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Abstract: (1) Background: Despite the existence of well-established, CSF-based biomarkers such as
amyloid-β and phosphorylated-tau, the pathways involved in the pathophysiology of Alzheimer’s
disease (AD) remain an active area of research. (2) Methods: We measured 3072 proteins in CSF
samples of AD-biomarker positive mild cognitive impairment (MCI) participants (n = 38) and controls
(n = 48), using the Explore panel of the Olink proximity extension assay (PEA). We performed group
comparisons, association studies with diagnosis, age, and APOE ε4 status, overrepresentation analysis
(ORA), and gene set enrichment analysis (GSEA) to determine differentially expressed proteins and
dysregulated pathways. (3) Results: GSEA results demonstrated an enrichment of granulocyte-
related and chemotactic pathways (core enrichment proteins: ITGB2, ITGAM, ICAM1, SELL, SELP,
C5, IL1A). Moreover, some of the well-replicated, differentially expressed proteins in CSF included:
ITGAM, ITGB2, C1QA, TREM2, GFAP, NEFL, MMP-10, and a novel tau-related marker, SCRN1.
(4) Conclusion: Our results highlight the upregulation of neuroinflammatory pathways, especially
chemotactic and granulocyte recruitment in CSF of early AD patients.

Keywords: Alzheimer’s disease; mild cognitive impairment; proteomics; cerebrospinal fluid;
neuroinflammation

1. Background

Alzheimer’s Disease (AD) is a progressive neurodegenerative disease characterized
by progressive cognitive decline and the distinctive presence of amyloid-β (Aβ) plaques
and neurofibrillary tangles (NFTs) during histopathological examination [1]. Numerous
studies have reported that levels of AD-relevant biomarkers such as phosphorylated-tau
at threonine 181 (p-tau181) [2], Aβ1–40 [3], and Aβ1–42 [3] in cerebrospinal fluid (CSF)
and plasma are associated with AD diagnosis. However, despite the well-established
presence of Aβ plaques, tau-containing NFTs and neurodegeneration as hallmarks of AD,
the upstream mechanisms leading to accumulation of these proteins that give rise to the
disease are still unclear [4].

Mild cognitive impairment (MCI) refers to the transitional stage between healthy
aging and dementia where the earliest symptoms of cognitive decline occur while daily
functions are still preserved [5]. Protein profiles of Aβ-positive or amnestic MCI patients
have been explored recently in order to identify the intricate biology underlying AD in its
early stages before extensive neurodegeneration takes place [6].

To investigate upstream mechanisms of AD pathophysiology and the associated
protein profile, systems-based approaches, such as proteomics, have been employed [7,8].
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Among proteomics techniques, the Olink proximity extension assay (PEA) provides a
highly accurate, high-throughput measurement of hundreds to thousands of proteins.
Network proteomic analyses have collectively identified differentially expressed proteins
involved in a wide range of intra- and extracellular pathways including synaptic function,
inflammation, sugar metabolism, and astrocyte/microglial pathways in AD dementia
and MCI [9–12]. Considering the lack of treatment options for AD and the complex
pathophysiology of the disease, more studies with deeper proteome depth are needed on
the network proteomics of MCI patients in order to facilitate biomarker discovery and the
identification of drug targets in perturbed pathways.

In this pilot study, we used the Explore Olink PEA assay to quantify the differential
expression of approximately 3000 proteins in CSF of AD biomarker-confirmed (low CSF
Aβ1–42/Aβ1–40 and high CSF p-tau181) individuals with MCI compared to controls.

2. Materials and Methods
2.1. Participants

Participants included subjects enrolled in the Johns Hopkins Alzheimer’s Disease
Research Center and the Center for CSF Disorders in the Dept of Neurology who were
cognitively normal or met the criteria for MCI. The clinical diagnostic classification fol-
lowed the recommendations of the National Institute on Aging/Alzheimer’s Association
workgroups [13].

2.2. Consent Statement

All subjects gave their informed consent for inclusion before they participated in the
study. This study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by institutional review board of Johns Hopkins University.

