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Abstract: Doxorubicin (DOX) and mitoxantrone (MTX) are classical chemotherapeutic agents used
in cancer that induce similar clinical cardiotoxic effects, although it is not clear if they share similar
underlying molecular mechanisms. We aimed to assess the effects of DOX and MTX on the car-
diac remodeling, focusing mainly on metabolism and autophagy. Adult male CD-1 mice received
pharmacologically relevant cumulative doses of DOX (18 mg/kg) and MTX (6 mg/kg). Both DOX
and MTX disturbed cardiac metabolism, decreasing glycolysis, and increasing the dependency on
fatty acids (FA) oxidation, namely, through decreased AMP-activated protein kinase (AMPK) and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) content and decreased free carnitine (C0)
and increased acetylcarnitine (C2) concentration. Additionally, DOX heavily influenced glycolysis,
oxidative metabolism, and amino acids turnover by exclusively decreasing phosphofructokinase
(PFKM) and electron transfer flavoprotein-ubiquinone oxidoreductase (ETFDH) content, and the
concentration of several amino acids. Conversely, both drugs downregulated autophagy given by the
decreased content of autophagy protein 5 (ATG5) and microtubule-associated protein light chain 3
(LC3B), with MTX having also an impact on Beclin1. These results emphasize that DOX and MTX
modulate cardiac remodeling differently, despite their clinical similarities, which is of paramount
importance for future treatments.

Keywords: cardiotoxicity; anticancer agents; molecular mechanisms; mitochondrial dynamics

1. Introduction

Doxorubicin (DOX) and mitoxantrone (MTX) belong to the class of anthracyclines and
anthracenediones, respectively, being classical chemotherapeutic agents. These drugs have
been in clinical practice for several decades and have been widely used to successfully treat
numerous solid cancers, leukemias, and lymphoma. Moreover, MTX was also approved
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for the treatment of multiple sclerosis. The most described anticancer mechanism of action
for both DOX and MTX is the inhibition of topoisomerase II (TOP2). Nonetheless, other
mechanisms may be relevant [1–3].

Conversely, these anticancer agents are not selective, and they affect non-target organs,
resulting in severe adverse side effects, such as fatigue, alopecia, myelosuppression, mu-
cositis, and cardiotoxicity [3]. The cardiotoxicity of anthracyclines has been known since
the 1970s. The synthesis of MTX was expected to minimize the cardiotoxic effects of DOX
while keeping its anticancer efficacy, which unfortunately was not the case. Taking into
consideration the isotoxic/pharmacokinetic dose conversion between them, it has become
accepted that one molecule of MTX sensibly exhibits the similar anticancer and cardiotoxic
effects of three to four molecules of DOX [4–6]. Clinical studies show that both DOX and
MTX have similar clinical cardiotoxic manifestations, including arrhythmias, electrocar-
diographic changes, myopericarditis, and left ventricular dysfunction (LVD), which may
progress to heart failure [6–8]. Indeed, previous studies performed in mice have shown
that DOX treatment led to decreased cardiac output, heart rate, stroke volume, and blood
pressure, as well as systolic and diastolic left ventricle function and decreased ejection frac-
tion [9–11]. For MTX, echocardiographic changes have been reported on patients treated for
multiple sclerosis and acute myeloid leukemia, including reduced ejection fraction along
with diastolic and systolic dysfunction as the major findings [12,13]. Thus, the patients
requiring chemotherapy with these agents may have their life span and quality of life
affected, as cardiotoxicity is an important and clinically limiting side effect of their use.
Cardiotoxicity is, nowadays, the second cause of death in cancer patients [3,14]. Taking the
notion that patients’ health may be extremely compromised, lifelong cumulative maximum
recommended doses for these drugs were established for humans, namely 400–550 mg/m2

for DOX and 100–140 mg/m2 for MTX [15].
Classically, DOX-induced cardiotoxicity has been attributed to reactive oxygen species

(ROS) formation due to its ability to enter redox cycling, leading to oxidative stress, lipid
peroxidation, protein modification, DNA damage, cardiomyocyte apoptosis, mitochon-
drial damage, and disturbance of calcium and iron homeostasis. At present, new adverse
outcome pathways (AOPs) have been described referring to the modulation of signaling
pathways dependent or independent of cardiac TOP2 β inhibition to explain the cardiotox-
icity of anthracyclines [15–23]. On the other hand, although early on the discovery of
the mechanisms for cardiotoxicity of MTX they were considered similar to those of DOX,
nowadays, it is established that they are dissimilar. MTX AOPs are far less studied when
compared to DOX AOPs, but it seems that MTX leads to impaired cardiac ATP and iron
homeostasis, and affects mitochondria metabolism [15,18,24–26].

Under healthy conditions, the heart muscle obtains approximately 60% of energy
from fatty acids (FA), 35% from carbohydrates, and 5% from ketone bodies and amino
acids. Among these energy sources, FA are the most important in the cardiac muscle
since their oxidation allows higher levels of ATP, produced mainly in the mitochondria,
which is essential to keep cardiac function and homeostasis [27,28]. Other signaling path-
ways, including autophagy, may be activated during metabolic stress, such as nutrient
deprivation. Indeed, autophagy represents an adaptive process that allows cell survival in
stressful conditions. Moreover, the specific elimination of damaged mitochondria through
autophagy (mitophagy) allows for reducing mitochondria-mediated apoptosis and necrosis
in the myocardium [29]. Considering the massive number of mitochondria inside the
heart muscle, the regulation of mitochondrial homeostasis is essential to keep the normal
cardiac function [28,30]. Mitochondria are known to be targets for both DOX and MTX, so it
becomes pivotal to study them in the context of cardio-oncology. Indeed, dysregulation of
these processes has been associated with heart failure in both patients and animal models,
like what is seen for the cardiotoxicity of anticancer drugs [18,29,31].
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Therefore, this study aimed to assess the effects of DOX and MTX on cardiac molecular
mechanisms focusing on the heart’s metabolism, autophagy, and mitochondrial biogenesis,
all key regulators of cardiac homeostasis. To this end, we used adult male CD-1 mice,
which received multiple administrations of these drugs to mimic the human therapy, with
maximum cumulative doses of 18 mg/kg and 6 mg/kg for DOX and MTX, respectively.
These cumulative doses are clinically equivalent and pharmacologically relevant [4,5].

2. Materials and Methods
2.1. Chemicals

Generally, all reagents were of the highest grade available. Rabbit anti-microtubule-
associated protein light chain 3 (LC3B, L7543), horseradish peroxidase-conjugated anti-goat
(A5420) antibodies, acetyl coenzyme A (acetyl-CoA) sodium salt, bovine serum albumin
(BSA), 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), DOX hydrochloride, MTX dihydrochlo-
ride, phenylmethanesulfonyl fluoride (PMSF), phosphate-buffered saline (PBS), Ponceau
S, protease inhibitors cocktail, sodium chloride (NaCl), Triton X-100, and Tween20 were
obtained from Sigma-Aldrich (St. Louis, MO, USA). Deuterated acylcarnitine internal
standard solutions were obtained from Isotope labs (Cambridge, MA, USA). Horseradish
peroxidase-conjugated anti-mouse (NA931) or anti-rabbit (NA934) antibodies were ob-
tained from GE Healthcare (Buckinghamshire, UK). Enhanced chemiluminescence (ECL)
reagent was obtained from Bio-Rad (Hercules, CA, USA).

