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Abstract: Interferon-induced transmembrane proteins (IFITMs) block the fusion of diverse enveloped
viruses, likely through increasing the cell membrane’s rigidity. Previous studies have reported that
the antiviral activity of the IFITM family member, IFITM3, is antagonized by cell pretreatment with
rapamycin derivatives and cyclosporines A and H (CsA and CsH) that promote the degradation of
IFITM3. Here, we show that CsA and CsH potently enhance virus fusion with IFITM1- and IFITM3-
expressing cells by inducing their rapid relocalization from the plasma membrane and endosomes,
respectively, towards the Golgi. This relocalization is not associated with a significant degradation of
IFITMs. Although prolonged exposure to CsA induces IFITM3 degradation in cells expressing low
endogenous levels of this protein, its levels remain largely unchanged in interferon-treated cells or
cells ectopically expressing IFITM3. Importantly, the CsA-mediated redistribution of IFITMs to the
Golgi occurs on a much shorter time scale than degradation and thus likely represents the primary
mechanism of enhancement of virus entry. We further show that rapamycin also induces IFITM
relocalization toward the Golgi, albeit less efficiently than cyclosporines. Our findings highlight the
importance of regulation of IFITM trafficking for its antiviral activity and reveal a novel mechanism
of the cyclosporine-mediated modulation of cell susceptibility to enveloped virus infection.

Keywords: cyclosporin; virus fusion; host restriction factors; IFITM trafficking; high-throughput
compound screening; beta-lactamase virus fusion assay; confocal microscopy; Golgi

1. Introduction

Interferon-induced transmembrane proteins (IFITMs) restrict the entry of a broad
range of enveloped viruses, such as the Influenza A Virus (IAV), Vesicular Stomatitis
Virus (VSV), Respiratory Syncytial Virus (RSV), and Dengue Virus (DENV). However,
Murine Leukemia Virus and arenaviruses, including the Lassa Virus (LASV), are resistant
to IFITM restriction [1–4]. Human genome encodes five IFITM proteins, three of which—
IFITM1, IFITM2, and IFITM3—exhibit antiviral activity [5–7]. The importance of IFITM-
mediated virus restriction in vivo is highlighted by studies showing that Ifitm3 knockout
mice succumb to IAV or RSV infection [8–11]. Moreover, several studies have shown
that single-nucleotide polymorphisms (SNPs) in the Ifitm3 gene correlate with a higher
risk and more severe outcomes of IAV or SARS-CoV-2 infection [12–16]. The IFITMs’
biological functions are not limited to antiviral activities, as they play a role in tumorigenesis
(reviewed in [17–19]) and can disrupt endosome trafficking and placenta formation [20].

The spectrum of restricted viruses appears to be largely dictated by the IFITM’s sub-
cellular localization, which is modulated by post-translational modifications, including
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S-palmitoylation [21], ubiquitylation [22,23], phosphorylation [24,25], and methylation [26].
IFITMs are type-II transmembrane proteins [27–30], although their topology remains con-
troversial [23,31–33]. The N-terminal domain of IFITM2 and IFITM3 containing a YEML
endocytic sorting motif is a major determinant of their endosomal localization and potent
restriction of a number of viruses entering cells via endocytosis [34–37]. In contrast, IFITM1,
which lacks the N-terminal endocytic signal, primarily resides in the plasma membrane
(PM) and is more efficient against viruses fusing at this site [2,5,38,39]. Deletion of the first
21 N-terminal residues encompassing the YEML internalization motif of IFITM3 relocalizes
this protein to the PM [28,40,41] and shifts the spectrum of restricted viruses to those that
are thought to enter at the PM (e.g., Measles virus or SARS-CoV-2) [42,43] that are also
targeted by the PM-resident IFITM1 [40].

The mechanism of a broad-spectrum restriction of enveloped virus entry by IFITMs
is not fully understood. It is believed that different IFITMs inhibit virus fusion through
a common mechanism that does not generally involve specific interactions with viral
proteins or their cellular receptors, although a few instances of such interactions have
been reported [44–46]. Current models for IFITM-mediated restriction include (1) ren-
dering the cell membranes more rigid and thereby trapping viral fusion at a hemifusion
stage [47–52] and (2) accelerating the degradation of incoming viruses by transporting
them to lysosomes [53]. In addition to blocking virus entry into cells, IFITMs have been
shown to interfere with the spread of newly produced virus particles by incorporating into
virions [54–57]. Finally, IFITMs can inhibit HIV-1 protein synthesis, probably by viral RNA
exclusion from polysomes [58].

Interestingly, IFITM3′s antiviral activity can be modulated by chemical compounds. It
has been reported that analogs of rapamycin (rapalogs) antagonize the antiviral activity of
IFITM3 by inducing its degradation through a microautophagy-lysosomal pathway [59,60].
The levels of IFITM3 are also reduced in cells treated with cyclosporine A (CsA) or cy-
closporine H (CsH); however, the exact mechanism of IFITM3 degradation by these drugs
remains unclear [61].

Here, we carried out a high-throughput screening of compounds that rescue virus
fusion with IFITM3-expressing cells and identified cyclosporine A (CsA) as a potent antag-
onist of IFITM3’s antiviral activity. We show that CsA works by retargeting these proteins
from the PM and late endosomes toward the Golgi apparatus but not by promoting IFITM
degradation, as has been previously proposed [59–61]. The retargeting of IFITMs to the
Golgi by CsA and CsH underlies the rescue of the fusion of diverse viruses entering differ-
ent cell types. Taken together, our results reveal a novel mechanism of regulation of the
IFITMs’ activity through their relocation and highlight the importance of understanding
the regulation of IFITM trafficking for controlling their adverse effects on essential cellular
functions and antiviral activity.