2.3. CSF Collection and CSF Biomarker Assays

CSF was collected from 48 cognitively normal and 38 MCI participants. Participants
underwent a lumbar puncture and blood collection in the fasted state. Twenty ml of CSF
was directly collected in a 50 mL polypropylene tube and transported on ice to the lab along
with 20 mL of whole blood in EDTA tubes, where they underwent centrifugation at 2500× g
for 15 min. Samples were then aliquoted in 0.5 mL aliquots and frozen at −80 ◦C within
2 h of collection. CSF Aβ1–42, Aβ1–40, and p-tau181 were measured using the Lumipulse
G1200 assay (Fujirebio, Malvern, PA, USA). The intra-assay coefficients of variation for
this assay were 3.4% for Aβ1–42, 2.7% for Aβ1–40, and 1.8% for p-tau181. The ratio of CSF
Aβ1–42/Aβ1–40 and p-tau181 were used in the current analyses. The participants with an
Aβ1–42/Aβ1–40 ratio below 0.068 and p-tau181 levels above 50.6 pg/mL were identified as
AD-biomarker positive.

All MCI participants selected for this study were required to be AD-biomarker positive
based on their CSF values, whereas all controls were required to be AD-biomarker negative
based on the cut-offs established by Greenberg et al. [14].

2.4. Protein Measures Using Olink Proximity Extension Assay (PEA), Quality Control (QC) and
Data Pre-Processing

The Olink Explore panel, a highly sensitive and specific technique, measures the
expression of 3072 proteins in 10 µL CSF (Olink, Uppsala, Sweden). CSF protein measure-
ments were conducted using PEA technology, following the manufacturer’s protocol [15].

Pre-processing handling of data included plate-based normalization and QC checks
based on appropriate Olink protocols [15]. Outlier deletion was performed subsequently
by detecting and deleting datapoints that were above or below 5 SD of mean normalized
protein expression (NPX) of each assay (protein). All datapoints with QC or assay warning
were also deleted.
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2.5. Group Comparisons

Statistical analyses were performed with R software (R-project.org) using the publicly
available OlinkAnalyze package. Groups were compared using Welch’s two-sample,
two-sided t-test analysis and Benjamini–Hochberg (BH) post hoc analysis. Differentially
expressed proteins were defined as assays with false discovery rates (FDR) below 0.05
(FDR-adjusted p-value < 0.05).

2.6. Multivariate Association Analysis of CSF Protein Levels with Age, Sex, Diagnosis, and
APOE Genotype

Multivariate linear regression models were used to test for the association of CSF
mean NPX values of each protein with each covariate (age, sex, diagnosis, and APOE
genotype) and for interactions between the covariates, specifically age with diagnosis (See
Supplementary Material). All statistical analyses were completed using SAS (version 9.4,
SAS Institute, Cary, NC, USA) and JMP (version 16.2.0, SAS Institute, Cary, NC, USA)
software.

2.7. Overrepresentation Analysis (ORA)

After performing differential abundance analysis on our proteomics dataset, we con-
ducted overrepresentation analysis (ORA) to identify differentially expressed pathways.
This bioinformatics analysis helped us identify pathways that were enriched with sig-
nificant changes in protein abundance. The goal of this analysis was to gain a better
understanding of the functional implications of the differentially expressed proteins and to
identify potential biological processes involved in the observed phenotypes.

We performed overrepresentation analysis on differentially expressed proteins (with
differential abundance of FDR < 0.01) using Gene Ontology (GO) biological process and the
Wikipathway database [16]. ORA was performed using the WEB-based GEne SeT AnaLysis
Toolkit (WebGestalt) [17], which is a functional enrichment analysis web tool implementing
several biological functional category databases such as KEGG, Reactome, WikiPathway,
and PANTHER [17]. The default settings of WebGestalt were used with the FDR cut-off
of 0.05.

2.8. Gene Set Enrichment Analysis (GSEA)

Gene Set Enrichment Analysis (GSEA) is a computational method that determines
whether the expression of a set of genes is significantly different between two pheno-
types [18]. GSEA was performed using GSEA 4.3.2 software [19,20]. The GSEA calculates
the signal-to-noise ratio for all proteins and orders gene sets by normalized enrichment
scores (NESs). We performed the GSEA with the default settings of the software, which
included 1000 permutations, phenotype permutation type, exclusion of gene sets larger
than 500 and smaller than 15, and using weighted enrichment statistics. Gene set databases
(taken from MSigDB version 2022.1.Hs) used in this analysis included: KEGG, BioCarta,
PID, Reactome, and Wikipathways.