Goat polyclonal anti-sirtuin 3 (SIRT3, sc-49744), mouse monoclonal anti-Beclin1 (sc-
48341), anti-B-cell lymphoma-2 (BCL2, sc-7382), anti-glycogen synthase kinase 3 β (GSK-3β,
sc-377213), anti-mitofusin1 (Mfn1, sc-166644), anti-Parkin (sc-32282), rabbit polyclonal
anti-heat shock protein 27 kDa (HSP27, sc-9012) and anti-mitochondrial transcription factor
A (Tfam, sc-28200) antibodies were obtained from Santa Cruz Technologies (Dallas, Texas,
USA). Mouse anti-heat shock protein 70 kDa (HSP70, SPA-810) antibody was obtained from
Stress gen (Farmingdale, NY, USA).

Mouse monoclonal anti-AMP-activated protein kinase (AMPK, ab80039), anti-ATP
synthase subunit β (ATPB, ab14730), anti-BCL2 interacting protein 3 (BNIP3, ab10433), anti-
glucose transporter GLUT4 (GLUT4, ab48547), anti-peroxisome proliferator-activated recep-
tor γ (PPARγ, ab41928), rabbit monoclonal anti-autophagy protein 5 (ATG5, ab108327), anti-
BCL2 associated X-protein (BAX, ab32503), anti-phosphofructokinase (PFKM, ab154804),
rabbit polyclonal anti-AMPK phosphorylated (pAMPK, ab23875), anti-electron trans-
fer flavoprotein-ubiquinone oxidoreductase (ETFDH, ab91508), anti-glyceraldehyde-3-
phosphate dehydrogenase (GAPDH, ab9485), anti-peroxisome proliferator-activated recep-
tor α (PPARα, ab24509), and anti-peroxisome proliferator-activated receptor γ coactivator
1 α (PGC-1α, ab191838) antibodies were obtained from Abcam (Cambridge, UK).

2.2. Animals

Twenty-seven adult CD-1 male mice (Mus musculus) were obtained from Charles
River Laboratories (L’Arbresle, France) and maintained in the Institute of Biomedical
Sciences Abel Salazar (ICBAS-UP) rodent animal house facility, following previously
described procedures and conditions [32]. The experimental protocol was performed
in accordance with the European Council Directive (2010/63/EU). The project was ap-
proved by the local animal welfare body (ORBEA, project nº 140/2015) and by the national
competent authorities—General Directorate of Food and Veterinary (DGAV, reference
nº 0421/000/000/2016).
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2.3. Experimental Design

Mice were divided into the following three groups: control (CTRL, n = 9), DOX
(n = 9), and MTX (n = 9). All animals received six intraperitoneal (i.p.) injections of either
saline solution (0.9% NaCl, CTRL group), DOX (cumulative dose of 18 mg/kg of DOX),
or MTX (cumulative dose of 6 mg/kg of MTX) solutions prepared in 0.9% NaCl in sterile
conditions, distributed twice a week for three weeks. The CTRL group received 0.9% NaCl
i.p. injections in the same volume and conditions as the drug-exposed groups.

The injection schedule was selected to mimic human cancer therapy consisting of
multiple administrations at separated time-points [3,33]. The cumulative doses equivalence
to humans was achieved using the allometric scaling and the conversion factor 37 for
body area surface between mice and humans, as recommended by the US Food and Drug
Administration [34]. The 18 mg/kg of DOX and the 6 mg/kg of MTX in adult mice
corresponded roughly to 100 mg/m2 or 30 mg/m2 in humans, respectively, and were
much lower than the maximum lifetime doses recommended for patients [15]. One week
after the last i.p. injection, mice were deeply anesthetized with isoflurane and sacrificed
by exsanguination.

2.4. Blood Collection and Serum Analysis

After reaching deep anesthesia, the abdominal cavity was opened to expose the inferior
vena cava. Blood was collected in tubes containing an inert clotting agent (Vetlab ZT Plain + Gel,
1.1 mL fill, Vetlab Supplies, West Sussex, UK) and was allowed to clot at room temperature
for at least 45 min. The clot was pelleted by centrifugation (900g ×, 10 min, room tem-
perature), and the serum obtained was aliquoted and stored at −80 ◦C until the analysis.
An aliquot was used to determine serum total protein, albumin, and glucose levels, as
well as alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), and creatine
kinase-MB (CK-MB) activity using an AutoAnalyzer (Prestige 24i, Cormay PZ, Diamond
Diagnostics, Holliston, MA, USA).

2.5. Heart Collection and Homogenization

After blood collection, hearts were rapidly excised, carefully dried, and weighed. A
slice comprising the two cardiac ventricles was homogenized in lysis buffer [100 mM potas-
sium phosphate, pH 7.4, 0.1% (v/v) Triton X-100, with protease inhibitors cocktail (1:400)
and PMSF (1:1000); 50 mg of tissue/mL of buffer] using a Teflon pestle on a tight-fitting
Potter-Elvehjem glass homogenizer at 0–4 ◦C. The cardiac homogenates were aliquoted and
stored at −80 ◦C for further biochemical analysis. The protein content of the homogenate
was assessed with the commercial method DC Protein Assay (Bio-Rad, Hercules, CA, USA),
following the manufacturer’s recommendations and using BSA as standard.

2.6. Histological Analysis

Histological assessment of the heart was performed as previously reported [35,36].
Hematoxylin and eosin staining was performed on heart sections to assess tissue damage.
The images were taken with a Carl Zeiss Imager A1 light microscope equipped with an
AxioCam MRc 5 digital camera (Oberkochen, Germany).

2.7. Western Blotting Analysis

The amount of protein (30 µg) from each group was loaded on a 12.5% SDS-PAGE
according to Laemmli [37] and then blotted onto a nitrocellulose membrane (Amersham
Protran, GE Healthcare, Germany) for 1 h at 200 mA in transfer buffer. Membranes were
blocked with 5% (w/v) non-fat dry milk in Tris-buffered saline with Tween 20 (TBS-T)
and then incubated overnight at 4 ◦C with the primary antibody diluted in 5% (w/v)
non-fat dry milk in TBS-T, pending on the antibody used (Supplementary Table S1). The
proteins searched were AMPK, ATG5, ATPB, BAX, BCL2, Beclin1, BNIP3, ETFDH, GAPDH,
GLUT4, GSK-3β, HSP27, HSP70, LC3B, Mfn1, pAMPK, Parkin, PFKM, PGC-1α, PPARα,
PPARγ, SIRT3, and Tfam. Membranes were washed with TBS-T and then incubated with
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the appropriate secondary horseradish peroxidase-conjugated antibody diluted 1:1000 or
1:2000 in 5% (w/v) non-fat dry milk in TBS-T. Membranes were exposed with ECL reagent
according to the manufacturer’s instructions. The immunoreactive bands were detected
using the ChemiDoc XRS+ Imaging System (Bio-Rad, Hercules, CA, USA), and the images
obtained were analyzed with Image Lab software version 6.0.1 (Bio-Rad, Hercules, CA,
USA) to retrieve the optical density of each sample in each membrane. Then, the band
intensity values obtained in each membrane were normalized to total protein using the
Ponceau S staining and uniformized using the CTRL samples as reference, being expressed
as relative content. One representative blot is presented in the figure results, but all the
blots obtained are indicated in Supplementary Figure S2. The protein normalization was
performed using Ponceau S staining since most housekeeping markers are affected in
the cardiac hypertrophy/dysfunction caused by anticancer drugs [38–42]. The Ponceau S
staining of each membrane is presented in Supplementary Figure S2.