2. Materials and Methods
2.1. Cell Lines, Plasmids, and Reagents

Human A549, HEK293/17, HeLa, HeLa-IFITM1/2/3 knockout (herein denoted as
HeLa-TKO, cells originally from Howard Hang, Rockefeller U, New York, NY, USA),
and dog kidney epithelial MDCK cells were obtained from ATCC (Manassas, VA, USA).
The cells were grown in the manufacturer’s recommended medium supplemented with
10% heat-inactivated fetal bovine serum (FBS, Atlanta Biologicals, Flowery Branch, GA,
USA), 100 U penicillin-streptomycin (Gemini Bio-Products, Sacramento, CA, USA), and
the recommended selection of antibiotics when applicable. Stable cell lines A549.IFITM1,
A549.IFITM3, and MDCK.IFITM3 cells ectopically expressing respective IFITM proteins
have been described previously [47]. HeLa and HeLa-TKO cells ectopically expressing
IFITMs were obtained by transducing these with VSV-G-pseudotyped viruses encod-
ing wild-type IFITMs or with the empty vector pQCXIP (Clontech) and selecting with
1.5 µg/mL puromycin.
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The pR9∆Env, BlaM-Vpr, pcRev, pMDG VSV G, pCAGGS WSN HA and NA, and
phCMV-GPc Lassa expression vectors were described previously [47,51,62]. The pMDG-
VSV-G expression vector was provided by Dr. John Young (Salk Institute, San Diego, CA,
USA). The pCAGGS vectors encoding influenza H1N1 WSN HA and NA were provided
by Drs. Donna Tscherne and Peter Palese (Icahn School of Medicine, Mount Sinai, New
York, NY, USA) [63]. The LASV GPc plasmid was a gift from Dr. F.-L. Cossett (Université
de Lyon, Lyon, France) [64].

Cyclosporine A, Cyclosporine H, recombinant human interferon alpha, Amphotericin
B, and cycloheximide were from Sigma (St. Louis, MO, USA). Antibodies used were
rabbit anti-IFITM3 against the N-terminus of this protein from Abgent (San Diego, CA,
USA), rabbit anti-IFITM3 (Abcam), mouse anti-IFITM2/3 (Proteintech), rabbit anti-IFITM1
(Sigma), mouse anti-GM130 conjugated with AlexaFluor555 from (BD Bioscience, Franklin
Lakes, NJ, USA), sheep anti-TGN46 (Bio-Rad, Hercules, CA, USA), and Goat anti-rabbit
IgG (H+L) conjugated with AlexaFluor647 (ThermoFisher, Waltham, MA, USA).

2.2. Pseudovirus Production and Characterization

To produce pseudoviruses, HEK297T/17 cells were transfected using JetPRIME trans-
fection reagent (Polyplus-transfection, New York, NY, USA). For IAV, LASV, and VSV
pseudoviruses (IAVpp, LASVpp, and VSVpp, respectively), ~70% confluent cells in a
100 mm tissue culture dish were transfected with 5 µg pR9deltaEnv, 1.5 µg pMM310, 1 µg
pcRev, and with respective envelope glycoprotein-encoding plasmids: pCAGGS WSN HA
and NA (2.5 µg each) for IAVpp, 4 µg phCMV-GPc Lassa for LASVpp, and 0.2 µg pMDG
VSV G for VSVpp. After 12 h, the transfection medium was replaced with a phenol-red-free
growth medium, and cells were cultured for 36 h, at which point the medium was collected,
filtered through 0.45 µm PES membrane filter (VWR, Radnor, PA, USA), concentrated 10×
using Lenti-X™ Concentrator (Clontech, Mountain View, CA, USA), and stored at −80 ◦C.
The p24/Gag content of the viral stocks was measured using p24 ELISA, as previously
described [65].

2.3. Virus–Cell Fusion Assay

The β-lactamase (BlaM) assay for virus–cell fusion was carried out, in a modified
version of a previously described method [66]. Briefly, 0.5 to 1 ng p24/well of pseudovirus
bearing β-lactamase fused to Vpr (BlaM-Vpr) was bound to target cells plated in black
clear-bottom 96-well plates by centrifugation at 4 ◦C for 30 min at 1550× g. Unbound
viruses were removed by washing, and fusion was initiated by transferring the cells,
shifting to 37 ◦C, 5% CO2 for 120 min, after which time cells were loaded with the CCF4-
AM BlaM substrate (Life Technologies). The cytoplasmic BlaM activity (ratio of blue to
green fluorescence) was measured after overnight incubation at 12 ◦C, using a Synergy
HT fluorescence microplate reader (Agilent Bio-Tek, Santa Clara, CA, USA). Cell viability
was determined using the CellTiter-Blue Reagent (Promega); after adding this reagent to
cells, the samples were incubated for 30 to 60 min at 37 ◦C, 5% CO2, and cell viability was
measured on Synergy HT plate reader (579Ex/584Em).

2.4. LOPAC Library Screen

To identify small-molecule inhibitors of IFITM3 antiviral activity, we used a small
library of pharmacologically active compounds (LOPAC) (Sigma-Aldrich). The screening
was performed using a BlaM assay in 384-well plates in a robotic platform, as described
previously [67]. Briefly, 2 × 104/well cells were dispensed into a 384-well cell culture plate,
using Multidrop™ Combi (ThermoFisher), and cultured for 24 h. IAVpp pseudoviruses
(0.2 ng p24/well) were dispensed into wells, and the samples were centrifuged at 4 ◦C
for 30 min at 1550× g. Next, compounds dissolved in 100% dimethylsulfoxide (DMSO)
were dispensed into wells using BeckmanNX liquid handler (Beckman Coulter, Brea, CA,
USA) to the final concentration of 20 µM. Each plate contained vehicle control wells that
received an equal volume of DMSO (0.4% v/v). Samples were incubated at 37 ◦C, 5% CO2
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for 120 min, the medium was removed using a BioTek plate washer, and the CCF4-AM
substrate was dispensed into the wells. The fusion signal was measured using the EnVision
Multilabel plate reader (PerkinElmer, Waltham, MA, USA).

