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Abstract: The identification of protein surfaces required for interaction with other biomolecules
broadens our understanding of protein function, their regulation by post-translational modification,
and the deleterious effect of disease mutations. Protein interaction interfaces are often identifiable
as patches of conserved residues on a protein’s surface. However, finding conserved accessible
surfaces on folded regions requires an understanding of the protein structure to discriminate between
functional and structural constraints on residue conservation. With the emergence of deep learning
methods for protein structure prediction, high-quality structural models are now available for any
protein. In this study, we introduce tools to identify conserved surfaces on AlphaFold2 structural
models. We define autonomous structural modules from the structural models and convert these
modules to a graph encoding residue topology, accessibility, and conservation. Conserved surfaces
are then extracted using a novel eigenvector centrality-based approach. We apply the tool to the
human proteome identifying hundreds of uncharacterised yet highly conserved surfaces, many of
which contain clinically significant mutations. The xProtCAS tool is available as open-source Python
software and an interactive web server.
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1. Introduction

The characterisation of the human interactome has been fundamental for our under-
standing of cellular processes. Tens of thousands of human protein-protein interactions
(PPIs) have been detected using a range of experimental techniques [1,2]. To date, most
PPI data describe the binary interaction between two full-length proteins. Recent experi-
mental and computational approaches have defined stable complexes, thereby building
higher-order PPI networks more closely matching the protein organisation in the cell [3,4].
The interfaces of these interactions have been characterised at the amino acid resolution for
only a minority of PPIs. The molecular detail of a PPI interface is extremely valuable for
a detailed characterisation of protein function or, in some cases, as potential therapeutic
targets. Consequently, there is a strong need for an amino acid resolution interactome.
Numerous experimental approaches have been applied to characterise PPI interfaces at
this level of detail, including structural, mutagenesis, or biophysical assays. However,
they are generally expensive, time-consuming, and low throughput. As a result, interface
identification is often supported by computational approaches to pinpoint residues or
regions likely to drive PPIs [5].

Various sequence-based and structure-based features have been analysed to discover
protein interfaces [6–9]. Sequence conservation tends to be the strongest discriminator
of residue functionality [10,11]. A common observation is that protein interfaces are of-
ten under functional constraints and less likely to accumulate mutations. Consequently,
as surface residues often lack the strong structural constraints of the hydrophobic core
residues supporting a protein fold, functionally constrained interaction surfaces can often
be observed as accessible surfaces with relatively high conservation compared to the re-
maining protein surface [12]. Many computational studies have focused on the discovery
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of conserved accessible surfaces as these regions strongly overlap real interaction inter-
faces [13,14]. The residues that form interfaces in folded domains are often non-sequential
with atoms contributed from amino acids scattered through the primary sequence of the
protein. Consequently, these algorithms generally include structural information and
search for clusters of conserved residues proximal in three-dimensional space.

Several conservation-based interface prediction tools have been developed, and de-
spite the similar underlying goal, each approach differs on the algorithm level.
PatchFinder [15,16] searches for functional regions by identifying the largest and most
conserved cluster of residues using a heuristic greedy search algorithm not guaranteed
to converge to the optimal solution. FuncPatch [17,18] uses a Gaussian process as a sam-
pling proxy for the 3D structure to encode spatial correlation between conservations in
the three-dimensional space relying on the smoothness property of the Gaussian priors. It
uses maximum likelihood to estimate the underlying Gaussian parameters given a mul-
tiple sequence alignment and phylogenetic tree. FuncPatch smoothes scores based on
the neighbourhood but does not value the cluster size nor guarantees that residues in a
more conserved cluster have larger scores. ConSurf [19,20] uses Bayesian estimation of
conservation scores for each position in a multiple sequence alignment given a phyloge-
netic tree and projects these residue scores onto a three-dimensional structure to enable
the user to identify a conserved accessible surface. Therefore, ConSurf does not use the
three-dimensional structure to calculate the residue scores.

An alternative approach to conservation-based methods is to study binding-site-level
features based on geometric properties and identify binding sites by finding protein surface
cavities [21]. Other approaches include energetic methods, template-based methods, or
a combination of methods [22–25]. Studies increasingly use machine learning or deep
learning to build trained models [24,26,27]. Evolutionary information is also used in these
approaches; for example, template-based methods depend on sequence homology and
structure alignments [28]. Furthermore, some studies integrate evolutionary information
with geometric properties [29], while others use evolutionary information to filter pockets
discovered geometrically [30]. Generally, when conservation is combined with other
approaches, the discriminatory power of the approach is improved [31]. Finally, when both
binding partners in the interface are known, a range of docking-based approaches can be
applied, most notably the recently released AlphaFold-Multimer [32].