2.8. Acylcarnitines and Amino Acids Analysis

Quantification of acylcarnitines and amino acids was conducted through tandem mass
spectrometry (MS/MS), according to Petucci et al. [43]. Cardiac homogenates (100 µL)
were vortexed and centrifuged at 20,000 g (10 ◦C, 5 min). The supernatant (100 µL) was
distributed into a 96-well plate and mixed with 100 µL of methanol containing deuterated
acylcarnitine internal standard solutions. The mixture was dried under a nitrogen flow and
shortly thereafter derivatized to the corresponding methyl esters by incubation with 60 µL
of 3N methanolic HCl (70 ◦C, 15 min). Finally, samples were dried using nitrogen flow and
reconstituted with 200 µL of 80% acetonitrile (0.01% formic acid) for flow injection MS/MS
in an API 4000 QTRAP (Sciex, Washington, DC, USA).

2.9. Determination of Citrate Synthase (CS) Activity

CS activity was measured according to Coore et al. [44]. In brief, the acetyl-CoA con-
nects with oxaloacetate, producing citrate and coenzyme A (CoA). The free thiol groups of
CoA react with DTNB, generating 2-nitro-5-thiolbenzoate anion that has a strong absorp-
tion at 412 nm (molar extinction coefficient of 13.6 mM−1 · cm−1). The absorbance was read
for approximately 2 min at 30 ◦C in a microplate reader (Multiskan GO, Thermo Fischer
Scientific, Northumberland, UK). The values obtained were normalized to total protein.

2.10. Statistical Analysis

Data are presented as mean ± standard deviation (SD). Statistical analysis was per-
formed with GraphPad Prism software (version 6.0.1, GraphPad software Inc, La Jolla,
CA, USA), and the experimental groups were compared using ordinary one-way ANOVA
followed by Tukey’s multiple comparisons test (if otherwise, it is mentioned in the figure
legend). Results were considered different when p-value<0.05. For p-value < 0.1 and > 0.05,
a tendency was assumed.

3. Results
3.1. DOX Had a Greater Impact on Whole-Body Weight and Serum Biomarkers of Heart Damage
Than MTX

All groups started with nine animals; however, four mice of the DOX group died in
the two last weeks of the protocol (44% of mortality), pointing to greater aggressiveness
than that observed for MTX, despite the cumulative doses administrated being clinically
equivalent [4,5]. Post-mortem examination of these mice revealed pleural effusions and a
dilated myocardium, but as they did not reach the final point of the experiment, they were
excluded from the analysis.
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Considering the remaining animals, none of the drugs changed the whole-body weight
(Table 1), despite the DOX group showing a tendency to have this parameter decreased
when compared to CTRL (p = 0.09). Moreover, no differences were seen for heart weight
and tibial length, as well as for the heart weight-to-whole-body weight and heart weight-
to-tibial length ratios among groups.

Table 1. Morphometric parameters measured one week after the last i.p. injection. Values are
expressed as mean ± SD (n = 9 for CTRL and MTX, n = 5 for DOX), and statistical analyses were
performed with the one-way ANOVA followed by Tukey’s multiple comparisons test.

Morphometric Parameter CTRL DOX MTX

Whole-body weight (g) 42.671 ± 3.450 37.727 ± 6.163 41.264 ± 2.906
Heart weight (g) 0.228 ± 0.048 0.229 ± 0.037 0.227 ± 0.031
Tibial length (cm) 1.90 ± 0.08 1.84 ± 0.05 1.84 ± 0.07

Heart weight-to-whole-body weight (mg/g) 5.30 ± 0.81 6.35 ± 2.20 5.49 ± 0.63
Heart weight-to-tibial length (g/cm) 0.120 ± 0.025 0.125 ± 0.021 0.123 ± 0.016

Neither DOX nor MTX influenced the levels of serum total protein, glucose, and albu-
min compared to the CTRL group (Table 2). Additionally, the activity of ALAT showed a
trend to be increased in DOX compared to MTX (p = 0.08), despite no significant differences
were found when comparing both groups with CTRL. Similarly, no differences were seen
in ASAT activity among groups. Nevertheless, the ASAT-to-ALAT ratio showed a tendency
to be increased in MTX compared to the CTRL group (p = 0.07). In fact, as can be seen in the
Supplementary Data, MTX changed the liver structure to a higher extent than DOX (please
check Supplementary Data and Figure S1). Regarding the heart, DOX showed a trend to
increase the activity of the cardiac isoform of CK, CK-MB, compared to CTRL (p = 0.08),
while MTX did not affect this marker of cardiac damage.

Table 2. Biochemical parameters measured on blood serum. Values are expressed as mean ± SD
(n = 9 for CTRL and MTX, n = 5 for DOX) of levels or activity, and statistical analyses were performed
with the one-way ANOVA followed by Tukey’s multiple comparisons test.

Serum Biochemical
Parameter CTRL DOX MTX

Total protein (g/L) 47.84 ± 3.42 42.72 ± 3.34 43.76 ± 6.26
Glucose (mg/dL) 359.2 ± 57.47 269.7 ± 115.0 333.2 ± 102.0

Albumin (g/L) 38.41 ± 2.15 36.28 ± 2.22 36.31 ± 4.29
ALAT (U/L) 48.41 ± 19.61 70.52 ± 30.02 40.06 ± 23.89
ASAT (U/L) 26.31 ± 7.42 41.00 ± 16.64 31.09 ± 13.67

ASAT-to-ALAT (U/L) 0.62 ± 0.24 0.63 ± 0.22 0.89 ± 0.27
CK-MB (U/L) 66.40 ± 20.36 92.44 ± 26.60 76.50 ± 16.50

ALAT: alanine aminotransferase, ASAT: aspartate aminotransferase, CK-MB: creatine kinase-MB.