2.5. Western Blot Analysis

Cells were harvested and processed, as described elsewhere [66]. Protein bands were
detected with rabbit anti-IFITM3, rabbit anti-IFITM1, and mouse anti-GAPDH antibodies
(Abcam, Cambridge, MA, USA), and horseradish peroxidase-conjugated Protein G (VWR,
Radnor, PA), using a chemiluminescence reagent from GE Healthcare. For cells transduced
with IFITM3-expressing vector, only 10% of the amount of cell lysate was used for blotting.
The chemiluminescence signal was detected using an XR+ gel doc (Bio-Rad). Densitometry
analysis was performed using FIJI [68]. Unless stated otherwise, triplicates were used.
Each band was analyzed using the Gel analysis plugin of the FIJI software. DMSO-treated
samples were used as reference in each experiment, and the ratio between IFITM3 and
GAPDH signals was calculated.

2.6. Immunostaining, Microscopy, and Image Analysis

One day prior to imaging, cells were plated in 8-well chamber coverslips (Nunc, Rochester,
NY, USA) coated with either 0.1 mg/mL poly-D-lysine (Sigma-Aldrich) or 0.2 mg/mL collagen
(Sigma-Aldrich). Cells were treated with indicated compounds/inhibitors or left untreated,
fixed with 4% PFA (ThermoFisher) for 20 min at room temperature, permeabilized with
200 µg/mL digitonin for 20 min, and blocked with 10% FBS for 30 min. Cells were next incu-
bated with respective primary antibodies diluted in 10% FBS for 1.5 h, washed, and incubated
with secondary antibodies in 10% FBS for 45 min. Samples were stained with Hoechst-33258
(Invitrogen, Waltham, MA, USA) in PBS for 5–10 min prior to imaging. Images were acquired
on a Zeiss LSM 880 confocal microscope using a plan-apochromat 63×/1.4 NA oil objective.
The entire cell volume was imaged by collecting multiple Z-stacks spaced by 0.41 µm. Im-
ages were analyzed using FIJI [68]. Protein signal colocalization (using both Pearson’s and
Mander’s coefficients) was computed by the JaCoP FIJI plugin [69] on maximum-intensity
projection images.

2.7. Statistical Analysis

Unpaired Student’s t-test and one-way ANOVA statistical analyses were performed
using GraphPad Prism version 9.3.1 for Windows (GraphPad Software, La Jolla, CA, USA).

3. Results
3.1. Cyclosporine a Antagonizes the Antiviral Activity of IFITM3

To elucidate the host factors involved in the IFITM3-mediated restriction of IAV,
we asked if well-characterized pharmacological agents could promote or antagonize the
antiviral activity of IFITM3 and thus reveal host factors that regulate IFITM’s function.
Toward this goal, we screened a library of 1280 pharmacologically active compounds
(LOPAC, Sigma) for the ability to rescue the fusion of HIV-1 pseudotyped with Influenza
A HA (IAVpp) with MDCK cells ectopically expressing IFITM3 (MDCK.IFITM3). IAVpp
fusion was measured by a beta-lactamase-based (BlaM) assay that we have previously
adapted for high-throughput screening [67]. MDCK cells were chosen because they do not
express detectable levels of IFITMs [70]. Control cells transduced with an empty vector
(MDCK.Vector) supported robust IAVpp fusion suitable for high-throughput screening. In
contrast, IAVpp fusion with MDCK.IFITM3 cells was strongly impaired (Figure 1A and
Supplementary Table S1). The LOPAC library screening was performed with the final
compound concentration of 20 µM. Out of 1280 compounds, we identified a single hit,
cyclosporine A (CsA), that potently rescued the IAVpp fusion (Figure 1A). CsA is a natural
11 amino-acid cyclic immunosuppressant polypeptide that binds cyclophilin A (CypA), and
the CsA-CypA complex binds to and inhibits the enzymatic activity of calcineurin [71,72].
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Figure 1. Cyclosporines A and H inhibit IFITM3 antiviral activity. (A) Scatter plot of screening results
of 1280 compounds LOPAC library at 20 µM final concentration. The screening was performed using
BlaM assay for IAVpp fusion in MDCK.IFITM3 cells seeded in 384-well plates. The results were
normalized to IAVpp fusion in MDCK.Vector cells used as a control for efficient fusion of IAVpp (see
also Table S1). Dose–response on IAVpp fusion and cell viability for CsA (B,C) and CsH (D,E) in
A549.Vector and A549.IFITM3 cells. Target cells were treated with cyclosporines or DMSO for 1.5 h at
37 ◦C prior to IAVpp binding. Data are means and S.D. of two independent combined experiments,
each performed in triplicate. Statistical analysis was caried out using Student’s t-test. * p < 0.05;
** p < 0.01; ns, not significant.

We next asked whether CsA must be present at the time of virus entry to enhance
fusion with IFITM3-expressing cells and whether this effect is cell-type-dependent. Control
A549.Vector cells expressing very low levels of endogenous IFITMs [29,47] and A549 cells
stably expressing IFITM3 (A549.IFITM3) were pretreated with different concentrations
of CsA for 1.5 h at 37 ◦C, the drug was removed, and cells were infected with IAVpp.
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CsA pretreatment significantly enhanced IAVpp fusion in A549.IFITM3 cells in a dose-
dependent manner, while not having a notable effect on virus fusion with control cells
(Figure 1B).