In addition to ORA, we also performed GSEA in our proteomics study of CSF from
MCI patients. We chose to use both methods because they provide complementary infor-
mation and can help to validate each other’s results.

ORA allowed us to identify pathways that are overrepresented in our list of differen-
tially expressed proteins, whereas GSEA enabled us to assess the enrichment of pre-defined
gene sets in the list of differentially expressed proteins ranked by normalized enrichment
scores, which can provide a more comprehensive understanding of the biological processes
affected by the disease.
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Using both methods also helped to overcome the limitations of each method, such as
the dependence on pre-defined gene sets in ORA and the need for a large reference gene
set in GSEA. Overall, by using both ORA and GSEA, we were able to identify novel and
previously known pathways that are dysregulated in MCI and gain a better understanding
of the underlying mechanisms contributing to the pathogenesis of this disease.

3. Results
3.1. CSF Proteomic Group Differences in AD-Biomarker Positive MCI Compared to HC

We used PEA technology with the Olink Explore panel to determine the differential ex-
pression of approximately 3072 proteins in AD-biomarker positive MCI patients compared
to the healthy controls (Table 1). At least 96% of the datapoints in each of the Explore Olink
panels passed the QC thresholds. The intra-assay and inter-assay coefficient of variation
(CV) of the panels did not exceed 15%. Only one protein did not pass the Olink batch
release quality control criteria and was excluded from the study (KNG1).

Table 1. Demographic characteristics of study participants and the concentrations of cerebrospinal
fluid biomarkers in mild cognitive impairment and healthy controls (HC: healthy control, MCI: mild
cognitive impairment, SD: standard deviation, T-tau: total tau, P-tau: phosphorylated tau 181, Aβ-42:
amyloid β 42, Aβ-40: amyloid β 40, CDR: Clinical Dementia Rating, MoCA: Montreal Cognitive
Assessment).

Sample Type CSF

Participants HC (n = 48) MCI (n = 38) p-Value

Age (mean ± SD) 68.92 ± 6.14 75 ± 9.51 0.0003

Sex
(% female) 54.16% 55.30% Not significant

Years of Education (mean ± SD) 16.2 ± 2.29 16.31 ± 2.75 Not significant

Ethnicity
Caucasian: 85.4%,

African American: 14.6%,
Asian: 0%

Caucasian: 95%,
African American: 5%,

Asian: 0%
Not significant

Sum of Boxes CDR (mean ± SD) 0.05 ± 0.25 2.80 ± 1.35 <0.0001

Global CDR (mean ± SD) 0.0 ± 0.0 0.5 ± 0.0 <0.0001

MoCA (mean ± SD) 26.48 ± 2.60 21.49 ± 4.86 <0.0001

p-tau181 (mean ± SD) 33.31 ± 9.48 85.8 ± 47.3 <0.0001

T-tau (mean ± SD) 267.0 ± 197 587.4 ± 312.3 <0.0001

Aβ1–42 (mean ± SD) 1169.7 ± 384.7 723.6 ± 413.0 <0.0001

Aβ1–40 (mean ± SD) 12,190 ± 3356.6 12,657.0 ± 4978.9 Not significant

Aβ1–42/Aβ1–40 0.0956 ± 0.015 0.058 ± 0.020 <0.05

Apoe4 Genotype 21% 58% <0.05

After the pre-processing steps, 2936 proteins were assayed in CSF. Among these,
117 proteins were found to be differentially expressed in CSF based on group compar-
isons (FDR-adjusted p-value < 0.05; Tables S1 and S2). Only three of these proteins were
downregulated in MCI patients (Figure 1).

The results of the group comparison conducted between participants younger and older
than the median age (71 years old), demonstrated that no proteins were differentially expressed
in CSF of younger participants compared to the older participants (Figure 2, Table S1).
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Even though, the overrepresentation analyses of the differentially expressed proteins
using GO databases did not show any pathways to be significantly enriched among these
differentially expressed proteins, it is worth noting that “microtubule polymerization or
depolymerization” and “leukocyte activation involved in inflammatory response” were
among the top two biological processes that were found to be enriched in the CSF pro-
teins in MCI. The proteins contributing to these terms included: ITGAM, ITGB2, TGFB2,
MAPT, HSPA1A, MAP2, and SNCA. ORA performed using the Wikipathways database
did not yield FDR-significant results; however, the “Microglia Pathogen Phagocytosis
Pathway” was the top enriched biological process in CSF. The proteins that contributed to
the enrichment of these pathways included: ITGB2, ITGAM, C1QA, TREM2, MAPT, CRKL,
and MAP2K1.

