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Abstract: The highly specialized structure and function of neurons depend on a sophisticated
organization of the cytoskeleton, which supports a similarly sophisticated system to traffic organelles
and cargo vesicles. Mitochondria sustain crucial functions by providing energy and buffering calcium
where it is needed. Accordingly, the distribution of mitochondria is not even in neurons and is
regulated by a dynamic balance between active transport and stable docking events. This system
is finely tuned to respond to changes in environmental conditions and neuronal activity. In this
review, we summarize the mechanisms by which mitochondria are selectively transported in different
compartments, taking into account the structure of the cytoskeleton, the molecular motors and the
metabolism of neurons. Remarkably, the motor proteins driving the mitochondrial transport in axons
have been shown to also mediate their transfer between cells. This so-named intercellular transport
of mitochondria is opening new exciting perspectives in the treatment of multiple diseases.

Keywords: cytoskeleton; microtubules; mitochondria; neuron; transport; TNTs; mitochondrial
transplantation

1. Introduction

Neurons are polarized structures divided into compartments, which are functionally
distinct units. Organelles, proteins and RNA are transported along neuronal processes—
named axons and dendrites—to distal areas such as synapses, growth cones and branching
points where mitochondria play different roles. Mitochondria are abundant in presynapses,
while roughly 10% of dendritic spines contain mitochondria in basal conditions [1]. Neu-
ronal activity increases the transport of mitochondria in synapses [1]. At a wider level, the
somatodendritic and the axonal compartments have different distribution and trafficking
properties in terms of cargo vesicles and organelles, which do not diffuse but are actively
selected at the pre-axonal exclusion zone [2]. The majority of mitochondria are stationary in
axons across different species [3]. The other motile mitochondria travel long distances and
the direction of the transport is named anterograde or retrograde if it is from the cell body
to the distal area of axons or vice versa. Motile mitochondria show complex trajectories,
including linear and oscillatory, with pauses and changes in direction [3]. The fraction of
mitochondria in a moving or a stationary state is associated with axonal growth: in the
region of active growth cones, there is a motile-to-stationary shift of mitochondria that is
reversed when axonal growth is blocked. The consequence of this dynamic balance is that
the net transport is anterograde in growing axons and retrograde in blocked axons [4]. In
this review, we focus on the mechanisms regulating the complex transport of mitochondria
along the extraordinary distances over which neurons can extend.

Another type of long-distance transport contributing to the maintenance of neural
homeostasis is represented by the transfer of mitochondria between adjacent cells. Different
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processes drive this transcellular communication, including the formation of tunneling
nanotubes (TNTs). These structures, described for the first time twenty years ago by Rus-
tom and colleagues [5], seem to rely on the same molecular system used for mitochondrial
transport and docking in axons. The intracellular transmission of mitochondria observed
in astrocytes, microglia, and neurons, is important for the recovery of neural functions
supporting both their viability and post-injury recovery [6–9]. Similarly to spontaneous
mitochondrial transfer between cells, stem cell-derived mitochondrial transplantation can
provide an exogenous mitochondrial source thus restoring the mitochondrial functions in
recipient cells [10,11]. As the primary hallmark in a wide range of brain states and patholo-
gies is mitochondrial dysfunction, mitochondrial delivery into injured cells is opening a
novel horizon for treating many diseases. Here, we summarize the clinical applications
highlighting the opportunities and challenges of mitochondrial transfer/transplantation,
especially in brain disorders.

2. Mitochondria Move along Microtubules and Actin Filaments

The cytoskeleton in neurons is composed of microtubules, actin filaments and neurofil-
aments. Neurofilaments are enriched in axons where they determine the diameter and the
conductance. Microtubules and actin filaments regulate axonal maturation and growth and
build the support for the transport of organelles, including mitochondria [12] (Figure 1).
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Figure 1. Organization of cytoskeleton and molecular components for the transport of mitochondria
in neurons. Neurons are polarized cells divided into soma, dendrites and axons. The long-range
transport of organelles is mediated via motor proteins, which bind microtubules. The regulation of
this transport is regulated by the stability of microtubules (a) and by specific adaptors (b–d). The
stability of microtubules increases the affinity of motors and enhances the transport of organelles and
cargoes. Guanosine triphosphate (GTP), post-translational modifications (PTMs) and microtubule-
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associated proteins (MAPs) are the main factors that regulate such stability, which is key during the
development of axons (a). For instance, tyrosinated microtubules are unstable at the distal tips of
axons, named growth cones, which respond to guidance clues to remodel the actin and microtubule
cytoskeleton to orient the growth of axons. Once the axon is extended, microtubules are acetylated,
glutamylated and detyrosinated to promote stability and a fixed orientation in mature neurons.
Indeed, microtubules are plus-ended, oriented toward axonal terminals and are of mixed orientation
in dendrites (b,c). The orientation of microtubules in axons determines the transport of mitochondria
towards the distal part (retrograde) or the soma (anterograde) (b). The motor proteins kinesin
and dynein mediate the anterograde and retrograde transport of organelles and vesicle cargoes,
respectively. Specific receptors link these motor proteins to mitochondria. In axons, kinesin binds
to the Miro/Trak1 complex or to Syntabulin to transport mitochondria towards the axon terminal,
while actin-related protein 10 (Acrt10) and voltage-dependent anion-selective channel (VDAC1) link
mitochondria to the dynein/dynactin complex in the anterograde direction (b). The Miro/Traks
complex regulates the transport of mitochondria in dendrites. Trak1 and Trak2 mediate the retrograde
and anterograde directions, respectively (c). Mitochondria also travel along actin filaments, but the
mechanisms regulating long-range transport are largely unknown. However, actin filaments regulate
a third mechanism to arrest and dock mitochondria at sites with high energy demands, such as
synapses, using the adaptors Myo6 or 19 and Syntaphilin (Snph) (d). Created with Biorender.com.

