells secrete a series of
heterotypic signals, growth factors, platelet-derived growth factor (PDGF), and epidermal
growth factor (EGF) [34]. This also explained the appearance of ‘platelet aggregation’,
‘regulation of hematopoiesis’, and ‘platelet activation’ in the top GO terms. Also, many
of the genes involved in ‘lung development,’ ‘respiratory system development,’ and ‘air
duct development’ are part of the response to growth factor stimulation, leading to the
significance of these terms. The second most significant GO term was ‘synaptic organiza-
tion’, and other important terms related to it included ‘axon development’ and ‘axogenesis’.
Synapses, responsible for transmitting information between neurons and target cells, play
an essential role in nervous system development. The fetal brain begins to develop from
the third week of gestation [35], neural precursor cells divide and form neurons and glia.
Furthermore, the number of synapses keeps increasing in the first few years of life [36]. The
fifth-ranked GO term was ‘transmembrane receptor protein serine/threonine kinase signal-
ing pathway’. The serine–threonine kinase Akt plays a central role in integrating cellular
responses to growth factors [37], and it has been proven to maintain cellular integrity and
protect ‘tagged’ from exposure. It is also involved in the phagocytic disposition of cells, in
which it promotes neuronal and vascular survival and prevents induction of programmed
cell death [38]. Overall, in the DCX classification task, GRF could identify important and
easily interpretable sub-graphs.
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Table 4. Top 10 GO biological process for the sub-graph selected by GRF on DCX data.

GOBPID 1 Adj-p 2 Term

GO:0010718 0.0002 positive regulation of epithelial to mesenchymal transition
GO:0050808 0.0002 synapse organization
GO:0010717 0.0002 regulation of epithelial to mesenchymal transition
GO:0034109 0.0002 homotypic cell–cell adhesion
GO:0007178 0.0002 transmembrane receptor protein serine/threonine kinase signaling pathway
GO:0070527 0.0003 platelet aggregation
GO:0048667 0.0003 cell morphogenesis involved in neuron differentiation
GO:0048812 0.0003 neuron projection morphogenesis
GO:1903706 0.0003 regulation of hemopoiesis
GO:0001837 0.0003 epithelial to mesenchymal transition
1 Manual pruning of partially overlapping GO terms was performed. 2 Adj-p represents the adjusted p-value.

4. Discussion

In this study, we proposed a novel method, Graph Random Forest (GRF), which inte-
grates graph information into the random forest framework to improve the accuracy and
interpretability of the model. We applied GRF to simulation data and two real datasets: one
involving the classification of two subtypes of lung cancer and the other involving the clas-
sification of doublecortin status in human embryonic stem cells. Our results demonstrated
that GRF had comparable classification accuracy to the traditional random forest method
while generating a sub-graph with higher connectedness and providing more interpretable
feature importance scores.

Our proposed method leverages the underlying graph structure of the data, which
captures the dependencies and interactions between the features. By incorporating the
graph information into the decision tree construction process, GRF can effectively identify
and utilize the most informative features while reducing noise and irrelevant features. Our
results showed that GRF was able to identify potentially important features that were more
likely to fall into cliques on the original graph and could generate a sub-graph with fewer
connected components, which are more similar to those found in experimental studies.

The biological insights obtained from our experiments provide evidence for the effec-
tiveness of GRF in identifying important features and their interactions. For example, in the
lung cancer dataset, GRF identified genes related to DNA metabolic processes and telomere
maintenance, which are known to be associated with cancer progression and resistance
to inhibition. In the human embryonic stem cell dataset, GRF identified genes related to
epithelial-mesenchymal transition, axon development, and synapse organization, which
are critical for nervous system development. These findings demonstrate the ability of GRF
to uncover important biological mechanisms and potential biomarkers that could be useful
for further experimental validation.

In summary, our proposed method, GRF, provides a powerful tool for analyzing
complex data with graph structure. By incorporating graph information into the random
forest framework, GRF can effectively improve the accuracy and interpretability of the
model, as demonstrated by our experiments on lung cancer and human embryonic stem
cell datasets. We believe that our method can also be widely applied to other fields,
such as social network analysis and image analysis, where the data have an inherent
graph structure.

5. Conclusions

We presented a new version of random forest which embeds graph information.
It has the ability to identify important features with the property of high connectivity
in the original information graph. A simulation study verified that our method could
find features with higher AUC and PR-AUC without losing much classification accuracy.
Two real applications showed the power of selection, which helps reveal meaningful
biological mechanisms.
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