Petrillo and co-authors [61] have recently reported that CsA and its derivate cy-
closporine H (CsH), which does not bind CypA and is not immunosuppressive, en-
hance VSV-G-pseudotyped lentivirus transduction by antagonizing IFITM3. We therefore
tested the effect of CsH on IAVpp fusion and observed a marked increase in fusion with
A549.IFITM3 cells but not in A549.Vector cells (Figure 1D). The CsA and CsH concentra-
tions used in fusion experiments did not impact cell viability (Figure 1C,E). These results
demonstrate that both CsA and CsH antagonize the antiviral activity of IFITM3. Since CsH
does not bind CypA or inhibit calcineurin, its IFITM antagonism should be independent of
these interactions.

We next tested if CsA and CsH treatment rescued the fusion of other viruses. For this,
we chose Vesicular Stomatitis Virus (VSV) that is thought to fuse with early endosomes
and is sensitive to IFITM restriction [41,61], and the Lassa virus (LASV) that fuses with
late endosomes and is known to be resistant to IFITM restriction [1,51]. HIV-1 particles
pseudotyped with VSV-G (VSVpp) or LASV GPc (LASVpp) glycoproteins were used to
infect A549.IFITM3 cells. As expected, pretreatment with CsA or CsH caused a ~10-fold
increase in the fusion efficiency of the IFITM3 restriction-sensitive VSVpp, but not LASVpp
(Figure 2A,B). In contrast, CsA/CsH treatment had no effect or caused a modest increase
in fusion across three different pseudoviruses in the context of control A549.Vector cells,
suggesting that cyclosporines do not exert a noticeable non-specific effect on virus fusion
and that the fusion rescue is through IFITM antagonism. The similar effects of cyclosporines
on viral fusion in MDCK and A549 cells imply that these drugs rescue fusion with IFITM-
expressing cells independent of the cell type.

3.2. Cyclosporines can Promote Virus Infection without Inducing IFITM3 Degradation

Previous studies of the effects of CsH and different analogs of rapamycin on IFITM3
restriction [59–61] employed a prolonged (4–16 h) pretreatment of cells to rescue viral
fusion, a condition that was associated with IFITM3 degradation. This is in sharp contrast
with our results demonstrating a rescue of viral fusion with IFITM3-expressing A549 cells
after a relatively short (1.5 h) pretreatment with CsA or CsH (Figure 2A,B). To address this
discrepancy, we treated A549.IFITM3 with CsA, CsH, or DMSO (vehicle) for a short (1.5 h)
or long (16 h) time. An analysis of IFITM3 expression by Western blotting revealed no
degradation of the ectopically expressed IFITM3 in these cells, regardless of the length of
treatment (Figure 2C,D).

Given that the subcellular localization of IFITMs is critical for their antiviral
activity [24,28,40,73], we asked if CsA alters the distribution of IFITM3, which primar-
ily resides in late endosomes [47,53,73–75]. The immunostaining of A549.IFITM3 cells for
IFITM3 after CsA or CsH treatment showed that, strikingly, these drugs caused a nearly
complete relocalization of IFITM3 from endosomes to a perinuclear area (Figure 2E–H).
IFITM3 redistribution toward the Golgi was consistently observed using three different
anti-IFITM3 antibodies (Figure S1). In control experiments, we pretreated IFITM-expressing
A549 cells with the antifungal drug amphotericin B (AmphoB), which is thought to antago-
nize the antiviral effect of IFITMs by sequestering membrane cholesterol [76]. In contrast
to CsA and CsH, AmphoB rescued IAVpp fusion with A549.IFITM1 and A549.IFITM3
cells without causing a notable relocalization of these proteins, as seen by immunostaining
(Figure S2). We did not analyze the expression and distribution of ectopically expressed
IFITM2 due its homology to IFITM3 resulting in a cross-reactivity of available antibodies.
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Figure 2. Cyclosporine A rescues virus fusion by relocalizing IFITM3 and not by inducing its
degradation. A549.Vector (A) and A549.IFITM3 (B) cells were incubated with DMSO or 20 µM
CsA or CsH for 1.5 h before adding the BlaM-Vpr containing pseudoparticles for virus fusion
measurements. Data are means and S.D. of two independent combined experiments, each performed
in triplicate. Statistical analysis was performed using one-way ANOVA. For Western blot analysis,
A549.IFITM3 were incubated with DMSO or 20 µM CsA or CsH for 1.5 h (C) or 16 h (D), and total
cell lysate was analyzed. Note that Western blots shown in (C,D) are representative experiments; the
average numbers and S.D. for normalized IFITM band intensities from 3 independent experiments
are provided in the tables beneath the blots. The effect of 1.5 h pretreatment with CsA appears
significant due to the inclusion of one outlier experiment. A549.IFITM3 cells were incubated with
DMSO or 20 µM CsA or CsH for 1.5 h (E–G), fixed, permeabilized, and stained for IFITM3. For each
sample, 3 image fields were acquired. The area covered by IFITM3′s signal per cell was determined
from the images using ImageJ, after thresholding, creating an IFITM3-based mask and normalizing to
the cell numbers (H). Statistical analysis was performed using Student’s t-test. * p < 0.05; ** p < 0.01;
*** p < 0.001; ns, not significant See also Figures S1 and S2.



Biomolecules 2023, 13, 937 8 of 20

To further explore the notion that the CsA antagonism of IFITMs is not through the
degradation of these proteins, A549.Vector, A549.IFITM1, and A549.IFITM3 cells were
treated either with cycloheximide (CHX) to block protein synthesis or a combination of
CHX and CsA for 1.5 h. Unlike IFITM3, IFITM1 only modestly inhibited IAVpp fusion
(Figure S3A), as expected [1]. CsA treatment effectively rescued IAVpp fusion with IFITM3-
expressing cells. Importantly, CHX treatment did not significantly affect IAVpp fusion
with control or IFITM-expressing cells in the presence or absence of CsA. An analysis of
lysates of cells treated with CsA and/or CHX showed no detectable degradation of IFITM3,
regardless of the treatment regimen (Figure S3B).