2.1. Microtubules

Microtubules are tubes assembled by dimers of α- and β-tubulin oriented head-to-tail
in rapid phases of growth and collapse named “dynamic instability” [13]. These struc-
tures confer the distinct polarity of microtubules, where α- and β-tubulins are exposed
at the minus- and plus-end of microtubules, respectively. Microtubules have a peculiar
organization and dynamics in neurons: they present a plus-end toward the distal part
of axons and have a mixed polarity in dendrites [14]. Microtubules polymerize at the
plus-end via the incorporation of fresh guanosine triphosphate (GTP) to β-tubulin, which
is hydrolyzed to guanosine diphosphate (GDP) in already incorporated tubulin dimers.
However, GTP-bound tubulin dimers have also been described in the stable microtubule
lattice [15–17] and are more enriched in axons than dendrites [17,18]. These so-named
GTP islands protect microtubule depolymerization and promote self-repair [19,20] but
also regulate the local conformation of tubulin to modulate the transport of mitochon-
dria [18]. A recent study showed that anterograde mitochondria halt along GTP-bound
elongated dimers within the microtubule bundle but they remain motile at the rim of the
microtubule bundle [18]. Furthermore, the affinity of the motor proteins kinesins linking
organelles to microtubules depends on the different conformation of GDP- or GTP-bound
dimers [17,21,22]. For mitochondria, these elongated GTP islands increase the velocity of
the Kinesin motor for mitochondria KIF5B [18].

Post-translational modifications of tubulin appear after the polymerization of micro-
tubules and include acetylation, detyrosination, glycylation and glutamylation (Figure 1a).
Developing axons grow in response to attractive and repulsive chemical guidance clues.
This process is highly dynamic and involves cycles of the de- and re-polymerization of
actin and microtubules in the terminal part of axons, named the growth cone. In an initial
phase, actin extends in protrusions, which are later invaded by microtubules and organelles
as mitochondria and endoplasmic reticulum (engorgement). No acetylation is detected in
growth cones, consistent with the presence of highly dynamic microtubules [23]. Finally,
the new formed structure is consolidated by the depolymerization of actin and stabilization
of microtubules [24]. This process is regulated by kinases activated by growth factors such
as Slit, Wnt or nerve growth factor (NGF) bound to the receptors roundabout (Robo), traf-
ficking kinesin protein (Trak) A and frizzled (Frz)/low-density lipoprotein receptor-related
protein (LRP), respectively. These glycogen synthase kinase 3β (GSK3β) and Abl kinases
regulate the localization of plus-end tracking proteins such as cytoplasmic linker-associated
protein 2 (Clasp2), adenomatous polyposis coli (APC) and microtubule-associated protein
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1B (Map1B), which alter the stability of microtubules [25]. Differentiated axons exhibit sta-
ble microtubules with high acetylation, glutamylation and detyrosination [23]. In addition
to their role in regulating the stability of microtubules, post-translational modifications
of tubulin also regulate the affinity of motor adaptors to microtubules and alter the gen-
eral transport of organelles rather than being specific to mitochondria [26,27]. Accessory
proteins of microtubules regulate the transport of mitochondria in a similar way. For
instance, Map1B knockout neurons increase the retrograde transport [28] and mitochondria
of N2a cells, or primary neurons overexpressing Tau do not travel in the anterograde direc-
tion [29–31]. This is probably due to a combination of Tau that can generally destabilize mi-
crotubules [32] and inhibit the kinesin-dependent transport of vesicles and organelles [31].
Taken together, these studies seem to indicate that the transport of mitochondria is not
specifically regulated at the level of microtubule organization. However, it is possible that
the studies conducted so far analyzed the general movement of mitochondria (stationary
over motile mitochondria) and that broader methods to dissect the complex motility of mi-
tochondria could show a subtle but specific role of accessory proteins and post-translational
modifications of tubulin [33].

2.2. Actin

Actin filaments are formed by polarized globular monomers bound via weak interac-
tions. Thus, actin polymers are intrinsically unstable and difficult to visualize in neurons.
Electron microscopy allows the visualization of patches of actin along axons, synapses and
growth cones [12]. Very little is known about the role of actin in the long-range transport of
mitochondria. It appears that microtubules do not have an exclusive role in this transport
because the depolymerization of microtubules using nocodazole or vinblastine does not
completely stop mitochondria in axons and dendrites [34,35]. In addition, the disruption
of the actin cytoskeleton using cytochalasin-D or lantruculin B has no effect [34]. A more
recent study shows that cytochalasin-D stabilizes axonal mitochondria and destabilizes
dendritic mitochondria [36], suggesting that actin organization modulates the transport
of mitochondria via different mechanisms in the two compartments. As we mentioned
previously, actin is also present in synapses, where it mediates the docking of mitochondria
after the administration of NGF [37], regulating the short-range transport of mitochondria.