Intuitive descriptive tools for defining conserved surfaces on protein structures sim-
plify the task of biologists by characterising protein functionality. The advent of deep
learning approaches for protein structure prediction has resulted in high-quality tertiary
structural models for any protein. In this study, we have developed a novel method,
xProtCAS (extracting Protein Conserved Accessible Surfaces), to take structurally resolved
or modelled protein regions and define conserved accessible surfaces by combining the
structural and evolutionary data. The xProtCAS framework is available as open-source
software and a user-friendly web server. The tool has been applied to produce a dataset of
putative functional surfaces in the human proteome.

2. Methods

The xProtCAS framework is a pipeline for the discovery of clusters of conserved
residues on the surface of folded structural modules as a proxy for functional interfaces.
The xProtCAS pipeline integrates information on residue solvent accessibility and con-
servation with topological data on residue proximity in three-dimensional space using
graph-based methods to determine proximal clusters of relatively conserved residues on a
protein’s surface. The key use case of the xProtCAS framework is the analysis of human
AlphaFold2 [33,34] models taking a UniProt identifier as input. However, the standalone
version can use either AlphaFold2 models or PDB structures. The output is a set of con-
servation and accessibility metrics for the protein and an annotated and scored conserved
surface on each autonomous structural module of the protein.
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2.1. Framework for the Discovery of Conserved Protein Surface

As shown in Figure 1A, the workflow of the xProtCAS framework includes eight major
steps: (i) definition of the autonomous structural modules of a protein; (ii) calculation of
the residue-centric accessibility and topology metrics for the structural module; (iii) calcu-
lation of the per residue conservation scores; (iv) creation of an edge-weighted directed
graph encoding the structural and evolutionary properties for the structural module; (v)
calculation of eigenvector centrality scores; (vi) definition of the conserved accessible sur-
faces using hierarchical clustering; and (vii) scoring and (viii) annotation of the conserved
accessible surfaces.
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Figure 1. Overview of the xProtCAS framework. (A) Schema of the steps in the xProtCAS pipeline.
(B) Schema representing the encoding of a structural module as a graph in the xProtCAS framework.
The graph encodes the proximity between residues, accessibility, and conservation of the structural
module. Nodes are accessible residues and adjacent residues are connected by edges. The blue colour
of the surface structure representation of the structural module reflects the conservation of residues.
The conservation scores are encoded on the graph as edge weights demonstrated by edge thickness in
the graph panel. Residues sharing a tetrahedron in the three-dimensional Delaunay triangulation are
considered neighbours. Each residue has incoming edges from neighbouring residues. The weight of
the edge depends on the conservation of the residue and the number of neighbours. For example, in
a residue with a conservation score of 0.5 and five adjacent neighbours, each incoming edge weights
0.5/5. Each accessible residue is in one tetrahedron at least, resulting in the whole structural module
being connected in a single graph.

2.1.1. Definition of the Autonomous Structural Modules of the Structural Model

In the first step of the pipeline, the AlphaFold2 model of a full-length protein of interest
is retrieved from the AlphaFold protein structure database [33,34] (https://alphafold.ebi.ac.
uk/). The structural model is preprocessed to define autonomous structural modules. This
allows intramolecular interface surfaces to be ignored and each autonomous functional
unit to be analysed separately. Autonomous structural modules are extracted from the
AlphaFold2 structure model by running a graph-based community detection algorithm
on the AlphaFold2 predicted aligned error (PAE) matrix [35]. First, a graph is built from
residues with AlphaFold2 per-residue confidence (pLDDT) > 70, where residues are nodes
and edges are placed between residues with AlphaFold2 PAE less than 5 Å. The edges are
weighted based on the inverse of the predicted aligned error, and a greedy modularity max-
imisation algorithm [36] is used to detect communities. Modularity measures the quality of

https://alphafold.ebi.ac.uk/
https://alphafold.ebi.ac.uk/
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communities in a graph by calculating the difference between two components. The first
represents the edges that fall within the detected communities, and the second counts for
the expectation of those edges happening randomly (the null model). The best communities
are those maximising that difference. The resolution, the weight of the null model in the
modularity equation, controls the size of the detected communities. A resolution of zero
gives no weight to the null model and counts only the intra-community edges, resulting in
one community containing the whole protein in the graph [36]. Higher resolution values
favour smaller communities. The resolution of the modularity maximisation algorithm
was optimised on a dataset of 832 human E3 ligases manually collected from the literature
(Table S1). By iteratively decreasing the resolution from 1 to 0 by 0.01 steps, we defined an
optimised resolution that minimised the size of structural modules but ensured that Pfam
domains [37] were not split between different structural modules (Figure S1). Finally, small
communities with less than 30 residues, the lower bound for a stably folded domain, were
excluded. The structural modules derived from this step are processed independently in
the remainder of the analysis pipeline.