Taken together, our data show that (1) neither IFITM1 nor IFITM3 is quickly degraded
in the stable A549 cell lines in the presence of CHX or both CHX and CsA; and (2) a
relatively short exposure to CsA that effectively rescues viral fusion does not induce
noticeable IFITM3 degradation, even after blocking de novo protein synthesis. These
results are in line with the reported IFITM3 turnover time under normal conditions of
about 4 h [77]. Thus, IFITM3 degradation does not significantly contribute to the rescue of
virus–cell fusion with IFITM3-expressing cells.

3.3. Cyclosporine Treatment Quickly Relocates IFITMs toward the Golgi Area

Since IFITM3 removal from the sites of IAV entry (endosomes) is most likely re-
sponsible for the rescue of virus fusion in CsA-treated cells, we sought to investigate
cellular compartments to which this restriction factor was retargeted. The co-staining of
A549.IFITM3 cells with anti-IFITM3 and anti-Golgi antibodies (TGN46 for trans-Golgi, and
GM130 for cis-Golgi) [78,79] revealed a markedly increased colocalization of IFITM3 with
both Golgi markers in CsA-treated cells compared to the DMSO control (Figure 3). Thus,
CsA appears to retarget IFITM3 to the Golgi apparatus.

We next examined the effect of CsA on IFITM1, which lacks the N-terminal endocytic
20YEML23 motif of IFITM3 and is therefore primarily localized to the PM [28,43]. CsA
treatment relocalized IFITM1 toward the Golgi compartment, similar to the effect of this
drug on IFITM3 localization (Figure 4). To further assess the ability of CsA to relocalize
IFITMs from the PM, we tested two IFITM3 mutants, the IFITM3 ∆21 (IFITM3 lacking the
first 21 N-terminal residues) and the IFITM3 Y20E mutant that lacks the tyrosine-based
YEML internalization signal [28,40,41]. As in the case of IFITM1 and wild-type IFITM3,
CsA treatment relocalized both mutants to the Golgi (Figure 4).

Our data suggest that CsA induced a relocalization of IFITM proteins from the PM
and endosomes toward the Golgi that does not involve the endocytic sorting motif with the
N-terminal domain of IFITM3. Such relocalization appears to restore the ability of viruses
to effectively enter IFITM-expressing cells.

We assessed the kinetics of IFITM relocalization toward the Golgi by treating
A549.IFITM1 and A549.IFITM3 cells with CsA for varied times and measuring IFITM
colocalization with the cis-Golgi marker, GM130, by immunofluorescence. The initial
IFITM3 relocalization toward the Golgi was detected in a fraction of cells as early as
15 min after CsA application (Figure 5A). By 30 min, most of the cells exhibited IFITM3
accumulation around the Golgi, with maximum colocalization being achieved by 45 min
of treatment (Figure 5B,C,F). A similar, albeit somewhat slower, time course of relocal-
ization toward the Golgi was observed in IFITM1-expressing cells (Figure 5G–L). The
difference between the IFITM3 and IFITM1 redistribution dynamics could be due to the
slower uptake of IFITM1 from the plasma membrane compared to IFITM3 transport
from endosomes toward the Golgi.
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Figure 3. Cyclosporine A relocates IFITM3 toward the Golgi apparatus. A549-IFITM3 cells were in-
cubated with DMSO or CsA (20 µM) for 1.5 h, fixed, permeabilized, and stained for respective pro-
teins. For each sample, 5 image fields were acquired. The JaCoP ImageJ plugin was used to calculate 
IFITM3, TGN46, and GM130 colocalization using both Pearson’s and Mander’s coefficient. Statistical 
analysis was performed using Student’s t-test. **, p < 0.01; *** p < 0.001. See also Figures S1 and S2. 

Figure 3. Cyclosporine A relocates IFITM3 toward the Golgi apparatus. A549-IFITM3 cells were
incubated with DMSO or CsA (20 µM) for 1.5 h, fixed, permeabilized, and stained for respective pro-
teins. For each sample, 5 image fields were acquired. The JaCoP ImageJ plugin was used to calculate
IFITM3, TGN46, and GM130 colocalization using both Pearson’s and Mander’s coefficient. Statistical
analysis was performed using Student’s t-test. **, p < 0.01; *** p < 0.001. See also Figures S1 and S2.
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Figure 4. Cyclosporine A induces IFITM3 relocalization irrespective of the N-terminal endosome-
sorting signal. A549 cells transduced with wild-type IFITM3, IFITM3 Y20E, IFITM3 NΔ21, or IFITM1 
were incubated with CsA (20 µM) for 1.5 h, fixed, and stained for respective protein together with 
Golgi marker GM130. For each sample, 3 image fields were acquired. The JaCoP ImageJ plugin was 
used to measure respective IFITM and GM130 colocalization. Since expression of IFITM1 and 
IFITM3 mutants was not homogenous across the acquired images, we decided to compare IFITM 
and GM130 colocalization using Mander’s correlation (% of IFITM signal overlapping with GM130 
signal) instead of Pearson’s correlation (relationship between signals) for this and other images. Sta-
tistical analysis was performed using Student’s t-test.  *** p < 0.001. 