3. Molecular Motors Transport Mitochondria via Microtubules

Mitochondria associate with the microtubule network through kinesin and dynein,
the molecular motors that drive mitochondria in the anterograde and retrograde direction,
respectively (Figure 1b,c). Therefore, kinesins move mitochondria towards the plus-ends of
microtubules and dynein mediates minus-end-directed mitochondrial transport. Among
the kinesin superfamily proteins (also known as KIFs) encoded in humans and mice
by 45 different genes [38], KIF5/Kinesin-1, KIF1B/Kinesin-3 and Kinesin-Like Protein 6
(KLP6) are the main kinesins that mediate mitochondrial transport in neurons [39–41].
Two kinesin heavy chains (KHCs) and two kinesin light chains (KLCs) form a 380 kDa
heterotetramer complex. This complex is composed of a conserved globular motor domain
(or head) consisting of an adenosine triphosphate (ATP)-binding motif and a microtubule-
binding domain, attached to a stalk domain for dimerization and to a tail domain with
binding and regulatory functions. While the motor domains are highly conserved, the
remaining sequences are unique for each kinesin, determining the cargo specificity and
the direction of the transport. In contrast to the large specialized kinesin superfamily,
only the cytoplasmatic Dynein 1 drives the minus-end-directed microtubule transport.
Then, different mechanisms must explain how dynein specifically transports the numerous
different cargoes. Dynein is a very large protein complex (1.2 MDa) composed of distinct
polypeptides, all of which are present in two copies. The dynein heavy chain (DHC)
contains the motor domain with six distinct AAA domains folded into a ring-shaped
structure, together with a microtubule-binding domain and a tail for the assembly of the
other components: the intermediate chains (DIC), the light intermediate chains (DLIC), and
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three different light chains (DLC) [42,43]. To be fully active, dynein requires interaction
with the dynactin complex and a coiled-coil cargo adaptor [44]. Dynactin anchors dynein
to microtubules through its larger subunit, p150Glued. In addition, dynactin contains two
actin-related proteins, Arp1 and Actr10/Arp11, and the subunits p62, p25, and p27 [45].
The loss of Actr10 selectively reduces the mitochondrial retrograde transport, leading to
the accumulation of mitochondria in axon terminals [45]. Specific adaptor proteins link
kinesin and dynein–dynactin to each cargo for its transport along microtubules. On the
outer mitochondrial membrane, the Mitochondrial Rho GTPase protein (Miro 1 and Miro
2; in humans, RHOT1 and RHOT2) recruits motor proteins by Milton/Trak adaptors and
Metaxin (MTX) proteins. Miro contains a transmembrane domain in its C-terminus and
two GTPase domains, one at the N-terminal and one near the C-terminal, flanking two
calcium-binding EF hand motifs which regulate the motility of mitochondria depending on
calcium. The GTPase domains are crucial for regulating mitochondrial distribution: when
GDP is bound, Miro does not recruit adaptor and motor proteins [46]. In mammals, the
different binding specificity of the two Trak proteins targets mitochondria to dendrites and
axons; while Trak1 binds to both kinesin and dynein components and is responsible for
the axonal localization of mitochondria, Trak2 primarily interacts with dynein and plays a
critical role in targeting mitochondria to dendrites [47] (Figure 1b,c).

Interestingly, as in Miro1/2 double-knockout cells Traks are still recruited to the
outer mitochondrial membrane to drive mitochondrial trafficking, Miro cannot be the
only outer-membrane protein that links mitochondria to motor proteins [48]. In fact, the
loss of Drosophila Miro (dMiro) cannot fully block mitochondrial movement [49]. Thus,
several other kinesin-containing complexes have been discovered in neurons, including
syntabulin (SYBU), fasciculation and elongation protein zeta 1 (FEZ1), or Ran-binding
protein 2 (RanBP2) [50–52]. Interestingly all of these adaptors contribute to the maintenance
and remodeling of synapses [53,54]. Another interactor of the Miro/Milton complex is
Mitofusin 2 (Mfn2), the activity of which is disrupted in the presence of pathogenic mutants,
which arrest mitochondria independently from Mfn2 profusion activity [55]. In contrast to
the anterograde transport machineries, the players that link dynein to mitochondria are not
well characterized. One suggested system is represented by the direct interaction of the
outer mitochondrial membrane (OMM) protein voltage-dependent anion-selective channel
(VDAC) with the dynein motor protein [56]. In conclusion, the main molecular actors
involved in anterograde mitochondrial transport form a complex with Miro (receptor),
KIF5 (motor) and Milton/Traks (adaptors). In contrast, dynein in complex with dynactin
mediates retrograde mitochondrial transport by interacting with Milton/Trak2 and Miro.