3.2. DOX Had a Higher Effect on Cardiac Structure Than MTX

Both DOX and MTX induced structural alterations, as detailed in our previous works
using the same experimental paradigm [35,36]. In the heart, DOX led to interstitial oedema,
perinuclear vacuolization, and vascular congestion, as well as interstitial inflammatory
cell infiltration and marked necrotic zones, demonstrating the ability to cause cardiac
disorganization and degeneration (Figure 1). MTX also led to interstitial inflammatory cell
infiltration and necrotic zones, along with cytoplasmic vacuolization of cardiomyocytes, cel-
lular oedema, and vascular congestion. Although both drugs influenced cardiac structure,
DOX appears to cause more alterations in this experimental paradigm.
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Figure 1. Effect of DOX and MTX on heart structure assessed by light microscopy. Representative
light micrographs obtained through hematoxylin and eosin staining from CTRL, DOX, and MTX
mice are depicted (representative images of three animals analyzed per group). The CTRL group
showed normal morphology and structure. DOX group presented cellular oedema (pink arrow),
necrotic zones (green arrow), large and uncondensed nucleus (yellow arrow), vacuolization (red
arrow), inflammatory infiltration (black arrow), and vascular congestion (blue arrow). MTX group
showed cellular oedema (pink arrow), necrotic zones (green arrow), vacuolization (red arrow),
inflammatory infiltration (black arrow), and vascular congestion (blue arrow). Images were taken at
40×magnification (scale bar = 100 µm). For additional quantitative data, please consult references [35]
and [36] for DOX and MTX, respectively.

3.3. DOX Had a Higher Effect on Cardiac Oxidative Metabolism Than MTX

The content of the glucose transporter GLUT4 was not changed by any of the drugs
tested (Figure 2). PFKM content decreased in the DOX group, while the content of GAPDH
was decreased in both DOX and MTX groups compared to CTRL, suggesting the downreg-
ulation of glycolysis. DOX group also had decreased ETFDH content compared to CTRL,
pointing to the downregulation of FA oxidation, given the role of this dehydrogenase in
transferring electrons from FA oxidation to the ubiquinone pool [28]. Additionally, the
content of PFKM, ETFDH, and ATPB was decreased in the DOX group compared to MTX,
despite no differences found when comparing that group with the CTRL one.
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Figure 2. Effect of DOX and MTX on heart metabolism markers when assessed by Western blot in
cardiac homogenates. The protein content displayed was normalized to total protein using Ponceau
S staining. Representative images of the Western blot obtained are presented, and the Ponceau S
staining for each protein is presented in Supplementary Figure S2. Values are expressed as mean± SD
(n = 5–6) of relative content, and statistical analyses were performed with one-way ANOVA followed
by Tukey’s multiple comparisons test: * p < 0.05, ** p < 0.01, *** p < 0.001. GLUT4: glucose transporter
GLUT4, PFKM: phosphofructokinase, GAPDH: glyceraldehyde-3-phosphate dehydrogenase, ETFDH:
electron transfer flavoprotein-ubiquinone oxidoreductase, ATPB: ATP synthase subunit β.
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To better explore the modulation of FA oxidation by DOX and MTX, cardiac acyl-
carnitine profiling was conducted (Figure 3). Both drug-exposed groups decreased the
concentration of free carnitine (C0) compared to CTRL. In contrast, acetylcarnitine (C2) was
increased in the two groups compared to CTRL. Moreover, the concentration of C0 and
C2 was decreased in the DOX group when compared to MTX. For the other acylcarnitines
measured, no differences were found among the groups.
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Figure 3. Effect of DOX and MTX on the cardiac acylcarnitine profile assessed by MS/MS.
Values are expressed as mean ± SD (n = 5–6) of concentration, and statistical analyses were
performed with two-way ANOVA followed by Tukey’s multiple comparisons test: * p < 0.05,
**** p < 0.0001. C0: carnitine, C2: acetylcarnitine, C4: butyrylcarnitine, C6: hexanoylcarnitine,
C8: octanoylcarnitine, C10: decanoylcarnitine, C10:1: decenoylcarnitine, C10:2: decadienoylcarnitine
C12: dodecanoylcarnitine, C12:1: dodecenoylcarnitine, C14: myristoylcarnitine, C14:1: tetradecenoyl-
carnitine, C14:2: tetradecadienoylcarnitine, C16: palmitoylcarnitine, C16:1: palmitoleoylcarnitine,
C18: stearoylcarnitine, C18:1: oleoylcarnitine, C18:2: linoleylcarnitine.

Furthermore, the activity of enzymes involved in FA oxidation can be evaluated
through the ratios of specific acylcarnitines [45]. Herein, we estimated the activity of
carnitine palmitoyl-transferase 1 (CPT1) and 2 (CPT2), long-chain acyl-CoA dehydrogenase
(LCAD) along with the β-oxidation of even-carbon FA, using the ratios among C0, C2,
octanoylcarnitine (C8), palmitoylcarnitine (C16), stearoylcarnitine (C18) and oleoylcarnitine
(C18:1) (Figure 4). DOX group seemed to increase the activity of CPT1, given by the ratio
of C16+C18 over C0, while the MTX group showed a tendency to decrease the activity of
CPT2 ([C16+C18:1]/C2 ratio, p = 0.09). However, no differences were observed for LCAD
activity (C16/C8 ratio) after DOX or MTX. Nonetheless, both DOX and MTX seemed to
increase the oxidation of FA with even-carbon (C2/C0 ratio).

Regarding the amino acids profile after DOX and MTX, no significant differences were
found within the following groups regarding the branched-chain amino acids (BCAA):
valine, leucine, and isoleucine (Figure 5). Nevertheless, the metabolites isovalerylcarnitine
and tiglylcarnitine, which are intermediates in the catabolism of leucine and isoleucine,
respectively, were decreased after DOX and MTX compared to the CTRL group. In addition,
the 3-hidroxyisovalerilcarnitine, an intermediate derived from the previous ones [46], was
significantly decreased in the DOX-treated group compared to CTRL and MTX groups.
Moreover, DOX showed a tendency to decrease the concentration of glutamate compared
to CTRL (p = 0.07), while tyrosine and glycine levels were significantly decreased in the
DOX group. Additionally, the concentration of aspartate was decreased in DOX compared
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to MTX, despite no differences regarding those groups with the CTRL. A trend toward
decreased concentration of glycine in the DOX group was seen when compared to MTX
(p = 0.08). Concerning the arginine-citrulline pathway, no differences were seen for arginine
nor for ornithine, despite a tendency for decreased citrulline concentration observed for
DOX compared to the CTRL group (p = 0.07).
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Figure 4. Effect of DOX and MTX on the activity of cardiac enzymes involved in FA oxidation
assessed through the ratios among acylcarnitine species: carnitine (C0), acetylcarnitine (C2), octanoyl-
carnitine (C8), palmitoylcarnitine (C16), stearoylcarnitine (C18) and oleoylcarnitine (C18:1). Values
are expressed as mean ± SD (n = 5–6), and statistical analyses were performed with one-way ANOVA
followed by Tukey’s multiple comparisons test: * p < 0.05, ** p < 0.01.