2.1.2. Defining the Residue Accessibility and Topology of a Structural Module

The residue accessibility of each structural module is calculated by Delaunay triangu-
lation which generates a triangle-based tessellation of a protein surface. This approach has
the advantage, relative to classical solvent accessible surface area (SASA) metrics, of dis-
criminating between side chain and backbone accessibility. Delaunay triangulation [38,39]
takes the three-dimensional coordinates of each heavy atom in the structural module and
produces a set of non-overlapping tetrahedra (triangular pyramids composed of four tri-
angular faces). The centre of each heavy atom is considered a vertex and is present in at
least one tetrahedron in the convex hull (the smallest set of vertices enclosing the whole
structural module). Atoms on the surface of the structural module can be extracted by
finding vertices in faces present in exactly one tetrahedron. The xProtCAS pipeline ignores
backbone accessibility and considers an amino acid accessible if at least one of its side chain
heavy atoms is accessible (Table S2). The 3D Delaunay triangulation calculation is based on
the implementation by Nimrod et al. [16]. Triangulation is also used to identify a residue’s
neighbours as those residues with surface atoms in a shared tetrahedron.

2.1.3. Calculating per Residue Conservation Scores of a Structural Module

Conservation scores are derived from orthologue alignments created using the GO-
PHER orthologue discovery software [40] on a database of model organism sequences from
the UniProt resource [41]. The orthologous sequences were aligned using the ClustalO
multiple sequence alignment software [42], and guide trees were generated using the
tree-building function of ClustalW [43]. The xProtCAS pipeline calculates a classical
column-based weighted conservation score (WCS) as defined in SLiMPrints [44]. The
contribution of each residue at a given position in the alignment is weighted by the Clustal
guide tree in the WCS score to increase the contribution of conserved residues in more
divergent orthologues.

2.1.4. Constructing an Edge-Weighted Directed Graph Representation of a Structural Module

A directed graph is constructed encoding the residue accessibility, residue conser-
vation, and residue proximity in the three-dimensional space of the structural module
(Figure 1B). The topology, accessibility, conservation (TAC) graph contains only residues
with accessible side chain heavy atoms. Directed edges are added between adjacent residues
where adjacency is defined based on surface atoms that share the same tetrahedron in
the Delaunay triangulation graph produced during accessibility calculation [16]. Each
incoming edge is weighted by the node’s conservation score, divided by the number of
incoming edges to normalise the number of proximal residues (Figure 1B).
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2.1.5. Calculating Eigenvector Centrality Scores of a Structural Module

Although filtering residues using a simple conservation score cutoff might seem
sufficient for finding functional regions, it yields several residues spread on the surface
of the protein. Hence, finding conserved patches instead of single residues is crucial
to pinpoint the more likely functional regions. Eigenvector centrality [45] measures a
node’s importance, in this case, encoded as residue conservation, but also integrates the
importance of surrounding nodes. Therefore, a node connected to more highly conserved
nodes receives a higher centrality score [46]. Eigenvector centrality scores are calculated
for each residue in the TAC graph. The definition of a node’s transitive influence in the
TAC graph allows the discrimination of groups of proximal conserved residues to identify
conserved accessible surfaces on a structural module.

2.1.6. Defining Conserved Accessible Surfaces of a Structural Module

Eigenvector centrality scores are processed using a hierarchical clustering approach to
extract the most conserved cluster of residues on the protein surface. Initially, each node in
the graph is considered a separate cluster on its own. Next, pairs of clusters are successively
combined into larger clusters by minimising the variance of centrality scores in the merged
clusters. The hierarchical clustering produces two low variance clusters, one with the
highest central scoring residue nodes and the other with the remaining surface accessible
residue nodes in the TAC graph. Finally, the connected residues are extracted from the
highest centrality-scoring cluster by starting with the node with the highest centrality score
and recursively finding connected neighbours in the graph that are also in the high-scoring
cluster to define the most conserved accessible surface.

2.1.7. Evaluation Metrics of the Extracted Patch

Three distinct conservation metrics are calculated evaluating the conserved accessible
surface: (i) absolute patch conservation: the average residue WCS conservation of the
patch representing the absolute conservation of the patch in the orthologous species set;
(ii) relative patch conservation: the difference between the average of WCS conservation
in the patch and the average of WCS conservation in the non-patch surface represent-
ing the relative conservation of the pocket compared to the remainder of the structural
module surface; and (iii) the associated p-value of the relative patch conservation p-value
calculated as a Mann–Whitney U test for the alternative hypothesis that the distribution
underlying patch conservations is stochastically greater than the distribution underlying
non-patch conservations.