4. Mitochondrial Docking and Anchoring Machineries in Neurons

Mitochondria localize in the specific regions of the neuron that need the most en-
ergy and a high ion flux, such as the synapses or the distal regions of actively growing
axons [57]. While a large proportion of mitochondria move during neuronal develop-
ment, in mature neurons the stationary pool of mitochondria represents more than two-
thirds. Remarkably, more than 30% of the synapse is occupied by anchored mitochondria
serving as ‘power stations’ [58]. In addition, as mitochondria can temporarily stop and
start moving again at various subcellular localizations, specific docking mechanisms are
needed. The mitochondria-associated protein Syntaphilin (SNPH) is a central microtubule
calcium-dependent docking system (Figure 1d). SNPH directly interacts with microtubules
through its N-terminal microtubule-binding domain while its C-terminal tail inserts into
the OMM [59]. The dynein light chain LC8 binds to SNPH, thus enhancing the SNPH-based
docking of mitochondria to microtubules [60]. SNPH can also interact with myosin VI
(Myo6, Jaguar in Drosophila) and anchor mitochondria on presynaptic filamentous (F)-actin.
The AMP-activated protein kinase (AMPK)-dependent phosphorylation of Myo6 drives
the capture of mobile axonal mitochondria at presynaptic terminals, switching them from
microtubule-dependent transport to actin-mediated tethering [61]. Other myosin motor
proteins in association with the actin cytoskeleton have been shown to interrupt mitochon-
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drial transport on the microtubule tracks, facilitating their positioning. For example, Myo19
stops mitochondria in actin filaments through Miro [62] (Figure 1d). In general, where
mitochondria are more urgently needed, actin is enriched and docks mitochondria away
from microtubules.

5. Metabolic Control of Mitochondrial Transport

Mitochondria produce ATP and buffer calcium for the functioning and survival of
neurons. Thus, it is not surprising that mitochondria are more abundant in neurons than
in other cell types and that calcium and adenosine diphosphate (ADP)/ATP are prime
signaling molecules to regulate the distribution of mitochondria. Glutamate increases the
amount of calcium and immobilizes mitochondria in synapses. A similar effect is obtained
after injecting ADP or in hypoxia [63]. It seems that the localization of mitochondria is
largely regulated by stationarity rather than transport, as the studies of signaling molecules
have pointed out so far.

5.1. Calcium

As mentioned above, mitochondria rely on the adaptor proteins Milton in Drosophila
and Traks in mammals for anterograde movement along axonal microtubules. These adap-
tors bridge the receptor proteins Miro1 and 2 located in the outer mitochondrial membrane
to Kinesin-1 [62]. Miro contains two EF hands that bind calcium. In the absence of these
domains, mitochondria fail to stop in the presence of calcium in axons and dendrites [62,64],
placing Miro as a regulator of mitochondrial arrest in sites where cytoplasmic calcium
concentration is high. Two models explain a conformational change in Miro in the presence
of calcium, but the mechanism is the opposite (Figure 2a). According to Wang and Schwarz,
Kinesin-1 binds microtubules with its N-terminal domain and the Miro/Milton complex via
its C-terminal region [64]. This complex transports mitochondria, but calcium induces the
sequestration of the whole complex from microtubules. In MacAskill et al., Miro directly
binds Kinesin-1 and calcium detaches Kinesin-1 from mitochondria but not from micro-
tubules [62]. In contrast, another study shows that Miro1 binds the mitochondrial calcium
uniporter (MCU) through its N-terminal domain on the outer mitochondrial membrane [65]
(Figure 2b). This interaction is required for the transport of mitochondria and depends on
the MCU-dependent calcium influx in the mitochondrial matrix rather than cytoplasmic
calcium [66]. E208K/E328K mutations in the EF hands of Miro abolish calcium entry in the
matrix [66]. Curiously, a different mutation (R272Q) in the EF hands of Miro has no effect on
mitochondrial movement, although it disrupts calcium handling in the mitochondria [67].
The discrepancies in the role of Miro could be explained by the use of different mutants and
raise the possibility that Miro is regulated by accessory proteins bound to the EF hands,
or that the regulation of the transport complex is yet to be fully addressed [68]. Indeed,
the EF1 domain of Miro1 senses cytosolic calcium and changes the shape of mitochondria
independently of MCU-dependent calcium uptake and fusion/fission proteins in fibrob-
lasts [69]. Furthermore, the analysis performed in neurites of iPSCs and in axons and
dendrites of primary neurons could also indicate different functions of Miro, depending on
its location in neurons. For example, histone deacetylase 6 (HDAC6) deacetylates Miro and
stops mitochondria in calcium-rich axons [70] (Figure 2b). Although intriguing, given the
broad functions of Mfn2 it is difficult to directly link mitochondrial transport to the levels
of mitochondrial calcium [71]. SNPH is another calcium sensor that arrests mitochondria
in axons [59,60]. In the presence of elevated calcium, SNPH dissociates Kinesin-1 from
mitochondria to enhance their docking at presynapses. High calcium levels disrupt the
Miro/Trak/Kinesin complex, favoring the anchoring of mitochondria by SNPH, which in-
hibits the activity of kinesin [72]. The anchoring of mitochondria to microtubules by SNPH
is reversible since in the absence of calcium Miro can rapidly resume its calcium-free con-
formation and form the Miro/Trak/Kinesin complex to drive mitochondrial motility [62]
(Figure 2b).
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Figure 2. Regulation of mitochondrial transport. Mitochondria are transported along microtubules
with the kinesin motor and the Milton/Miro adaptors organized in a complex. Mitochondria detach
from microtubules when this complex is not active. The detailed mechanism of detachment is not
yet clear. Indeed, it has been proposed that mitochondria halt following the dissociation of the
whole complex, or that kinesin remains attached to microtubules, possibly involving a change in
the shape of mitochondria (mitochondrial shape transition, MiST) independent of fusion and fission
proteins (a). Nevertheless, multiple studies show that the main regulator of the activity of the
Kinesin/Milton/Miro complex is calcium (Ca2+). Additionally, in this case, studies are contradictory.
It is reported that cytoplasmatic calcium binds directly to Miro EF hands and induces a conformational
change in Miro, thus arresting mitochondria (b). Alternatively, mitochondria can also arrest when
the amount of calcium increases in the matrix through the mitochondrial calcium uniporter (MCU).
In addition, mitochondria can stop following the deacetylation of Miro by histone deacetylate 6
(HDAC6) in the presence of cytosolic calcium (b). Moreover, mitochondria can be transferred to the
adaptor Syntaphilin (SNPH) after dissociation from the Kinesin/Milton/Miro complex to enhance
their docking in synapses (b). Other metabolic pathways can arrest mitochondria in neurons (c):
glucose induces the O-GlcNAcylation of Miro and the recruitment of four and a half LIM domain
protein 2 (FHL2) to dock mitochondria to actin filaments. Hypoxia increases the levels of nitric
oxide (NO) and induces the expression of hypoxia up-regulated mitochondrial movement regulator
(HUMMR), which interacts with the Milton/Miro complex to regulate kinesin-mediated transport.
Furthermore, reactive oxygen species (ROS) activate p38α mitogen-activated protein kinase (MAPK),
which inhibits Miro and activates c-Jun N-terminal Kinase (JNK) to stop mitochondria. There are other
mechanisms that regulate the motility of mitochondria that remain to be investigated in detail (d). For
instance, the neurotransmitters serotonin and dopamine are opposite modulators of mitochondrial
motility, possibly via glycogen synthase kinase 3β (GSK3β). Moreover, nerve growth factor (NGF) via
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phosphatidylinositol-3-kinase (PI3K) and the ratio of AMP/ATP levels sensed by AMP-activated
protein kinase (AMPK) regulate the movement of mitochondria by unknown mechanisms. Finally,
depolarized and damaged mitochondria can recruit and stabilize the Pink1/Parkin complex, which
targets Miro for proteasomal degradation (e). Thus, mitochondria stop and are degraded by au-
tophagy. Created with Biorender.com.