Additionally, several metabolic modulators of the previous energy pathways were
assessed (Figure 6). DOX decreased the content of AMPK, while MTX induced a tendency
towards decreased values of this sensor of cellular energy status [47], compared to the
CTRL group (p = 0.09). Despite no differences for pAMPK content, MTX increased the
pAMPK-to-AMPK ratio, and DOX showed a tendency towards increased values of this
ratio compared to the CTRL group (p = 0.07), which is suggestive of AMPK activation. For
the other metabolic modulators evaluated, PPARα, PPARγ, and GSK-3β, no differences
were found among the groups. Additionally, the content of SIRT3 was decreased in the
DOX group compared to MTX, despite no differences found when comparing those groups
with the CTRL group.
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Figure 5. Effect of DOX and MTX on cardiac amino acids profile, when assessed by MS/MS. Values
are expressed as mean ± SD (n = 5–6) of concentration, and statistical analyses were performed with
one-way ANOVA followed by Tukey’s multiple comparisons test: * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

3.4. DOX Affected Cardiac Mitochondrial Biogenesis Differently from MTX

The activity of CS, which is considered a rough marker of mitochondrial density [48],
was not altered in any of the drug-exposed groups (Figure 7). Nevertheless, the content of
Tfam was decreased in the DOX group compared to CTRL. No other differences regarding
the mitochondrial biogenesis markers, namely on PGC-1α and Mfn1, were seen when
comparing the drugs to the CTRL group. However, DOX had decreased content of PGC-1α
compared to the MTX group.
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Figure 6. Effect of DOX and MTX on heart metabolism regulation when markers were assessed by
Western blot in cardiac homogenates. The protein content displayed was normalized to total protein
using Ponceau S staining. Representative images of the Western blot obtained are presented, and the
Ponceau S staining for each protein is presented in Supplementary Figure S2. Values are expressed
as mean ± SD (n = 5–6) of relative content, and statistical analyses were performed with one-way
ANOVA followed by Tukey’s multiple comparisons test: * p < 0.05, ** p < 0.01. AMPK: AMP-activated
protein kinase, pAMPK: AMPK phosphorylated, PPARα: peroxisome proliferator-activated receptor
α, PPARγ: peroxisome proliferator-activated receptor γ, GSK-3β: glycogen synthase kinase 3 β,
SIRT3: sirtuin 3.
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Figure 7. Effect of DOX and MTX on heart mitochondrial density and biogenesis when markers were
assessed by a spectrophotometric assay (CS activity) and Western blot in cardiac homogenates. The
protein content displayed was normalized to total protein using Ponceau S staining. Representative
images of the Western blot obtained are presented, and the Ponceau S staining for each protein is
presented in Supplementary Figure S2. Values are expressed as mean ± SD (n = 5–6) of activity or
relative content, and statistical analyses were performed with one-way ANOVA followed by Tukey’s
multiple comparisons test: * p < 0.05. CS: citrate synthase, Tfam: mitochondrial transcription factor A,
PGC-1α: peroxisome proliferator-activated receptor γ coactivator 1 α, Mfn1: mitofusin1.
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3.5. MTX Had a Bigger Impact on Cardiac Autophagy Than DOX

Beclin1 content showed a trend to be exclusively decreased by MTX compared to the
CTRL group (p = 0.06, Figure 8). On the contrary, the content of ATG5 was decreased in the
DOX group, although MTX showed a trend to decrease it compared to the CTRL group
(p = 0.06). Both DOX and MTX groups had decreased LC3B content compared to CTRL.
Additionally, the MTX group showed a trend to decrease the content of Beclin1 compared
to the DOX group (p = 0.07). No differences were found in the content of Parkin and BNIP3
among groups.

Biomolecules 2023, 13, x  13 of 23 
 

 

Figure 8. Effect of DOX and MTX on heart autophagy and apoptosis markers when assessed by 

Western blot in cardiac homogenates. The protein content displayed was normalized to total protein 

using Ponceau S staining. Representative images of the Western blot obtained are presented, and 

the Ponceau S staining for each protein is presented in Supplementary Figure S2. Values are ex-

pressed as mean ± SD (n = 5–6) of relative content, and statistical analyses were performed with one-

way ANOVA followed by Tukey’s multiple comparisons test: * p < 0.05, ** p < 0.01. ATG5: autophagy 

protein 5, LC3B: microtubule-associated protein light chain 3, BNIP3: BCL2 interacting protein 3, 

BAX: BCL2 associated X-protein, BCL2: B-cell lymphoma-2, HSP27: heat shock protein 27 kDa, 

HSP70: heat shock protein 70 kDa. 

Moreover, for the pro-apoptotic, BAX, and anti-apoptotic, BCL2, proteins, as well as 

for their ratio, no significant changes were observed. In addition, MTX showed a tendency 

to increase the content of HSP27 compared to the DOX group (p = 0.08), but no differences 

were found when comparing it with the CTRL group. No changes were found for the 

HSP70 content among the groups. 

4. Discussion 

Both DOX and MTX lead to cardiotoxic effects that may progress to heart failure [6–

8]. Despite the similarities between these two anticancer agents in the pharmacodynamics 

and clinical evidence of cardiotoxicity, the mechanisms behind their toxicity seem to di-

verge [18]. In this work, the cardiac molecular remodeling after DOX and MTX using 

Figure 8. Effect of DOX and MTX on heart autophagy and apoptosis markers when assessed by
Western blot in cardiac homogenates. The protein content displayed was normalized to total protein
using Ponceau S staining. Representative images of the Western blot obtained are presented, and the
Ponceau S staining for each protein is presented in Supplementary Figure S2. Values are expressed
as mean ± SD (n = 5–6) of relative content, and statistical analyses were performed with one-way
ANOVA followed by Tukey’s multiple comparisons test: * p < 0.05, ** p < 0.01. ATG5: autophagy
protein 5, LC3B: microtubule-associated protein light chain 3, BNIP3: BCL2 interacting protein 3,
BAX: BCL2 associated X-protein, BCL2: B-cell lymphoma-2, HSP27: heat shock protein 27 kDa,
HSP70: heat shock protein 70 kDa.
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Moreover, for the pro-apoptotic, BAX, and anti-apoptotic, BCL2, proteins, as well as
for their ratio, no significant changes were observed. In addition, MTX showed a tendency
to increase the content of HSP27 compared to the DOX group (p = 0.08), but no differences
were found when comparing it with the CTRL group. No changes were found for the
HSP70 content among the groups.

4. Discussion

Both DOX and MTX lead to cardiotoxic effects that may progress to heart failure [6–8].
Despite the similarities between these two anticancer agents in the pharmacodynamics and
clinical evidence of cardiotoxicity, the mechanisms behind their toxicity seem to diverge [18].
In this work, the cardiac molecular remodeling after DOX and MTX using clinically relevant
and pharmacologically equivalent doses of both agents (18 and 6 mg/kg, respectively) was
assessed. The selection of these doses was based on the isotoxic/pharmacokinetic dose
conversion between DOX and MTX, assuming that one molecule of MTX is known to have
similar anticancer and cardiotoxic effects to three molecules of DOX [4–6]. Nevertheless,
four mice of the DOX group died during the protocol (44% of mortality), suggesting a
greater impact of DOX on the animal’s survival/toxicity than MTX, at least considering the
end-time selected in this study.