2.1.8. Annotations of the Pockets with Functional Data

Identified conserved accessible surfaces are cross-referenced with functional annota-
tion from a range of sources. Domain family overlap information is defined using Pfam
domains [37] data collected from UniProt [41]. The intersection between defined conserved
accessible surfaces with residues in experimentally characterised interfaces is mapped
based on extraction of protein interfaces from the PDB structures where interface residues
were determined as residues with heavy atoms within less than 6 Å distance from the bound
partner. Overlapping active sites are collected from the UniProt resource [41]. Disease-
relevant mutations data in the predicted pockets are collected from the EBI Protein API [47]
and UniProt [41] and classified based on clinical significance annotation (Pathogenic, Likely
Pathogenic, Disease, Risk factor, Association, Protective, Drug response, Affects) as in Pep-
Tools [48]. Post-translational modifications overlapping the defined conserved accessible
surfaces are collected from Phospho.ELM [49], PhosphoSitePlus [50], Ochoa et al. [51], and
UniProt [41].
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2.2. Defining Multiple Pockets per Structural Module

As proteins or domains can have multiple interaction interfaces, centrality scoring,
and hierarchical clustering can be performed iteratively after the removal of the residues in
the initial patch from the graph representation to define additional interfaces.

2.3. Processing PDB Structures

The xProtCAS pipeline can be applied beyond AlphaFold models to any PDB struc-
tures. All pipeline steps except for the “definition of the autonomous structural modules”
are performed for PDB structure analyses. When required, PDB structures are mapped to
UniProt [41] sequence position-centric conservation scores using SIFTS [52] and the PDBe
REST API [53].

2.4. PDB Benchmarking Dataset

The xProtCAS pipeline was optimised and benchmarked on three datasets of PDB
structures (Table S3): (i) 407 domain-domain interaction interfaces from the MaSIF-site
dataset [54], (ii) 522 SLiM-domain interaction interface dataset extracted from PDB and
filtered for redundancy (see Supplementary material note 1), and (iii) 100 active sites in
structures from the two previous datasets. The MaSIF-site dataset was filtered to remove
structures with >30% identity to structures in the unfiltered SLiM-domain interaction
interface dataset. Interface residues, defined as pocket residues, were determined in each set
as residues with heavy atoms less than 6 Å distant from the bound partner. The remainder
of the residues on the protein surface not found in the pocket residues set are defined as
non-pocket residues. Residues that are defined by the Delaunay triangulation as accessible
are defined as surface residues. Residues that are filtered by the Delaunay triangulation
as inaccessible with side chains in the hydrophobic core of the protein are defined as
core residues.

2.5. Human Proteome Analysis

The xProtCAS tool was applied to 20,395 proteins of the Human Proteome (UniProt
reviewed human proteins with no fragments, release 2021_02) [41] to define structural
modules and identify conserved accessible surfaces.

2.6. Availability

All the pipeline steps were implemented in Python. A stand-alone open-source
software with the core functionality of the pipeline is available at https://github.com/
hkotb/xprotcas. The xProtCAS framework is also accessible as a web server at http:
//slim.icr.ac.uk/projects/xprotcas.

3. Results
3.1. Evaluating Residue Conservation for Identifying Binding Surfaces

The PDB benchmarking dataset represents an evaluation set to benchmark xProtCAS’s
ability to define conserved accessible surfaces and whether these regions are likely to
represent functional sites on proteins.

3.1.1. Weighted Residue-Based Conservation Scoring (WCS) Benchmarking

We evaluated weighted residue-based conservation scoring (WCS) on orthologue
alignments from four sets of proteins from proteomes of species with different levels of
evolutionary divergence (Mammalia, Vertebrata, Metazoa, Quest for Orthologs (QfO) [55],
see supplementary material for a list of species in each database). The weighted residue-
based conservation scoring can discriminate between the pocket and non-pocket residues
in all orthologue alignment sets (Figure 2A). The metazoa-based alignment shows the most
discriminatory power between the pocket and non-pocket regions (p-value: 5.66 × 10−44)
compared to the three other orthologue alignments sets (QfO p-value: 1.95 × 10−40, Ver-
tebrata p-value: 1.31 × 10−36, Mammalia p-value: 1.45 × 10−25). Next, we evaluated