3.2. Associations with Age, Sex, Diagnosis, and APOE Genotype

Multivariate linear regression analysis of individual proteins with covariates of age,
diagnosis, sex, and APOE genotype revealed the assays that were associated with each of
these variables and a full model including all covariates in CSF (Table S2).

The multivariate analysis identified 147 proteins in CSF that were significantly asso-
ciated with diagnosis (FDR-adjusted p-value < 0.05; Table S2). The multivariate analysis
identified 88 proteins that were significantly associated with age and 33 proteins that were
associated with both diagnosis and age (Table S2).

ORA of CSF proteins that were significantly associated with age using GO terms did not
yield any FDR-significant results. However, “cell chemotaxis” (enrichment ratio [ER] = 2.6)
was the most enriched term among age-associated proteins. Enrichment ratio is the ratio of
the number of observed, differentially expressed genes of a certain pathway divided by the
expected value if the pathway was neither enriched nor downregulated. Many chemokine
motifs were among assays that contributed to this result. Moreover, C1QA, ITGAM, and
ITGB2 are prominent complement-related biomarkers seen in this list.

The most enriched biological processes among diagnosis-associated assays were “in-
clusion body assembly” (ER = 7.7; including heat shock proteins such as: DNAJA4, DNAJB2,
HSPA1A, and MAPT) and “apoptotic mitochondrial changes” (ER = 4.4). Nonetheless, they
were not found to be FDR-significant.

Interestingly, the APOE genotype (i.e., at least one ε4 allele present) was significantly
correlated with APOE and FGFBP1 in CSF (Table S2).

3.3. Protein List Overlap between Group Comparison and Multivariate Association Analysis

A substantial overlap is observed between the group comparison results and associ-
ation studies in terms of differentially expressed proteins. Of note, SCRN1, TREM2, and
MMP-10 were significant in both Welch’s t-test and the association analysis of diagnosis in
the multivariate association study, with and without interactions (Table S3). Other proteins
such as ITGAM, ITGB2, C1QA, GFAP, and NEFL, which were identified as differentially
expressed in CSF of MCI participants in the group comparison, were also significantly
associated with both diagnosis and age in the multivariate models (Table S4).

3.4. Gene Set Enrichment Analysis Results

The only pathway found to be significant among all canonical pathway databases was
the granulocytes pathway in BioCarta (FDR-adjusted p-value = 0.052; enrichment score
(ES) = 0.75; Figure 3). The enrichment score (ES) is the maximum deviation from zero
(random distribution) encountered during the GSEA analysis and reflects the degree to
which the genes in a specific gene set are overrepresented at the top or bottom of the entire
ranked list of genes. The core enrichment proteins that most significantly contributed to the
significance of this pathway included: ITGB2, ITGAM, ICAM1, SELL, SELP, C5, and IL1A.
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expression data. (a) Enrichment plot, (b) enrichment score map with the enrichment score as x-axis
and number of gene sets as the y-axis, and (c) heatmap of the granulocyte pathway genes in BioCarta
database (FDR-adjusted p-value = 0.052; enrichment score = 0.75). The subject IDs labeled in grey
demonstrate mild cognitive impairment, and the yellow labels mark the healthy control subject IDs.

The list of protein name, gene name, and UniProt ID of all unique proteins measured
by Olink Explore panel can be found on Table S5.

4. Discussion

The most significant upregulated protein in CSF of the MCI patients compared to con-
trols was secernin-1 (SCRN1), which was associated with diagnosis but not age. Secernin-1
is a novel and specific phosphorylated tau binding protein that has been recently shown
to be abundantly present in amyloid plaques and NFTs [21]. Little is known about the
function of secernin-1. However, a recent study that compared AD brain histopathology
with other tauopathies demonstrated that secernin-1 is specific for tau isoforms in AD
dementia and Down Syndrome as opposed to those in frontotemporal lobar degeneration
dementia with Lewy bodies, progressive supranuclear palsy, and corticobasal degener-
ation [22]. Moreover, SCRN1 was found to have a strong, non-linear correlation with
p-tau181 concentrations in CSF of our participants (correlation with log2 of p-tau181 = 0.8,
p-value < 0.0001; Supplementary Material). Therefore, secernin-1 may act as a specific AD
biomarker in CSF even at early stages of the disease. To the best of our knowledge, this
study is the first to identify this differentially expressed tau binding protein in CSF.