The administration of the two drugs did not significantly affect the morphometric
parameters of the animals, although DOX showed some tendency to decrease whole-body
weight. Indeed, at sacrifice, DOX and MTX animals presented ascites that may have masked
significant decreases in body weight. Moreover, the administration of DOX and MTX did
not affect the concentration or activity of most biochemical parameters measured in serum.
Despite no statistical differences seen among groups, the CK-MB activity showed a trend
to be increased in DOX, being suggestive of heart damage [49]. For MTX, the findings
observed for CK-MB activity were like the ones in previous studies of our group and
no meaningful changes were seen [33,36]. Nevertheless, damage to cardiac tissue was
observed after both drugs considering the histological assessment, with DOX appearing to
cause more structural alterations, which is in line with the CK-MB results. Data reported in
the literature showed links between alterations in cardiac structure and perturbed function
of the heart after 6–7.5 mg/kg and 3–30 mg/kg cumulative doses of MTX and DOX,
respectively [9–13,25,32,35,36]. These findings show that other markers of damage may be
more sensitive toward the injury inflicted on the heart rather than the classical parameters
detected in serum, as we did not see any meaningful differences in the classical serum
markers of cardiotoxicity, for instance, on MTX.

As stated in the introduction section, cardiac function depends predominantly on
the ATP produced by mitochondrial oxidative phosphorylation (OXPHOS) using FA as
the main source of reducing equivalents. Nevertheless, other substrates, such as glucose
and amino acids, may also be used as energy substrates [27,28]. Glucose is transported
into cardiomyocytes by glucose transporters, mainly GLUT4 (Figure 9). This transporter
locates in intracellular storage vesicles, being translocated to the plasma membrane upon
insulin or other stimulation, and represents an important mechanism of cardiac cells
to regulate glucose uptake in response to body changes [50]. We saw no differences in
the GLUT4 transporter after the administration of the two drugs; however, the levels of
GLUT4 may not reflect its density at the membrane since whole heart muscle extracts
were used for its assessment. Still, the content of the glycolytic enzymes PFKM and
GAPDH was decreased. PFKM is responsible for the irreversible phosphorylation of
fructose 6-phosphate to fructose 1,6-bisphosphate (1,6-BP), while GAPDH catalyzes the
interconversion of glyceraldehyde-3-phosphate (G3P), originated by aldolase from fructose
1,6-BP, into 1,3-diphosphoglycerate [51,52]. DOX decreased both PFKM and GAPDH,
whereas MTX only decreased GAPDH. Therefore, DOX seems to have a higher impact on
the glycolytic pathway than MTX, blunting its use. These data seem to contradict other
works that have reported upregulation of glycolysis after DOX as a consequence of the
decline in the oxidation of FA [41,42,53,54]. These works, however, were performed in
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rats using a higher cumulative dose and a different approach from our study to assess the
glycolysis flux [41,53] or in distinct cellular models derived from rat [54] and human [42]
cardiac cells.
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Figure 9. Schematic representation of the molecular pathways modulated by DOX and MTX. Proteins
searched in this study are indicated in green, while the ones in grey belong to the pathway but
were not investigated. Proteins found upregulated (up arrows) or downregulated (down arrows)
by DOX or MTX compared to CTRL are indicated with red or blue arrows, respectively. Figure
was made with Servier medical art. ACAD: acyl-CoA dehydrogenases, AMP: adenosine monophos-
phate, AMPK: AMP-activated protein kinase, ATG: autophagy protein, ATP: adenosine triphosphate,
ATPB: ATP synthase subunit β, BAX: B-cell lymphoma-2 associated X-protein, BCAA: branched-
chain amino acids, BCL2: B-cell lymphoma-2, BNIP3: BCL2 interacting protein 3, C2: acetylcarnitine,
C-I: nicotinamide adenine dinucleotide-ubiquinone oxidoreductase, C-II: succinate-ubiquinone oxi-
doreductase, C-III: ubiquinone-cytochrome c oxidoreductase, C-IV: cytochrome c oxidase, C-V: F1Fo
ATP synthase, Casp: caspase, CoQ: ubiquinone, CPT: carnitine palmitoyl-transferase, CS: citrate
synthase, Cyt c: cytochrome c, ETF: electron transfer flavoprotein, ETFDH: ETF-ubiquinone ox-
idoreductase, FA: fatty acids, FAD: flavin adenine dinucleotide, FADH2: reduced form of FAD,
G3P: glyceraldehyde-3-phosphate, GAPDH: G3P dehydrogenase, GLUT4: glucose transporter, GSK-
3β: glycogen synthase kinase 3 β, GYS1: muscle glycogen synthase, HSP: heat shock protein,
LC3B: microtubule-associated protein light chain 3, Mfn1: mitofusin1, mtDNA: mitochondrial DNA,
PFKM: phosphofructokinase, PGC-1α: peroxisome proliferator-activated receptor γ coactivator 1
α, PPAR: peroxisome proliferator-activated receptor, SIRT3: sirtuin 3, TCA: tricarboxylic acid, Tfam:
mitochondrial transcription factor A, ULK1/2: complex of serine/threonine-protein kinases ULK1
and ULK2.

Moreover, administration of DOX decreased the content of ETFDH, but the increased
ratio between C2 and C0 suggests increased oxidation of FA of even-carbon. In addition,
the activity of CPT1 was increased by DOX, whereas CPT2 activity showed a trend to
be decreased by MTX. These proteins are essential for the transport of LCFA across the
mitochondrial membrane. CPT1 converts the acyl-CoA ester derived from LCFA to their
corresponding acylcarnitine metabolites at the outer membrane, while CPT2 recovers them
from carnitine on the inner membrane [55]. Nonetheless, the activity of these enzymes was
inferred based on the ratios among long-chain acylcarnitines (C16, C18, and C18:1) and C0
and C2 [45]. Since no meaningful changes were observed for these long-chain acylcarnitines,
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the differences in CPT1 and CPT2 activities may be originated from important changes in
C0 and C2. Furthermore, neither variations were found in the remaining acylcarnitines
assessed (C4 - C18:2) nor for the activity of LCAD, extrapolated by the ratio between
C16 and C8 [45]. Moreover, no differences were seen for OXPHOS after DOX or MTX
given by ATPB content, which is one subunit of the catalytic part (F1) of the F1Fo ATP
synthase (complex V, C-V) (35). In other works, this subunit was previously reported as
downregulated after both DOX or MTX in heart mitochondria of male mice [32], with DOX
also downregulating the ATPB expression in ventricular cardiomyocytes derived from
Sprague-Dawley rats [41] and in human cardiac 3D microtissues [56].