5.2. Glucose

Elevated electric activity mobilizes the Glut3 and Glut4 transporters at presynapses
to increase the availability of glucose to boost local metabolism [73–75]. Thus, it is not
surprising that glucose additionally halts mitochondria via an active mechanism [76].
O-GlcNAcylation is a post-translational modification important for proteins involved in
neuronal signaling and synaptic plasticity [77,78]. Glucose activates O-GlcNAc transferase
and increases the O-GlcNAcylation of Milton, which inhibits the transport of mitochon-
dria [76]. The four and a half LIM domain protein 2 (FHL2) associates with O-GlcNAcylated
Milton and favors the docking of mitochondria to actin [79] (Figure 2c).

5.3. ATP

The ratio of ADP and ATP regulates the positioning of mitochondria in primary neu-
rons [63,80], possibly involving mechanisms to sense and drive mitochondria to sites of
high energy consumption. Since motor proteins require ATP to transport mitochondria, it
is possible that in sites of high ATP consumption, mitochondria halt because kinesin and
dynein are not functional. The contributions of ATP and calcium signals to mitochondrial
motility are difficult to disentangle because mitochondria are major regulators of the con-
centration of these two molecules. A study shows that neuronal depolarization decreases
ATP levels and activates AMPK, increasing the anterograde transport of mitochondria into
axons [80]. Similar results were obtained when lactate uptake was inhibited locally [81].
These studies suggest that the motility of mitochondria can be regulated by ATP inde-
pendently of calcium. However, it is difficult to understand if this transport is directly
regulated by AMPK or if it is the consequence of the broad mechanisms downstream of
AMPK (Figure 2c).

5.4. Hypoxia

Hypoxia is an important factor during brain ischemia, and it has been shown to reg-
ulate mitochondrial motility in neurons [82,83] (Figure 2c). Decreased oxygen induces
hypoxia-inducible factor 1α (HIF-1α) which, among its other targets, increases the expres-
sion of hypoxia up-regulated mitochondrial movement regulator (HUMMR). Reduced
HUMMR in normoxia does not change the motility of mitochondria but diminishes the
amount of motile mitochondria with anterograde movement in hypoxia, consistent with
a defect in Kinesin-1 transport [82]. Indeed, HUMMR coimmunoprecipitates with Miro
and Milton in normoxia [82]. Consistently, the upregulation of HUMMR recovers the
average number of axonal mitochondria that are normally reduced by hypoxia [83]. It
would be interesting to understand if HUMMR is also a sensor of hypoxia and if it in-
creases its binding to the Miro/Milton complex. Interestingly, nitric oxide (NO) inhibitors
recovered the motility of mitochondria during hypoxia and NO administration halted
mitochondria [83,84]. It is not clear if this is a direct or indirect effect, nor if HUMMR is
involved.