https://github.com/hkotb/xprotcas
https://github.com/hkotb/xprotcas
http://slim.icr.ac.uk/projects/xprotcas
http://slim.icr.ac.uk/projects/xprotcas
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metazoa-based scoring separately on the domain-domain (DDI), SLiM-domain (SDI), and
the active site PDB benchmarking dataset. We observed a significant difference between the
pocket and non-pocket residues for both DDI and SDI sets (DDI p-value: 3.44 × 10−8, SDI
p-value: 5.27 × 10−44) (Figure 2B,C). Interestingly, SDI pockets are clearly more conserved
than DDI interfaces in the benchmarking dataset (p-value: 1.94 × 10−14) (Figure 2B,C).
Active sites are the most conserved set in all cases and are significantly more conserved than
surface residues in both interface sets (DDI p-value: 5.53 × 10−26, SDI p-value: 1.21 × 10−33)
(Figure 2B). Finally, we compared the WCS-weighted residue-based conservation scoring
to the Rate4Site scores [56,57] from ConSurf [19,20]. The WCS scoring scheme’s ability
to discriminate between binding pocket residues and non-pocket residues is compara-
ble to Rate4Site scores which use slower Bayesian estimation for scoring residues (SDI
AUC—Rate4Site:0.67, WCS:0.66; DDI AUC—Rate4Site:0.57, WCS:0.56) (Figure 2D).

3.1.2. Eigenvector Centrality Score Benchmarking

We benchmarked the discriminatory power of the per-residue eigenvector centrality-
based scores to the WCS and ConSurf Rate4Site scores. The eigenvector centrality-based
scores show better discrimination between the pocket and non-pocket regions at the residue
level compared to the WCS and ConSurf Rate4Site scores (Figure 2D). Centrality scores
reveal conserved patches rather than single residues; therefore, we benchmarked their
ability to pinpoint the functional regions on the SLiM-domain interactors and domain-
domain interfaces in our PDB benchmarking dataset. The eigenvector centrality-based
approach was benchmarked by quantifying the proportion of chains where the validated
pocket overlaps with the predicted pocket. We observed that eigenvector centrality correctly
identified ~70% of the validated pockets in the SDI and DDI PDB benchmarking datasets
(Figure 2E). As with previous benchmarks, the active sites performed significantly better
than interface datasets with 84% of the expected pockets rediscovered. As many structural
modules will have multiple conserved interaction surfaces, we benchmarked the centrality
approach over multiple iterations showing, as expected, increasing recall with each iteration
(Figures 2F and S2). Next, we compared the conservation of the validated pocket in the PDB
benchmarking datasets to the quality of the return xProtCAS conserved accessible surfaces.
We observed that when the known interface surface is highly conserved relative to the rest
of the structural unit surface, xProtCAS is more likely to pinpoint the correct surface and
the overlap with the known surface interface is higher (Figure 2G). Finally, we compared
the conserved accessible surfaces returned by the xProtCAS and PatchFinder [15,16] from
the PDB benchmarking datasets. The surfaces extracted by xProtCAS were slightly smaller
in size than PatchFinder surfaces, but when compared to known pockets we observed
that xProtCAS had slightly better precision and recall for both the SDI (PatchFinder—
precision: 0.34, recall:0.29; xProtCAS—precision: 0.41, recall:0.32) and DDI (PatchFinder—
precision: 0.21, recall:0.13; xProtCAS—precision: 0.41, recall:0.18) datasets (Table S4). Most
importantly, there is a significant difference in the running time of the two tools (Table S4)
favouring the centrality-based approach.