Figure 4. Cyclosporine A induces IFITM3 relocalization irrespective of the N-terminal endosome-
sorting signal. A549 cells transduced with wild-type IFITM3, IFITM3 Y20E, IFITM3 N∆21, or IFITM1
were incubated with CsA (20 µM) for 1.5 h, fixed, and stained for respective protein together with
Golgi marker GM130. For each sample, 3 image fields were acquired. The JaCoP ImageJ plugin was
used to measure respective IFITM and GM130 colocalization. Since expression of IFITM1 and IFITM3
mutants was not homogenous across the acquired images, we decided to compare IFITM and GM130
colocalization using Mander’s correlation (% of IFITM signal overlapping with GM130 signal) instead
of Pearson’s correlation (relationship between signals) for this and other images. Statistical analysis
was performed using Student’s t-test. *** p < 0.001.
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Figure 5. Cyclosporine-A-mediated IFITM3 relocalization toward the Golgi is completed within 45 
min. A549 cells transduced with either IFITM3 or IFITM1 were incubated with CsA (20 µM) for 
indicated time, fixed, and stained for respective protein together with Golgi marker GM130. (A–E) 
Images of IFITM3 and Golgi signals after the indicated time of pretreatment with CsA or DMSO 
(control). (F) Analysis of colocalization of IFITM3 and Golgi markers from panels A-E. (G–K) Images 
of IFITM1 and Golgi signals after the indicated time of pretreatment with CsA or DMSO (control). 

Figure 5. Cyclosporine-A-mediated IFITM3 relocalization toward the Golgi is completed within
45 min. A549 cells transduced with either IFITM3 or IFITM1 were incubated with CsA (20 µM)
for indicated time, fixed, and stained for respective protein together with Golgi marker GM130.
(A–E) Images of IFITM3 and Golgi signals after the indicated time of pretreatment with CsA or
DMSO (control). (F) Analysis of colocalization of IFITM3 and Golgi markers from panels A–E.
(G–K) Images of IFITM1 and Golgi signals after the indicated time of pretreatment with CsA or
DMSO (control). (L) Analysis of colocalization of IFITM3 and Golgi markers from panels G–K. For
each sample, 5 image fields were acquired. The JaCoP ImageJ plugin was used to measure respective
IFITM and GM130 colocalization.
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3.4. Prolonged CsA Exposure induces IFITM3 Degradation in Cells Expressing Low/Endogenous
Levels of This Protein

Since IFITM3 is overexpressed in A549.IFITM3 cells, we asked whether CsA and CsH
have similar effects on IFITM3 distribution and degradation in HeLa cells that endoge-
nously express IFITMs [70]. Mock-transduced HeLa cells (HeLa.Vector) and cells ectopically
expressing IFITM3 (HeLa.IFITM3) were treated with CsA or CsH for 1.5 h and infected
with VSVpp, IAVpp, or LASVpp. CsA and CsH markedly enhanced the VSVpp and IAVpp
fusion in HeLa.IFITM3 cells, but not in control HeLa.Vector cells (Figure 6A,B). The ob-
served modest (not statistically significant) enhancement of virus fusion with HeLa.Vector
cells is most likely due to the endogenous expression of IFITM3 in these cells [76].

Importantly, while a 1.5 h pretreatment with CsA or CsH effectively rescued viral
fusion with HeLa cells and caused a dramatic IFITM3 redistribution toward the Golgi, this
treatment did not induce a significant IFITM3 degradation (Figure 6C,F). In stark contrast to
A549.IFITM3 cells, which did not exhibit notable IFITM3 degradation even after prolonged
treatment with cyclosporines (Figure 2C,D), prolonged treatment (4 or 16 h) of HeLa cells
strongly reduced the IFITM3 level (Figure 6D,E).

Since the endogenous expression of IFITM3 in HeLa cells is relatively low [76], we
tested if cyclosporines induce IFITM degradation only when it is expressed at low, endoge-
nous levels. Toward this goal, HeLa cells were pretreated for 24 h with interferon-alpha,
followed by treatment with CsA or CsH for 1.5 h (Figure 6G) or 4 h (Figure 6H). We ob-
served no IFITM3 degradation in interferon-treated cells upon CsA or CsH treatment for
4 h, suggesting that the cyclosporine-driven IFITM3 degradation in HeLa cells occurs only
for the basal, low expression levels of this protein. To verify that interferon treatment itself
has no effect on IFITM3 distribution, we immunostained the interferon-alpha-stimulated
HeLa cells for IFITM3 and GM130 after pretreatment with CsA or DMSO (Figure 6I). While
interferon treatment increased the IFITM3 expression, as expected, interferon did not affect
the IFITM3′s subcellular distribution under basal conditions or its relocalization toward
the Golgi in the presence of CsA (Figures 6I and S4).

We sought to further test the notion that the IFITM expression levels in the context
of HeLa cells determine the extent of its degradation by cyclosporines. For this purpose,
HeLa IFITM1/2/3 triple knockout cells lacking IFITM1, IFITM2, and IFITM3 (hereafter
referred to as HeLa-TKO cells) [53] were utilized. As expected, these cells supported
efficient VSVpp and IAVpp fusion, which was not affected by cyclosporine treatment
(Figure 7A). In comparison, a potent rescue of IAVpp and VSVpp fusion, but not LASVpp
fusion, was detected in HeLa-TKO cells ectopically expressing IFITM3 (referred to as Hela-
TKO.IFITM3, Figure 7A,B). The treatment of HeLa-TKO.IFITM3 cells with CsA or CsH for
a short (1.5 h, Figure 7C) or intermediate (4 h, Figure 7D) length of time did not affect the
IFITM3 expression level, as was the case for A549.IFITM3 or interferon-treated HeLa cells
(Figures 2C,D and 6F–H). Finally, the immunostaining of HeLa-TKO and HeLa-TKO.IFITM3
for IFITM3 and GM130 revealed a markedly increased colocalization of these proteins after
CsA treatment (Figure 7E).