5.5. Reactive Oxygen Species (ROS)

Sources of ROS in the CNS are mitochondria and reactive microglia during inflamma-
tion. Intracellular and extracellular ROS equally block mitochondria without affecting other
organelles [85–87]. In these experiments, axons are more vulnerable than dendrites [86].
Two opposing studies show that ROS inhibit the Miro/Milton complex by activating p38α
mitogen-activated protein kinase (MAPK) independently from calcium [87] and that ROS
increase calcium and the activity of the c-Jun N-terminal Kinase [85] (Figure 2c).
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5.6. Growth Factors and Neurotransmitters

In addition, molecules for neuronal communication and growth seem to modulate the
transport of mitochondria (Figure 2d). In developing neurons, the administration of NGF
accumulates mitochondria close to the site of treatment [37]. Although the mechanism is
not clear, it seems to involve the phosphoinositide 3-kinase (PI3K) pathway [88]. Moreover,
serotonin and dopamine act via their respective receptors on the AKT-GSK3β pathway
with opposite effects on mitochondria: dopamine halts and serotonin mobilizes mitochon-
dria [89,90]. Interestingly, GSK3β was found to be localized to HDAC6 and HDAC6 activity
and phosphorylation was regulated by GSK3β in primary neurons [91].

6. Mitophagy

Mitochondria can also be arrested when they are sequestered and degraded by au-
tophagic engulfment, a process known as mitophagy. Damaged and depolarized mito-
chondria are cleared by the Pink1/Parkin pathway (Figure 2e). In these conditions, Pink1
is recruited and stabilized by Parkin on the outer mitochondrial membrane. This com-
plex interacts with the Miro/Milton complex and induces the proteasomal degradation
of Miro, thus releasing kinesin and arresting mitochondria [92,93]. It is under debate
where autophagy occurs, if it involves the transport of mitochondria to the soma or if it
happens in distal axons [94,95]. Nevertheless, it is clear that the transport and degradation
of mitochondria are intertwined processes regulated by metabolism [96,97].

7. Specialized Cytoskeleton Structures Allow Mitochondria to Cross Cell Boundaries

Proper neuronal homeostasis is maintained not only by the intracellular trafficking of
mitochondria but also by the intercellular exchange of mitochondria. For example, astro-
cytes can transfer healthy mitochondria to damaged neurons and provide neuroprotection
and neurorepair [7–9,98]. Vice versa, astrocytes may internalize damaged mitochondria.
Davis and colleagues described this process, named transmitophagy, at the optic nerve
head where retinal ganglion cell axons shed the damaged mitochondria to be degraded by
astrocytes [99]. Transmitophagy is restricted to a site of high energy demand with limited
space, far from the cell body of retinal ganglion cells, suggesting that the cooperation of
nearby cells is more advantageous than using resources within the cell to degrade damaged
mitochondria. Axonal protrusions in contact with astrocytes contain mitochondria, and mi-
crotubules are found proximal to these mitochondria in electron microscopy [99]. Although
lacking temporal resolution, this observation leads us to hypothesize the existence of an
active mechanism to transfer mitochondria between neural cells. Additional publications
show that this mechanism is more widespread in other cells and allow it to be studied in
models simpler than the retina. Indeed, stem cells transplanted in vivo have been shown to
perform a similar bidirectional mitochondrial exchange [100–102]. Therefore, stem cells can
both donate their healthy mitochondria and take up damaged mitochondria from stressed
somatic cells for degradation [103,104].

7.1. Structure of TNTs

While different mechanisms for the transcellular transfer of mitochondria have been
identified, including extracellular vesicles and gap junction channels [105], TNTs represent
unique actin-rich structures that provide cytoplasmatic continuity between cells, enabling
the bidirectional transport of cargoes. TNTs are membrane protrusions linking two or more
cells and, as such, they have been described in multiple cell types [106]. They form transient
cytoplasmic bridges containing a skeleton mainly composed of F-actin, microtubules or
both. Thinner TNTs (<100 nm in diameter) only contain F-actin, whereas thicker TNTs
(>100 nm in diameter) are composed of both F-actin and microtubules [107]. Electron and
fluorescent microscopy studies performed so far have lacked the spatial resolution to fully
investigate the structure and dynamics of TNTs. A recent study using single-molecule-
localization-based stochastic optical reconstruction microscopy (STORM) revealed in more
detail the organization of TNTs [106]. Interestingly, mitochondria appear to be more
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abundant in areas closer to cells but also in the bud-shaped sides of TNTs, which are
enriched in actin filaments [106]. This observation probably suggests that the movement
of mitochondria in TNTs could be regulated in an actin-mediated docking system, as Qin
and colleagues speculated in their review [108]. Furthermore, STORM images also reveal
that the organization of TNT microtubules differs between cell lines, opening up intriguing
scenarios of different mechanisms to traffic mitochondria depending on the type of cell.
However, it has to be pointed out that only cell lines have been used in this study and that
cells were permeabilized before imaging. Therefore, this method is not suitable to study
the motility of mitochondria. So far, it has been shown that TNTs may polymerize and
depolymerize rapidly in 30–60 s, spanning distances of up to 300 µm [107], but the use of a
higher resolution for a deeper analysis may answer the questions we previously raised.