3.2. Potential Novel Interfaces in the Human Proteome

The xProtCAS pipeline was applied to 20,395 UniProt-reviewed human proteins to
define a set of potential novel interfaces in the human proteome. The autonomous structural
unit definition resulted in 31,702 autonomous structural modules (Table S5). The top-ranked
conserved accessible surface on each subunit was extracted and annotated for overlap with
relevant functional information. Of the 31,702 conserved accessible surfaces, 1793 (5.6%)
are identified with active sites, 3215 (10.1%) intersect known interfaces and 2893 (9.1%)
with clinically significant mutations of which only 820 are known active sites or interfaces
(Figure 3A). The majority of surfaces (24,797, 78.2%) had no overlapping annotation. We also
observed a large number of the surfaces overlapped with post-translational modification,
with phosphorylation and ubiquitination representing the most common modifications
(Figure 3B,C).
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Figure 2. The evaluation of per residue conservation and per patch centrality scores of interaction
interfaces and active sites. (A) A boxen plot of the mean Weighted Conservation Scores (WCS)
conservation calculated for the whole domain (core + surface), the inaccessible core of the domain, the
surface of the domain (pocket + non-pocket), the pocket, and the non-pocket regions of the domain.
The conservation scores are evaluated on orthologue alignments from four orthologue sets with
different levels of divergence. Asterisks show the level of significance measured in p-values of the
Mann-Whitney-Wilcoxon test two-sided with Bonferroni correction (***: 10−4 < p-value ≤ 10−3, ****:
p-value ≤ 10−4). (B) Boxen plots comparing the mean WCS conservation of pockets from the rest of
the surface on the different interface types. (C) Boxen plots comparing the mean WCS conservation
between the pocket and non-pocket regions. (D) ROC curves comparing two conservation scores
(Rate4Site (R4S) and WCS conservation) and the eigenvector centrality scores for their ability to
discriminate between interface or active sites residues and other residues on the surface of SDI
and DDI structures. (E) Evaluation of the proportion of xProtCAS conserved accessible surfaces
overlapping validated functional surfaces. (F) Evaluation of the cumulative proportion of xProtCAS
conserved accessible surfaces overlapping validated functional surfaces over multiple iterations. (G)
Heatmap of mean overlap proportion of xProtCAS conserved accessible surfaces with validated
functional surfaces as a function of the significance level of the conservation represented in p-values
of the known interfaces and the predicted patches.
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Figure 3. Descriptive information on the human proteome analysis. (A) A bar plot showing the
overlap of the most conserved accessible surfaces from the 31,702 structural modules of the human
proteome with 3 intersecting groups (active sites, known interfaces, regions with clinical mutation/s)
or a fourth separate group of the conserved accessible surfaces without any functional annotation.
(B) A pie chart showing the distribution of the conserved accessible surfaces with and without
overlapping PTMs. (C) A bar plot showing the most frequent modifications overlapping with the
31,702 conserved accessible surfaces. (D) Ranked scatterplot of the relative patch conservation p-value
for the 17,477 PAE-filtered conserved accessible surfaces. The 1.0 × 10−10 cut-off is denoted by a light
grey line. (E) PI-PLC X domain-containing protein 3 (PLCXD3, Q63HM9) coloured by eigenvector
centrality scores (colour scheme starts with grey for low scores, blue for average scores, and red for
high scores, the same colour scheme is used in all remaining structure panels in the figure) with
active sites on residues 37H and 114H overlapping the most conserved accessible surface (p-value:
1.46 × 10−11). (F) Structure of AlphaFold2 model of L-aminoadipate-semialdehyde dehydrogenase-
phosphopantetheinyl transferase (AASDHPPT, Q9NRN7, grey) coloured by eigenvector centrality
scores showing the overlap of the most conserved accessible surface (p-value: 4.62 × 10−10) with a
domain-domain interface with fatty acid synthase (FASN, P49327, orange) (PDB ID: 2CG5). (G) Structure
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of Peroxisomal biogenesis factor 3 (PEX3, P56589, grey) with a known SLiM-domain interface
with Peroxisomal biogenesis factor 19 (PEX19, P40855, orange) overlapping the most conserved
accessible surface (p-value: 9.14 × 10−10) (PDB ID: 3AJB). (H) The most frequent diseases related
to mutations overlapping the 31,702 conserved accessible surfaces. (I) Structure of AlphaFold2
model of Transport and Golgi organisation protein 2 homolog (TANGO2, Q6ICL3, grey) coloured
by eigenvector centrality scores highlighting four clinically significant mutations at residues 2, 26,
32, and 88 (sphere representations in inlay) in the core of the conserved accessible surface (p-value:
1.30 × 10−10).

Next, we filtered the set for high-accuracy structural modules using the mean Pre-
dicted Aligned Error (PAE), leaving approximately half of the structural modules (17,477 of
31,702 with PAE less than 5Å). The high-accuracy structural module set was filtered by rela-
tive patch conservation p-value (cut-off of 1.0 × 10−10, representative examples of structural
modules with varying relative patch conservation p-value scores are available in Supplemen-
tary Figure S3) to define the set of conserved accessible surfaces with the most significant
difference between the pocket and non-pocket surface residues (Figure 3D). The remaining
1406 structural modules showed significant enrichment of functional annotation compared
to the complete dataset with 406 (28.8%) active sites, 275 (19.6%) known interfaces, and 320
(22.8%) clinically significant mutations, however, 621 (44.2%) structural modules still had
no overlapping annotation and represent highly conserved and uncharacterised conserved
accessible surfaces.

Figure 3E–G,I provide a set of representative examples of both characterised and un-
characterised conserved accessible surfaces. The benchmarking results showed that xProt-
CAS performed strongly at mapping surfaces overlapping active sites of enzymes. The re-
turned surface in PI-PLC X domain-containing protein 3 (PLCXD3) overlaps the active sites
residues 37H and 114H with phosphoric diester hydrolase activity (Figure 3E) [41,58]. The
xProtCAS tool can also pinpoint functional surfaces that drive protein-protein interactions.
The returned surface on L-aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl
transferase (AASDHPPT) represents a known domain-domain interface with the fatty acid
synthase (FASN) (Figure 3F) [59]. Similarly, a highly conserved surface on Peroxisomal
biogenesis factor 3 (PEX3) represents a SLiM binding pocket which contributes to the as-
sembly of membrane vesicles and by acting as a docking surface for Peroxisomal biogenesis
factor 19 (PEX19) (Figure 3G) [60]. Many of the returned surfaces overlapped clinically
significant mutations linked to a wide variety of diseases (Figure 3H). For example, the most
conserved surface on Transport and Golgi organisation protein 2 homolog (TANGO2) has
four clinically significant mutations linked to metabolic crises, recurrent, with rhabdomyolysis,
cardiac arrhythmias, and neurodegeneration (MECRCN), and it is not characterised as a known
interface or active site (Figure 3I).