We conclude that exposure to CsA and CsH leads to IFITM3 degradation only
in cells expressing low/endogenous levels of this protein and only upon prolonged
(>4 h) incubation, while ectopic overexpression or interferon stimulation render the
protein resistant to degradation by these drugs. Regardless, CsA and CsH relocalize
IFITM3 toward the Golgi and rescue virus–cell fusion in both low- and high-IFITM3-
expressing cells, further supporting the IFITM3 relocalization-based mechanism of
IFITM antagonism.
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Figure 6. Cyclosporine A induces IFITM3 degradation in HeLa cells. HeLa.Vector (A) and
HeLa.IFITM3 (B) cells were incubated with DMSO or 20 µM CsA, or CsH for 1.5 h before adding
BlaM-Vpr containing pseudoparticles for virus–cell fusion measurements. Data are means and S.D.
of two independent combined experiments, each performed in triplicate. Statistical significance
was assessed using one-way ANOVA. For Western blot analysis, HeLa cells were incubated with
DMSO or 20 µM CsA or CsH for 1.5 h (C), 4 h (D), or 16 h (E), and total cell lysate was analyzed. For
immunostaining analysis, HeLa cells were incubated with DMSO or 20 µM CsA or CsH for 1.5 h,
fixed, permeabilized, and stained for IFITM3 (F). For each sample, 3 image fields were acquired. The
JaCoP ImageJ plugin was used to measure respective IFITM and GM130 colocalization. HeLa cells
were treated with 500 units of interferon-alpha for 24 h followed by DMSO, CsA, or CsH treatment
for 1.5 h (G) or 4 h (H) and whole-cell lysate was analyzed by Western blotting. Densitometry
analysis was performed using ImageJ for three independent experiments. Statistical significance
was determined using Student’s t-test. * p < 0.05. For IFN-treated HeLa cells, only duplicates were
used for this analysis. (I) HeLa cells were treated as stated above, fixed, and stained for IFITM3
and GM130. For each sample, 3 image fields were acquired. The JaCoP ImageJ plugin was used
to measure respective IFITM and GM130 colocalization. Statistical analysis was performed using
Student’s t-test. * p < 0.05; *** p < 0.001; ns, not significant. See also Figure S5.
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CsH for 1.5 h before adding BlaM-Vpr containing pseudoparticles for virus–cell fusion measure-
ments. Data are means and S.D. of two independent combined experiments, each performed in trip-
licate. Statistical significance was assessed using one-way ANOVA. For Western blots, HeLa-
TKO.IFITM3 was incubated with DMSO or 20 µM CsA or CsH for 1.5 h (C) or 4 h (D), and total cell 
lysate was analyzed. The mean-normalized band intensities and S.D. from three independent ex-
periments are shown under the gels. (E) HeLa-TKO and HeLa-TKO.IFITM3 cells were treated as 
indicated previously, fixed, and stained for IFITM3 and GM130. For each sample, 3 image fields 
were acquired. The JaCoP ImageJ plugin was used to measure respective IFITM and GM130 colo-
calization. Statistical analysis was performed using Student’s t-test. ** p < 0.01; *** p < 0.001; ns, not 
significant. 

  

Figure 7. Cyclosporine-A-driven rescue of viral fusion is through IFITM3 antagonism. HeLa-
TKO.Vector (A) and HeLa-TKO.IFITM3 (B) cells were incubated with with DMSO or 20 µM CsA or
CsH for 1.5 h before adding BlaM-Vpr containing pseudoparticles for virus–cell fusion measurements.
Data are means and S.D. of two independent combined experiments, each performed in triplicate.
Statistical significance was assessed using one-way ANOVA. For Western blots, HeLa-TKO.IFITM3
was incubated with DMSO or 20 µM CsA or CsH for 1.5 h (C) or 4 h (D), and total cell lysate was
analyzed. The mean-normalized band intensities and S.D. from three independent experiments
are shown under the gels. (E) HeLa-TKO and HeLa-TKO.IFITM3 cells were treated as indicated
previously, fixed, and stained for IFITM3 and GM130. For each sample, 3 image fields were acquired.
The JaCoP ImageJ plugin was used to measure respective IFITM and GM130 colocalization. Statistical
analysis was performed using Student’s t-test. ** p < 0.01; *** p < 0.001; ns, not significant.
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3.5. Rapamycin Induces IFITM Redistribution and Rescues Viral Fusion

Previous studies have reported the ability of rapamycin to interfere with IFITM3′s
antiviral activity upon prolonged (>4 h) treatment of cells and concluded that this ef-
fect was due to the degradation of this protein via a lysosomal pathway [59,60]. The
pretreatment of IFITM1- and IFITM3-expressing (or mock-transduced) A549 cells with
rapamycin for 1.5 h enhanced IAVpp–cell fusion measured by the BlaM assay, albeit not as
potently as with CsA (Figure S5A). More importantly, rapamycin also redistributed IFITM3
toward the Golgi apparatus in A549.IFITM3 cells, although this distribution was not as
pronounced as after CsA treatment (compare Figure S5B and Figures 3–5). In line with
previous studies [59,60], Bafilomycin A1 (BafA1), a drug that prevents the acidification
of endosomes and lysosomes [80], largely prevented IFITM3 degradation (Figure S6A,B)
upon rapamycin and also cyclosporine treatment in HeLa cells. Although the effect of
cyclosporines and rapamycin on IFITM1 degradation was milder than on IFITM3, we still
observed lower IFITM1 degradation in BafA1-treated cells (Figure S6A,B). Treatment with
NH4Cl (a lysosomotropic agent) also prevented IFITM degradation, further supporting the
role of a lysosomal pathway in cyclosporine- and rapamycin-mediated IFITM degradation
(Figure S6C). Strikingly, MG-132 (a proteasome inhibitor) also inhibited IFITM1 and IFITM3
degradation (Figure S6C), suggesting the involvement of a proteasomal degradation path-
way in the regulation of IFITM expression levels.

Together, our data suggest that CsA, CsH, and rapamycin can quickly translocate
IFITMs to the Golgi and thereby rescue viral fusion.