Despite acylcarnitines being the main energy source for cardiac muscle [28], it seems
that alternative pathways may be used in our cardio-oncology protocol. Amino acids are
an alternative energy source for cardiac muscle [28]. Although no differences in valine,
leucine, and isoleucine levels were found, the concentration of the resulting metabolites
isovalerylcarnitine and tiglylcarnitine was decreased by both DOX and MTX. The former
amino acids, while not changed, may act as regulators of other energy molecules [57].
Altogether, the data suggest increased import of BCAA and/or muscle proteolysis, as
previously reported for DOX [58]. The 3-hidroxyisovalerylcarnitine concentration was
also significantly decreased by DOX, pointing to a bigger impact of DOX on cardiac
metabolism. This metabolite is an intermediate formed from 2-methylcrotonyl-CoA or
tiglyl-CoA, which are the products of the third step of leucine or isoleucine metabolism,
respectively. Isovalerylcarnitine is derived from isovaleryl-CoA, which is the metabolite
that originates 2-methylcrotonyl-CoA on leucine catabolism. Similarly, tiglylcarnitine is the
corresponding acylcarnitine of tiglyl-CoA that results from the catabolism of isoleucine [46].

Other amino acids may fuel the cardiac cells, such as glutamate and aspartate, which
are converted into α-ketoglutarate and oxaloacetate, the key players in the tricarboxylic
acid (TCA) cycle [59,60]. Indeed, increased uptake of glutamate was previously reported in
heart failure [61]. DOX showed a trend for decreased glutamate concentration compared
to CTRL, with no differences for aspartate. No differences were seen for MTX for either
amino acid. The metabolism of tyrosine, whose concentration was decreased after DOX
administration, also results in TCA cycle intermediates, namely fumarate. Conversely,
the metabolism of alanine and glycine results in pyruvate production [59,60]. Glycine
concentration was decreased by DOX treatment. Regarding the arginine-citrulline pathway
that is important to keep ROS at controlled levels [62], no remarkable differences were
discovered herein, although DOX showed a trend to decrease citrulline concentration. Thus,
it seems that amino acids may represent a complementary energy source in cardiac muscle
after DOX administration.

AMPK is a key enzyme that regulates the activity of metabolic proteins involved in
lipid and glucose oxidation by phosphorylating them. For instance, AMPK phosphory-
lates and activates phosphofructokinase 2, the enzyme that converts fructose 6-phosphate
to fructose-2,6-diphosphate, being this last stimulator of PFKM. Thus, AMPK activates
glycolysis [47]. Herein, decreased content of AMPK was observed after administration
of DOX (Figure 9), suggesting a pivotal role of DOX for affecting energetic metabolism.
Indeed, downregulation of AMPK was previously reported in a human cardiac cell line
incubated with DOX, with no similar findings for MTX [18,42].

A key nuclear target of AMPK is PGC-1α, which, once activated, interacts with other
nuclear transcriptional factors such as PPARα and PPARγ and regulates the expression
of several genes that encode for proteins involved in FA and glucose utilization [47,50,63].
We saw no differences in PGC-1α compared to the CTRL group; thus, it was no surprise
that no changes in PPARα and PPARγ were found after the administration of DOX and
MTX (Figure 9). Similarly, no meaningful differences in the content of GSK-3β were
observed after the administration of the two drugs. This enzyme plays important roles
in heart development and function, and also in the regulation of the muscle glycogen
synthase (GYS1), which acts on glycogen production [51,64,65]. Moreover, the content of
the deacetylase SIRT3, which regulates the activity of key proteins of FA oxidation and
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OXPHOS, such as ATPB and other subunits of OXPHOS complexes I, II, and V [66], showed
no differences compared to the CTRL group.

The administration of the anticancer drugs did not alter the activity of CS, a rough
indicator of mitochondrial density [48], which reflects the balance between biogenesis and
clearance [67]. Therefore, it may be proposed that mitochondrial number is not altered in
response to DOX and MTX. Nevertheless, in a previous study from our group, CS activity
decreased after a lower dose of DOX (9 mg/kg) and an equal dose of MTX. In that study,
we also used an aged mice (18–20 months old) group that did not receive any agent [32]. A
higher number of animals in the CS activity assessment was used in that study compared to
the animals used herein. Thus, such differences may not be strictly compared between the
two studies because of the added group when statistics are made [32]. Decreased content
of Tfam was observed after DOX administration compared with the CTRL group (Figure 9).
This mitochondrial factor is the main regulator of the copy number of mitochondrial
DNA (mtDNA) that is indicative of mitochondrial transcription [68]. Therefore, decreased
expression of Tfam suggests reduced mtDNA expression and, eventually, downregulation
of OXPHOS in cardiac cells after DOX. Tfam is regulated at the transcriptional level by the
coactivator PGC-1α along with other nuclear factors, such as nuclear respiratory factors
(NRF) 1 and 2 [47,68]. Although no differences were found for PGC-1α in DOX compared
to CTRL, the content of NRF was not assessed, which may suggest a bigger role of the
last factors for the coactivation of Tfam. PGC-1α is also a transcriptional coactivator of
Mfn1, which, among other proteins, regulates mitochondrial fusion and leads to elongated
interconnected networks of mitochondria with diverse mtDNA [69]. As for PGC-1α, no
differences were found for Mfn1 after the administration of the two anticancer agents when
compared to the CTRL group. Moreover, PGC-1α regulates the expression of SIRT3, which
besides its action on mitochondrial metabolism, also stimulates mitochondrial biogenesis,
enhancing mitochondrial efficiency [63,68]. As stated, we had no differences in PGC-1α
reporting to CTRL, but mitochondrial biogenesis is balanced by autophagy, which can be
seen as a mitochondrial quality process [47,67–70] that we researched next.

Under stress conditions, such as increased AMP/ATP ratio, AMPK is activated and
may phosphorylate the complex of serine/threonine-protein kinases ULK1 and ULK2
(ULK1/2), which is essential for the induction of autophagy. It was previously reported
that anthracyclines inhibit AMPK, blocking the initiation of autophagy [71]. The phos-
phorylation of this complex leads to its activation and translocation to the membrane of
the endoplasmic reticulum, where it recruits the Beclin1 complex [47,63,70]. This com-
plex produces phosphatidylinositol-3-phosphate that is located on the phagophore surface
and consequently allows the recruitment of other autophagic proteins [70]. In this study,
ULK1/2 was not assessed, but the content of Beclin1 showed a tendency to be decreased
after administration of MTX, while no impact was found for DOX, evidencing distinct
modulation of this protein by the two drugs (Figure 9). Despite not being statistically sig-
nificant, this finding is in line with a recent study of the group that demonstrated that MTX
decreased the content of Beclin1 on human differentiated AC16 cells [72], thus suggesting
the blockage of this route of autophagy by MTX.