Prior to the evidence of mitochondrial exchange through membranous channels in
2004 [5,109], Ramírez-Weber and Kornberg provided the first observation of thin actin-
based extensions (cytonemes) in disc cells in Drosophila [110]. At that time, the authors
suggested that cytonemes might be responsible for some forms of long-range cell–cell com-
munication. To date, microscopy imaging of both live and fixed cells has provided direct
evidence of the horizontal transfer of mitochondria through the formation of TNTs under
(patho)physiological conditions. Moreover, by combining live imaging and correlative
light- and cryo-electron tomography approaches, Sartori-Rupp et al. revealed the ultra-
structural features of TNTs. In human and mouse neuronal cells, they proved the different
nature of TNTs with respect to other cell protrusions such as filopodia, showing that TNTs
form bundles of parallel tubes (iTNTs) braided together by linkers with N-Cadherin, which
contain vesicles and mitochondria [111]. While TNTs have been described in many different
cell types, no TNT-specific marker has been identified, and they can be recognized based
only on morphological characteristics, thus limiting the selective molecular approaches to
study TNT formation and the movement of mitochondria [112,113].

7.2. Transfer of Mitochondria to Neuronal Cells

It is known that the movement of mitochondria along TNTs is mediated by transport
complexes [114]. As for intracellular trafficking, the key protein that modulates intercellular
mitochondria transfer is Miro. It interacts directly with the motor protein KIF5, or through
adaptor proteins, including Trak1 and Trak2 and Myo10 and Myo19. The knocking down
or overexpression of Miro affects the efficiency of the transfer of mitochondria from mes-
enchymal stem cells (MSCs) to nerve cells in order to repair injury in vitro [102,115]. One
fundamental caveat of these experiments is that Miro regulates the mobility of mitochondria
within cells and the decreased transfer might be a consequence of a general dysfunction
of mitochondrial availability. Furthermore, the downregulation of Miro1 or Miro2 does
not completely abrogate the transfer of mitochondria [115]. This observation could be
explained by a redundancy of the two proteins, which should be tested by downregulating
Miro1 and Miro2 simultaneously in neural cells. Given that Miro mediates the long-range
transport of mitochondria using microtubules, it is possible that other mechanisms in
the transfer of mitochondria exist, but studies on this matter are still missing. We may
also speculate that other components of the well-known system to traffic mitochondria in
neurons might be involved and that actin or the orientation of microtubules may provide
additional lines of study for mitochondrial transfer between neural cells. Surprisingly, the
injection of multipotent mesenchymal stem cells overexpressing Miro1 is able to restore the
neurological status of ischemic rats without recovering the ischemic damage [102]. How-
ever, this study does not provide evidence of an active transfer of mitochondria in vivo
and thus requires further validation. Furthermore, the rescue of neurological functions
was measured for 14 days and the efficacy of transplantation in the long term was not
evaluated.
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7.3. The Heterogeneous Nature of TNTs

Although the mechanism regulating the transition of mitochondria entering the TNTs
from the cytoplasm is not known, a speculative mechanism has been proposed to be based
on an actin docking system [108]. In general, actin has a dominant role in TNTs formation
since low doses of the actin-specific inhibitor cytochalasin B are able to dramatically
affect the formation of both F-actin and microtubule-based TNTs. Oppositely, microtubule-
specific inhibitors do not reduce the formation of TNTs [116,117]. Consistently, regulators of
the actin cytoskeleton were identified as key drivers of the membrane nanotube’s formation.
For instance, M-Sec (TNFAIP2) in association with Lst1, RelA and other components forms
a complex of small GTPases, the exocyst complex, which promotes the formation of TNTs
in stressed cells [118,119]. In addition to M-Sec, its interacting protein nucleolin [120], an
RNA-binding protein, can promote TNTs formation by binding to and stabilizing the 14–3–
3ζ mRNA, thus regulating cortical actin dynamics between primary cortical neurons and
astrocytes. Among other proteins known to participate in actin cytoskeleton remodeling,
some Rab GTPases have been found to play a role in TNTs formation. Bhat et al. showed
that similar to neurite elongation, TNTs formation in neuronal cells is positively regulated
by Rab35 through ACAP2 and ARF6-GDP [121]. Ljubojevic et al. recently provided an
overview on the actin-related proteins that play a role in TNTs formation [122].

Horizontal mitochondrial transfer has been referred to by Liu et al. as “find me”
and “save me” intercellular communication, since damaged cells take up functional mi-
tochondria from healthy donor cells [123]. Cells exposed to ethidium bromide to induce
mitochondrial DNA (mtDNA) deletion have been used to prove the intercellular movement
of mitochondria from healthy donor cells. Spees et al. demonstrated that these cells that are
incapable of aerobic respiration and growth can acquire mtDNA and mitochondria from
healthy donor cells and finally regain their oxidative capacity [124]. Consistent with this
finding, Lin et al. showed that mtDNA-deficient ρ0 tumor cells co-cultured with mesenchy-
mal cells rescue mitochondrial bioenergetics and oxidative-phosphorylation-dependent
cellular growth and motility by acquiring mtDNA [125]. Multiple studies show that the
intercellular mitochondrial transfer from healthy donor cells rescues the damage in injured
cells [105]. MSCs are the most popular donor cells, indicating that the reparative function in
stem cell therapy is partially mediated by mitochondrial transfer [126]. Although in the last
decade the number of studies describing mitochondrial transfer has greatly increased, the
signaling mechanisms that initiate transcellular mitochondrial trafficking remain largely
unknown. For example, it is not clear whether the route is dependent on the recipient
damaged or on the healthy donor cell. Several signaling mechanisms of TNTs initiation
have been identified. In particular, M-Sec was found to be essential for the formation of
TNTs from recipient cells in association with other components forming a complex of small
GTPases, the exocyst complex, comprising Cdc42, which is required for the extension of
TNTs [118].