4. Discussion

Our results reveal a novel mechanism for the cyclosporine A and H antagonism of the
antiviral activity of IFITM1 and IFITM3 through a redistribution of these proteins from the
PM and endosomes, respectively, toward the Golgi apparatus. Similarly, rapamycin also
induces a redistribution of IFITM3 toward the Golgi, albeit less potently than cyclosporines.
The IFITMs’ relocation to the Golgi is relatively quick (under 1 h), leading to a cell-type-
independent recovery of the VSV G and IAV HA pseudovirus fusion with IFITM-expressing
cells. The lack of a significant effect of cyclosporine on virus fusion with IFITM-negative
cells implies that fusion is enhanced through suppressing the IFITM’s antiviral activity and
not through a non-specific fusion-enhancing effect of these drugs. Although prolonged
incubation (>4 h) with cyclosporines does induce a degradation of IFITMs in cells expressing
low/endogenous levels of these proteins, no notable reduction in the IFITM level is detected
at the time of their relocalization toward the Golgi. Moreover, prolonged CsA/CsH
treatment does not result in IFITM degradation in cells overexpressing these proteins or
parental cells pretreated with interferon. It is also worth noting that blocking de novo
protein synthesis with cycloheximide demonstrates that IFITM3 is not degraded within a
few hours under basal conditions (Figure S3B). Collectively, these findings strongly imply
that the primary mechanism for rescuing the viral infection in IFITM-expressing cells
pretreated with cyclosporines or rapalogs is the sequestration of these proteins in the Golgi
area and not IFITM degradation, as proposed by previous studies [60,61].

In agreement with the observed IFITM relocalization to the perinuclear area under
our experimental conditions, previous studies have reported an increased colocalization
with endolysosomal markers after pretreatment with cyclosporine H or rapalog [60,61], but
did not examine colocalization with the Golgi markers. We note, however, that the IFITM
accumulation in the perinuclear space observed in these studies was not as pronounced as
in our experiments. The differences in the IFITM distribution may be due to differences in
the immunostaining and/or cell pretreatment protocols.

How cyclosporines induce IFITM redistribution to the Golgi is not understood. Clearly,
at least two effects are required for the observed phenotype—quick IFITM transport to
and their entrapment within the Golgi. Without blocking IFITM’s exit from the Golgi,
its colocalization with this organelle would not be so pronounced, as the proteins would
continuously redistribute to the PM and endosomes. A recent work has identified a motif
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within the cytoplasmic intracellular loop (CIL) of IFITM3 that is involved in its export from
the Golgi [81]. Mutations in this motif diminish IFITM3′s antiviral activity [82] and trap it
in the Golgi, causing a “traffic jam” for other glycoproteins. The authors also show that
overexpression of wild-type IFITM3 tends to impair its exit from the Golgi. It is thus likely
that IFITM entrapment in the Golgi is largely a result of quick redistribution from the PM
or endosomes, which greatly increases the IFITM concentration in the Golgi.

What drives IFITM relocalization to the Golgi? The fact that CsH, which does not
bind cyclophilins, is nearly as potent as CsA in driving the IFITM redistribution, rules
out the involvement cyclophilins and calcineurin inhibition [72]. Many proteins undergo
retrograde transport from early and late endosomes to the trans-Golgi. At least three
pathways for this transport have been described: retromer, AP-1, and Rab9 (reviewed
in [83–85]). It is possible that, in the presence of CsA, IFITM1 is internalized into early
endosomes before being transported to the Golgi, consistent with its delayed accumulation
in the Golgi compared to IFITM3 (Figure 5). All three above pathways are controlled by
different proteins, but in many cases their functions and cargo overlap. Presently, it is
unclear which pathway is responsible for IFITMs’ transport to the Golgi and whether these
proteins accumulate in cis- or trans-Golgi. Further experiments involving biochemical
assays and/or super-resolution microscopy are needed to identify the IFITM-enriched
compartment(s) in cells treated with cyclosporines.

Recent studies revealed that, besides their antiviral activity, IFITMs can negatively
impact key cellular functions. IFITM overexpression has been implicated in cancer [86,87],
the disruption of trophoblast fusion required for placenta formation [20], and the inhibition
of endosomal transport/fusion, including the back-fusion of intraluminal vesicles with a
limiting membrane of multivesicular bodies [88]. Additionally, the endogenous expression
of IFITMs in stem cells diminishes the efficiency of lentivirus-based gene therapy [60,61].
Pretreatment with cyclosporines allows for a quick and nontoxic removal of IFITMs from
their respective localization sites, thereby rendering the cells much more susceptible to
viral transduction. It is therefore important to understand processes that regulate IFITM
transport and degradation in cells to be able to lessen their adverse effects, potentiate
their antiviral activity, and increase the spectrum of restricted viruses through controlling
their sub-cellular localization and expression levels. Regardless of the exact mechanism
of IFITM retention, our results demonstrate the importance of IFITM trafficking through
cellular compartments for their antiviral activity and implicate yet unknown host factors
in regulating the transport of these restriction factors. Our future studies will aim to
identify host factors/processes responsible for the effects of cyclosporines on IFITMs’
subcellular localization.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biom13060937/s1. Figure S1. Immunofluorescence analysis of
CsA-induced IFITM3 relocalization using different anti-IFITM3 antibodies; Figure S2. Amphotericin
B rescues viral fusion in IFITM-expressing cells without inducing its relocalization; Figure S3. De
novo protein synthesis is not required for viral fusion rescue by CsA; Figure S4. Effects of IFN and
CsA treatment on IFITM3 expression and distribution in HeLa cells; Figure S5. Rapamycin rescues
IAVpp fusion with IFITM-expressing cells and promotes IFITM redistribution toward the Golgi area;
Figure S6. Analysis of IFITM degradation in the presence of cyclosporines and rapamycin; Table S1.
Validation of the BlaM virus–cell fusion assay for high-throughput screening of LOPAC library.
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