This study also identified pathways that were enriched in MCI participants compared
to controls (Figure 4). Most importantly, neuroinflammatory pathways (i.e., microglial
pathogen activation and chemokine-related pathways) were the most enriched pathways
based on ORA and GSEA. There has been considerable evidence pointing to the involve-
ment of inflammatory processes during the early phases of AD, including the pruning
of complement-marked synapses by reactive, disease-associated microglia activated by
a cocktail of chemokines in AD pathogenesis [23,24]. This mechanism is activated by
C1QA-coated synapses being identified by ITGAM/ITGB2 (CR3) heterodimer receptors on
microglia that are activated by chemokines to phagocytize synapses [23,25,26]. TREM2 and
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AGER are also recognized as C1QA receptors that could induce phagocytosis, oxidative
burst, and migration of inflammatory cells [23,25]. Considering that all these elements are
significantly upregulated in CSF of MCI patients, our results support a role for this mecha-
nism in AD pathogenesis. Deeper proteome depth thus could enable measurement of both
of the key activators (complement and their respective ligands) to better identify the precise
role and timing of the important hub proteins in neuroinflammation in different phases of
neurodegeneration. Moreover, our GSEA results and ORA highlight an increased granulo-
cyte activation and chemotactic activity in the CSF of patients, which has been indicated
by the literature previously [27,28]. It is noteworthy that many of the above-mentioned
markers are found to be associated with both age and diagnosis in our multivariate analysis.
This observation might be explained by the inflammaging hypothesis, which recognizes an
increased level of pro-inflammatory markers with age that increases the susceptibility to
and is accentuated in dementia [29].
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Figure 4. An overview of the enriched proteins and the related processes in cerebrospinal fluid of
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6 February 2023).

Dysregulation of the mitogen-activated protein kinase (MAPK) pathway has been
demonstrated in AD for several decades [30,31]. MAPT (hyperphosphorylated tau) is
the most abundant protein in NFTs, and MAPK signaling is suggested to affect β- and
γ-secretase activity, cause neuronal apoptosis, and even induce pro-inflammatory cytokine
upregulation in CNS [32,33]. One of components of the MAPK pathway, MAP2K1, induces
p53 and cdk5 activation, which are two of the main tau kinases [34]. MAPT, MAP2, and
MAP2K1 have been differentially expressed in the CSF of our patients. Thus, combined
with secernin-1, this depth of proteome analysis facilitates the measurement of all features
in a pivotal pathway starting from substrate (MAPT and MAP2), involving their specific
kinases (MAP2K1) to the specific phosphorylated tau binding protein (secernin-1).

The third mechanism prominent in our results is the cellular chaperone network.
Chaperones (e.g., HSPA1A, HSPB6, DNAJC6, DNAJA2, and DNAJA4) have been shown
to be upregulated in AD animal models as a neuroprotective mechanism inhibiting the
aggregation of tau and Aβ fibril formation [35–37]. It is also suggested that some of these
chaperones (e.g., DNAJA1; not significant in our results) facilitate Aβ toxicity by stabilizing
Aβ1–42 oligomers and inducing mitochondria-dependent cell death [36]. Considering that
“inclusion body assembly” and “apoptotic mitochondrial changes” were also the top two
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diagnosis-associated ORA findings of our study, further studies are needed to validate the
protective and/or detrimental effects of chaperone families in AD.

Oligodendrocyte myelin glycoprotein (OMG) is among the three proteins found to be
downregulated in CSF in participants with MCI compared to controls. As evident from its
name, OMG is suggested to have a role in regulation of collateral sprouting of intact axons in
response to injury and is restricted to oligodendrocytes in the brain [38]. Zhang et al. report
OMG as a hub protein involved with myelin sheaths that has a negative correlation with
amyloid plaques and NFTs in the AD brain [38,39]. Furthermore, ARHGAP30 transcription
was found to be related with mature microglia-specific homeostatic surveillance [40].
Although this protein is not well-characterized in AD, downregulation of this protein might
indicate a loss of homeostatic surveillance on microglia in AD. However, the role of these
downregulated proteins (ARHGAP30 and KIAA2013) in AD needs further investigation.
This is the first account of the significant downregulation of these proteins in CSF of
MCI patients.