4. The xProtCAS Web Server

The xProtCAS pipeline and interactive visualisations have been made available as
a web server at http://slim.icr.ac.uk/projects/xprotcas. Proteins can be searched using
protein name, gene name, or UniProt accession. The analysis page of the query protein
(Figure 4A) provides an interactive viewer to display the defined structural units and
conserved accessible surfaces. The sidebar provides a list of structural modules and
metrics related to their conserved accessible surface. The server can display a selected
structural module separately or in the context of the full-length protein (Figure 4B) with
structure (Figure 4A), graph (Figure 4C), and multiple sequence alignment (Figure 4D)
representations. The structure and structure representations allow various colouring
schemes to colour residues based on centrality, conservation, or accessibility scores. The
multiple sequence alignments used in the conservation score calculation are shown in
the Module Alignments section of the web interface. All data can be downloaded in the
downloads section in JavaScript Object Notation (JSON) format.

http://slim.icr.ac.uk/projects/xprotcas
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Figure 4. Overview of xProtCAS web server. (A) The results analysis page of MDM2 consists of an
interactive 3D viewer, a sequence viewer and a side menu containing the structural modules of the
protein, the conserved accessible surface metrics for the structural modules, and a set of visualisation
options. (B) The SWIB structural module of MDM2 in the context of the full-length protein coloured
by weighted conservation scores (WCS). (C) A graph representation of the SWIB domain structural
module of MDM2. The graph displays each residue as a node represented with a circle in the
graph; the filling colour of the circle reflects the chosen scoring scheme, and the blue colour of the
circles’ circumference shows if the residue is a contacting residue in any known interface. The circle
size reflects the residue’s accessibility. Neighbouring nodes are connected with edges where edge
thickness represents centrality scores. (D) Multiple sequence alignment view of the SWIB domain
structural module of MDM2. A variant of the Clustal X Colour Scheme is used to colour residues.
The default scheme colours are used, in addition, negative BLOSUM64 scoring positions are coloured
grey and charged residue changes are denoted by circles. The sequence logo shows the composition
of the alignment column of each position scaled by residue accessibility to emphasise more conserved
and accessible residues. Each position is hoverable and reveals a tooltip with a detailed description.
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5. Conclusions

Residue conservation can indicate a function that has been maintained across divergent
sequences. Consequently, the variability of conservation across a primary sequence or
surface can be leveraged to identify functionally important residues. In this work, we
have designed an approach for conserved protein surface annotation that encodes the
accessibility, topology, and conservation of a protein as a graph. The nodes of the graph are
accessible residues in a structural module, the three-dimensional topology of the structural
module is encoded in the edges of the graph, and edge weights are used to encode residue
conservation scores of the connected residue nodes. Eigenvector centrality gives higher
scores to nodes with influential neighbours; as a result, subgraphs with high eigenvector
centrality scoring residues reflect surfaces with a high concentration of relatively strongly
conserved residues. We have shown that by applying eigenvector centrality to integrate
the topological, accessibility, and evolutionary information encoded in the graph we can
pinpoint conserved accessible surfaces, and these surfaces strongly correlate with functional
surfaces on a protein. We introduced evaluation scores to rank and quantify confidence in
a given surface, and we demonstrated these scores are strong discriminators for conserved
accessible surfaces that overlap a known interface. In the future, integrating data from
non-conservation approaches for pocket discovery with the conservation-based eigenvector
centrality approach, for example, using machine learning, could significantly improve the
quality of the predictions of either approach alone.

The rapid advances in deep learning methods for protein structure prediction have
resulted in an explosion of high-quality structural models of proteins. In this study, we
take advantage of AlphaFold2 structural models to perform evolutionary analyses on a
huge set of proteins previously inaccessible for structure-conservation exploration. The
direct integration of AlphaFold2 structural models into the pipeline simplifies access to
the complete protein search space. The speed of the pipeline, in the range of seconds
when the structure and alignment are locally available, boosts its scalability and allows
proteome-wide analysis to be performed with ease. As a result, we have explored the
evolutionary landscape of human protein surfaces, finding thousands of putative binding
pockets without a known function in need of further experimental exploration. However,
caution should be taken for surface evolution analyses of AlphaFold2 data. Models have
variable levels of quality, and some modules may have partial local misfolding or buried
residue side chains incorrectly appearing on the protein surface. Given the higher level of
conservation of these residues, it is important to be aware of the AlphaFold2 confidence
metrics and consider them when analysing returned surfaces. We utilise two scores to
quantify the structure quality of the patch represented in the mean patch predicted Local
Distance Difference Test (pLDDT) and Predicted Aligned Error (PAE). Both scores are
AlphaFold metrics for scoring structure prediction confidence and accuracy.