Next, in the autophagy process, the phagophores formed are elongated by ubiquitin-
like proteins that work in a coordinated fashion to sequester cytoplasmic constituents
and organelles inside the autophagosomes. ATG5 is conjugated with other ATG proteins,
namely ATG12 and ATG16L1, to form a complex that expands the phagophore mem-
brane [70]. This complex also helps in the movement of LC3B-I (cytosolic form) to the
phagophore membrane and in its conjugation with phosphatidylethanolamine to LC3B-
II in the membrane of the autophagosome. Therefore, the content of LC3B-II correlates
directly with the extent of autophagosome formation, thus making it an autophagosome
marker [70,73]. The administration of both DOX and MTX decreased the content of LC3B
(Figure 9). Additionally, DOX decreased the ATG5 content, while MTX only showed a trend
for its decrease. In the literature, both upregulation and downregulation of autophagy
proteins have been reported after DOX, depending on the models used, while for MTX,
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little is known [42,71,74–76]. Nevertheless, ATG5 content was found to decrease for 1, 5,
and 10 µM of MTX on human differentiated AC16 cells, with MTX also affecting other
autophagy proteins [72]. Herein, we showed that both DOX and MTX blunt autophagy,
although we cannot determine if it was protective or deleterious to the heart.

Specific players of mitophagy that consist of the elimination of damaged mitochondria,
namely Parkin and BNIP3, were researched [77–79], but no differences were found in their
content after the administration of both anticancer agents (Figure 9). Briefly, Parkin and
BNIP3 may localize in the outer mitochondrial membrane where they connect with LC3B-II
and thus initiate the autophagy of damaged mitochondria [77–79]. Despite no meaningful
differences for these mitophagy markers, they have been associated with anthracycline-
induced cardiotoxicity [71]. Even so, in our experimental study, we assessed important
autophagy proteins, namely Beclin1, ATG5, and LC3B, which act at different steps, as
well as one of the greatest regulators of autophagy, the AMPK. Thus, to some extent, we
searched for the several pathways of this biological process and observed accordance
among them, being able to infer that both anticancer agents decreased autophagy. Namely,
DOX disturbed the elongation of the phagophore and formation of LC3B-II and thus the
autophagosome formation, while MTX impacted these steps and phagophore formation
(although not significantly), critical for the initiation of the autophagy process. No decrease
was observed for CS activity after DOX and MTX administration but decreased content
of Tfam points to reduced mitochondrial biogenesis. Therefore, it can be presumed that
mitochondrial number is not being decreased because autophagy is occurring to a lesser
extent, but possibly an accumulation of damaged mitochondria instead of their elimination
is occurring. The accumulation of damaged mitochondria is also corroborated by the
elevated number of alterations noted for cardiac metabolism, mainly in DOX.

Regardless of the role of BNIP3 on mitophagy, it also plays a part in the programmed
cardiac cell death through the intrinsic/mitochondrial pathway. Indeed, once in the
mitochondrial outer membrane, BNIP3 stimulates the pore formation by pro-apoptotic
proteins, such as BAX, which leads to membrane permeabilization allowing cytochrome c
(Cyt c) release and apoptosis activation [78]. DOX and MTX did not affect the BAX content
being in accordance with the lack of differences observed for BNIP3. Moreover, BNIP3
heterodimerizes with anti-apoptotic proteins, namely BCL2, which blocks the activation of
BAX [78]. As for BAX and BNIP3, no differences were detected in the BCL2 content after
the administration of the two drugs (Figure 9), suggesting no impact of DOX and MTX on
the mitochondrial apoptotic pathway in our in vivo model, although some studies suggest
a correlation between cardiac apoptosis, autophagy, and chemotherapy [29,31,78].

HSP proteins have plenty of cardiac functions, such as protein proper folding and
trafficking across organelles [68,80–82]. We assessed the content of HSP27, which has
been described as an anti-apoptotic protein since it interacts with Cyt c and prevents the
activation of caspases, as well as the release of other pro-apoptotic effectors [80]. No
significant differences were found after DOX and MTX administration (Figure 9); however,
in a previous study, overexpression of HSP27 was found to block apoptosis and, therefore,
to protect the cardiac function against heart damage caused by DOX [81].

Additionally, no differences in HSP70 content were observed after the administration
of DOX and MTX. HSP70 has been associated with the blocking of several steps in the apop-
totic process, namely the ones played by BAX, Cyt c, and caspases [68,83]. A previous study,
where DOX was given to male mice, suggested that HSP70 is cardioprotective because it
inhibits the mitochondrial apoptotic pathway harshly activated by DOX [84]. Besides its
role in apoptosis, HSP70 appears to be involved in the fusion of autophagosomes with
endosomes and lysosomes to form the autolysosomes that ultimately degrade their matter,
the final step of autophagy [70]. Nonetheless, the contribution of HSP70 to autophagy is
smaller compared to the other autophagy proteins assessed [70], which may explain the
absence of changes for HSP70 herein.
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5. Conclusions

To conclude, both DOX and MTX affected differently cardiac molecular remodeling,
although both agents decreased cardiac glycolysis through decreased content of GAPDH.
Moreover, DOX and MTX decreased the concentration of C0 and increased C2, suggesting
more reliance on FA oxidation. Both drugs also decreased the concentration of interme-
diates of isoleucine and leucine catabolism and the content of AMPK, the main regulator
of metabolic status, highlighting metabolic disturbances, although with DOX impacting
AMPK, and thus the overall energetic metabolism, to a greater extent. Nevertheless, DOX
strongly affected the cardiac metabolism since it exclusively decreased the PFKM content
and the concentration of several amino acids, suggesting downregulation of glycolysis
and more dependency on the later metabolites as energy sources. The findings for Tfam
suggest decreased mitochondrial biogenesis after DOX. Both anticancer agents downreg-
ulated autophagy given by the decreased content of ATG5 and LC3B, suggestive of the
accumulation of dysfunctional mitochondria when linked to other data of the work. In
addition, MTX also showed a predisposition to decrease the content of Beclin1, essential
for the initiation of the autophagy process and consequently implying a distinct impact of
MTX on this cellular process. Therefore, despite DOX and MTX presenting similar clinical
cardiotoxic manifestations and both affecting the energetic metabolism and autophagy
process, the cardiac molecular remodeling was differently stimulated. Namely, it seems that
DOX influenced energetic metabolism with a greater magnitude and MTX the autophagy
process. Thus, more studies comparing both agents are needed to better elucidate the dis-
tinct molecular mechanism behind their cardiotoxicity and take adequate and drug-related
protective measures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13060921/s1, Supplementary Data: Histological assess-
ment of liver damage; Figure S1: Effect of DOX and MTX on the liver structure assessed by light
microscopy. Representative light micrographs obtained from three animals per group were subjected
to hematoxylin and eosin staining. The CTRL group showed normal morphology and structure.
DOX and MTX groups presented necrotic zones (green arrow), vacuolization (microvesicular steato-
sis, red arrow), sinusoidal dilation (orange arrow), inflammatory infiltration (black arrow), and
vascular congestion (blue arrow). Images were taken at 40× magnification (scale bar = 100 µm);
Figure S2: Ponceau S and Western blots images for each protein evaluated; Table S1: Specification of
the dilutions and catalog number for each primary antibody.
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