Multiple studies have assessed the proteomics of CSF in AD dementia patients using
Olink platforms [8,11,30,41,42]. However, there were only a few that looked at cases
with mild AD or MCI [8,11,42]. These studies were limited to a specific subset of Olink
panels, which quantified approximately 90 and 300 assays, respectively. The status of AD
biomarkers in the patients, the participants’ inclusion criteria, and downstream statistical
analysis were also different in each study. With these considerations in mind, several
pathways and specific proteins continued to come up in these papers (e.g., MMP-10,
SMOC2, EZR).

Apart from other Olink studies, many CSF proteins determined through our experi-
ments have been previously reported in other proteomics studies of AD (e.g., NEFL, MMP-
10, TREM2, EIF4EBP1, GFAP, SMOC1, SMOC2, MAPT, FABP3, CHI3L1, EZR) [8,11,26,42].
We also identified members of heat shock proteins, previously recognized in NFTs, to be
upregulated in CSF of patients (HSPA1A) [21]. Therefore, because of the proteome depth of
our experiments, we were able to recapitulate previously identified protein profiles of AD
pathogenesis as well as novel proteins, which could be putative biomarkers with further
validation studies.

A major limitation of our study is that the control and MCI groups differed by age.
While we did not see any differential expression of proteins in CSF on the basis of age
alone in the group comparison performed with Welch’s t-test, we cannot exclude the effect
of age on our differential analysis by diagnosis. Multivariate analysis, including age as
a covariate, identified proteins that showed a statistically significant effect with age for
this sample. Moreover, we acknowledge the limitation of the relatively small sample size
of our study. We conducted a power calculation for our study, which can be found in the
Supplementary Methods Section, to ensure that we had sufficient statistical power to detect
meaningful differences. It is worth noting that similar sample sizes have been used in
previous studies in the field, and this is a relatively common limitation in proteomic studies
of CSF [30,41]. Nonetheless, future studies with larger sample sizes are needed to validate
our findings and provide more comprehensive insights into the molecular mechanisms
underlying cognitive impairment. An additional limitation of every proteomics study is
the inability of current high-throughput methods to measure every protein present in the
proteome. Therefore, our ability to map the proteomics network of disease is restricted to
the scope of the current methods. Moreover, it is crucial to note that downstream pathway
analysis methods such as ORA and GSEA investigate the enriched protein list against the
known, existing pathways in their databases. Therefore, novel enriched pathways not in
the current databases are potentially missed by these methods [18]. In addition, the lack of
gold standard datasets leads to heterogenous pathway analysis results when using different
existing databases [18]. Thus, our findings should be viewed as a hypothesis-generating,
pilot study with a limited number of participants that needs to be validated with a larger
cohort to increase the power of the study.
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5. Conclusion

In conclusion, we identified both well-established and novel markers, such as the
tau-binding protein secernin-1, in CSF of MCI participants compared to controls. The
utilization of pathway analysis methods further highlighted the role of neuroinflammation
and especially opsonization of complement-marked synapses by macrophages in early
AD biology. Other pathways, including protein misfolding and microtubule assembly
pathways, were also implicated based on our results. Taken together, these findings
emphasize the involvement of several pathways in early AD pathogenesis and protein
markers associated with it, which require further validation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13071094/s1. Supplementary File S1: Supplementary Methods
and Results; Table S1: Differentially expressed proteins in cerebrospinal fluid after FDR correction
(FDR < 0.05) (FDR: False discovery rate); Table S2: Association study of CSF assays with age, sex,
diagnosis, and APOE genotype comparison (FDR < 0.05); Table S3: Comparison of Welsh t-test and
association analysis for diagnosis. List of proteins FDR significant for both analyses (FDR < 0.05);
Table S4: List of CSF proteins FDR significant for both diagnosis and age in multivariate analysis
(FDR < 0.05); Table S5: Protein name, gene name, and UniProt ID of all unique proteins measured by
Olink Explore panel.
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