The xProtCAS web server represents a fast, simple, and intuitive tool to analyse
protein surface conservation. The two comparable available web-based tools for conserved
accessible surface discovery, PatchFinder, and FuncPatch web servers, were no longer
functional at the time of publication. There are overlaps with the functionality of the
ConSurf server. However, the definition of the most conserved accessible surface and
integration with AlphaFold2 models of the xProtCAS server adds key functionality not
available with the ConSurf server. The xProtCAS server uses AlphaFold2 models as
input. In our experience, the full-length AlphaFold2 structures reduce noise resulting from
intramolecular interaction surfaces that are uncomplexed when domains are characterised
independently. Furthermore, when an experimental structure is available and has been
used in training, the AlphaFold2 model rarely diverges significantly from the experimental
structure. However, if a non-AlphaFold2-derived structure is required the standalone
software is freely available. An additional use case of the standalone software is to define
multiple surfaces. Structural modules with multiple functional surfaces are an issue
for many reasons. Firstly, the xProtCAS pipeline can find functional protein interaction
surfaces yet incur a penalty in benchmarking if the surface is not part of the testing set.
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This also makes the definition of a negative set difficult. Secondly, as the centrality-based
approach returns the most conserved surface in the graph, highly conserved surfaces can
be discarded. The xProtCAS pipeline can be applied in an iterative manner to remedy
this issue by removing the most conserved surface with each iteration. The number of
iterations can be constrained by applying a relative patch conservation p-value cut-off to return
significantly conserved accessible surfaces.

In summary, we have developed xProtCAS, a graph-based pipeline to define conserved
accessible surfaces in protein structures. The xProtCAS pipeline provides a novel tool to
the biological community that allows rapid analysis of the surface properties of a protein
to define putative functional pockets, pinpoint potential interaction interfaces, aid in
experimental design, and prioritise proteins for functional characterisation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13060906/s1, Table S1: List of human E3 ligases manually
collected from the literature and used in tuning the resolution parameter of the community detection
algorithm; Table S2: Benchmarking of accessible residues settings; Table S3: PDB dataset used
in evaluating xProtCAS’s ability to find functional regions. The dataset consists of SLiM-domain
interactors (SDI), domain-domain interactors (DDI), and their active sites; Table S4: Comparison
between functional patches extracted by 2 different approaches, PatchFinder and xProtCAS. The 2
approaches are tested to find residues in the SLiM-domain and domain-domain interfaces; Table S5:
Dataset of 31,702 structural subunits of human proteins sorted with the p-values of the top-ranked
patches. The dataset represents the results of running xProtCAS on 20,395 proteins of the Human
Proteome. References [61,62] are cited in the Supplementary Materials. Figure S1. The number
of proteins with Pfam domains distributed amongst multiple predicted communities when using
resolutions starting from 1 and going down to 0 with 0.01 as a step at a time. We chose 0.4 as the
default resolution at which 90% of proteins are large enough not to have Pfam domains distributed
amongst multiple communities; Figure S2. Iterations of xProtCAS on five examples of E3 ligases
until it finds the correct degron-binding pocket validated manually from literature and automatically
using complex structures based on the closeness between heavy atoms (when the degron chain is
present in the PDB structure file). Residues with white colour have low centrality scores, yellow
colour for average scores, red for high scores, and yellow represents the degron residues of the
interacting partner; Figure S3. (A) Procollagen galactosyltransferase 1 (Q8NBJ5) structure displaying
conservation scores on the top figure (grey indicates low score, blue average score, and red high
scores) and a highly significant top-ranked predicted patch on the bottom figure (the red color
represent the defined patch, the grey color for the rest of the surface) (p-value: 1.29 × 10−18) making
it ranks at the head of the list of all patches on human proteins (rank: 343). (B) Alanine–glyoxylate
aminotransferase 2 mitochondrial (Q9BYV1) structure with the top-ranked patch (on the bottom
figure) having average ranking (rank: 14,875) in the list of patches on all human proteins, as the
region surrounding the predicted patch is also conserved (on the top figure) which affected the patch
conservation significance (p-value: 9.01 × 10−6). (C) SLIT and NTRK-like protein 5 (O94991) structure
with an equally conserved surface (on the top figure) leading to the top-ranked patch being barely
significant (p-value: 0.002) and ranks in the tail of the list of all human protein patches (rank: 27, 898).
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