In general, the mechanisms of TNTs formation and the initiation factors that drive
mitochondrial transfer are still poorly understood and need to be investigated in future
studies. Since the intercellular mitochondrial transfer represents what is probably the
most exciting therapeutic option for multiple diseases, it will be important to decipher
in detail the mechanisms regulating mitochondrial entry into damaged cells, including
TNTs formation. Many studies show that it is feasible to treat many diseases in the brain
associated with mitochondrial dysfunctions by the described mitochondrial transfer process
between cells, or even by the direct transplantation of isolated mitochondria (Table 1).
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Table 1. Mitochondrial transfer therapy for brain diseases.

Disease Treatment Clinical Outcome Ref.

Rat model of Parkinson’s
disease Mitochondria Restored mitochondrial functions and reduced oxidative

damage in dopaminergic neurons [127]

Mouse model of PD Mitochondria Increased electron transport chain activity, reduced ROS
level and prevented apoptosis and necrosis [128]

Rat model of schizophrenia Mitochondria Prevented mitochondrial dysfunction in intra-prefrontal
cortex neurons and emergence of attention deficit [129]

Middle cerebral artery
occlusion (MCAO) in rats Mitochondria Decreased brain infarct volume and reversed neurological

deficits. [130]

MCAO in rats Mesenchymal multipotent
stromal cells

Reduced infarct volume in the brain and partial
restoration of neurological status * [131]

Ischemic stress in rats Mitochondria Restored motor performance, attenuated brain infarct area
and neuronal cell death [132]

MCAO in rats MSC-derived
mitochondria

Declined blood creatine phosphokinase level, abolished
apoptosis, decreased astroglyosis and microglia activation,

reduced infarct size and improved motor function
[133]

Ischemia–reperfusion stroke
injury MSCs Rescued damaged cerebrovascular system in stroke [123]

Spinal cord injury in rats Mitochondria Maintenance of normal bioenergetics without recovery of
motor and sensory functions [134]

Traumatic brain injury in rats MSC-derived
mitochondria Improved sensorimotor functions [135]

Nerve crush injury in rats Mitochondria Improved neurobehaviors, electrophysiology of nerve
conduction and muscle activities [136]

* More profound neuroprotective effects have been obtained when MSCs were injected after cocultivation with
neurons.

8. Conclusions

In this review, we summarized the complexity of the transport of mitochondria in
neurons and the similarity of this system to the intracellular transport of mitochondria. Al-
though the first has been broadly characterized, it could provide a basis for understanding
how the latter happens, and ameliorate its potential benefits in therapeutic approaches.
The current understanding of this mode of transport is quite extensive, but it is clear that
some of the conclusions established in the past were oversimplified. Recent advances
in technology and analysis will help to investigate the fine regulation of mitochondrial
motility, especially regarding poorly studied movements such as the duration of pauses and
oscillatory movements. These mechanisms will possibly link microtubule dynamics to mo-
tor proteins at a more refined resolution, scaling down to micron-size compartments such
as spines. It will be intriguing to understand how metabolism regulates such movement at
a single-mitochondrion scale.
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Abbreviations

ACRT10 Actin-related protein 10
ADP Adenosine diphosphate
AMP Adenosine monophosphate
AMPK AMP-activated protein kinase
APC Adenomatous polyposis coli
ATP Adenosine triphosphate
CLASP2 Cytoplasmic linker-associated protein 2
DHC Dynein heavy chain
DIC Dynein intermediate chain
DLC Dynein light chain
DLIC Dynein light intermediate chain
FEZ1 Fasciculation and elongation protein zeta 1
FHL2 Four and a half LIM domain protein 2
FRZ Frizzled
GDP Guanosine diphosphate
GSK3β Glycogen synthase kinase 3β
GTP Guanosine triphosphate
HDAC6 Histone deacetylate 6
HIF-1α Hypoxia-inducible factor 1α
HUMMR Hypoxia up-regulated mitochondrial movement regulator
JNK c-Jun N-terminal Kinase
KHC Kinesin heavy chain
KLC Kinesin light chain
KLP6 Kinesin-Like Protein 6
LRP Low-density lipoprotein receptor-related protein
MAP Microtubule-associated protein
MAP1B Micro+A1:B48tubule-associated protein 1B
MAPK Mitogen-activated protein kinase
MCAO Middle cerebral artery occlusion
MCU Mitochondrial calcium uniporter
MFN2 Mitofusin 2
MiST Mitochondrial shape transition
MSC Mesenchymal stem cell
mtDNA Mitochondrial DNA
MTX Metaxins
MYO Myosin
NGF Nerve growth factor
NO Nitric oxide
OMM Outer mitochondrial membrane
PI3K Phosphoinositide 3-kinase
PTM Post-translational modification
RANBP2 Ran-binding protein 2
ROBO Roundabout
SNPH Syntaphilin
STORM Stochastic optical reconstruction microscopy
SYBU Syntabulin
TNT Tunneling nanotube
TRAK Trafficking kinesin protein
VDAC Voltage-dependent anion-selective channel
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