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Abstract: Neutrophils are important innate immune cells that respond during inflammation and
infection. These migratory cells utilize β2-integrin cell surface receptors to move out of the vascula-
ture into inflamed tissues and to perform various anti-inflammatory responses. Although critical
for fighting off infection, neutrophil responses can also become dysregulated and contribute to
disease pathophysiology. In order to limit neutrophil-mediated damage, investigators have focused
on β2-integrins as potential therapeutic targets, but so far these strategies have failed in clinical
trials. As the field continues to move forward, a better understanding of β2-integrin function and
signaling will aid the design of future therapeutics. Here, we provide a detailed review of resources,
tools, experimental methods, and in vivo models that have been and will continue to be utilized to
investigate the vitally important cell surface receptors, neutrophil β2-integrins.
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1. Introduction

Neutrophils are the predominant circulating leukocytes in the blood and are con-
sidered the first responders of the immune system. Neutrophils defend the host against
invading pathogens via effector functions such as respiratory burst, phagocytosis, and the
release of NETs (see Abbreviations). To accomplish these tasks, neutrophils must travel
out of the vasculature and into the injured or infected tissue through a process known as
transmigration. β2-integrins are specialized cell surface receptors that play a key role in a
neutrophil’s ability to transmigrate. The mechanisms of β2-integrin function and signaling
have been researched and reviewed extensively [1,2]. While much has been learned, thera-
peutic efforts to target β2-integrins to mitigate neutrophil-mediated host injury or disease
have not proved clinically beneficial. Because neutrophils play a role in the pathophysiol-
ogy of diseases ranging from acute lung injury and sepsis to rheumatoid arthritis and organ
transplant rejection, the methods used to study neutrophil β2-integrins, reviewed here,
remain of interest to a wide array of basic, translational, and clinical health researchers.

2. β2-Integrins and Neutrophils
2.1. β2-Integrin Activation and Signaling

Expressed exclusively on leukocytes, β2-integrins are transmembrane heterodimers
that consist of a common β-subunit (CD18), which is non-covalently associated with one of
the four known α-subunits (CD11a,b,c,d) (Table 1) [3,4]. The two most prominent and most
studied integrins on neutrophils are LFA-1 (αLβ2) and Mac-1 (αMβ2). The αDβ2 integrin
is the least researched β2-integrin; however, a recent review extensively covers what is
known about this integrin [4]. Within circulating, quiescent neutrophils, αMβ2 integrins
are primarily contained within the cytoplasm, the secondary and tertiary granules, and
the secretory vesicles. On the surface of resting neutrophils, αLβ2-integrins are in an
inactive or ‘bent’ conformation, termed the “low-affinity” state. This combination of
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low surface expression and inactive conformation are control measures to help prevent
non-specific neutrophil binding and activation, as unregulated activation could lead to
damaging effects for the host. It is only when neutrophils encounter an activation signal,
such as the binding of a chemoattractant (e.g., leukotriene B4 (LTB4), N-formylmethionine-
leucyl-phenylalanine (fMLP)) to a G-protein-coupled receptor (GPCR), that αMβ2-integrin
surface expression is increased, conformational changes take place (“affinity”) to open
β2-integrins, and increased mobility within the membrane leads to cluster formation
(“avidity/valency”). This method of activation in which integrin affinity and avidity are
altered by intracellular signals that affect change at the integrin cytoplasmic tail is known as
“inside-out” activation [5,6]. In contrast to “inside-out,” “outside-in” activation occurs when
the β2-integrin extracellular domain interacts directly with extracellular matrix proteins or
other cell surface ligands (ICAM-1, fibrinogen, etc.) and initiates its own signaling [1,7].
This triggers the phosphorylation of ITAM-bearing transmembrane adapters DAP-12 and
Fcγ receptors (FcγRs), which go on to activate Syk and initiate a signaling cascade for
cytoskeletal reorganization [8]. These effects on the cytoskeleton are important for the
role of β2-integrins in neutrophil adhesion strengthening, cell spreading, and crawling [9].
Despite being described, and studied in vitro, as distinct pathways, inside-out and outside-
in activation are designed to work in concert in vivo, with signaling from one pathway
reinforcing the other, and vice versa.

Table 1. Nomenclature for β2-integrins expressed on neutrophils.

β2-Integrin Heterodimer Other Names Ligands

CD11a/CD18 αLβ2 LFA-1 ICAM-1, ICAM-2, LPS

CD11b/CD18 αMβ2
Mac-1, Complement

receptor 3 (CR3)
iC3b, fibrinogen, factor X,

ICAM-1, LPS

CD11c/CD18 αXβ2
P150,95, Complement

receptor 4 (CR4)
Fibrinogen, iC3b, collagen,

ICAM-1, LPS, β-glucan

CD11d/CD18 αDβ2
ICAM-3, VCAM-1, fibronectin,

vitronectin, fibrinogen

2.2. Neutrophils in Disease

Neutrophils are essential as the “first responders” of the immune system, and without
these cells patients are at increased risk from infection or injury. The clearest illustration
of this is the frequent and life-threatening infections experienced by patients who lack
functional β2-integrins due to Leukocyte Adhesion Deficiency (LAD). However, although
neutrophils are essential for the maintenance of life and health, they can also cause damage
to host tissue in numerous chronic inflammatory conditions and acute inflammatory events,
making neutrophil-targeting therapies highly desirable. For example, patients with severe
SARS-CoV-2 experience an influx of neutrophils into the lungs, resulting in alveolar damage
and the development of acute respiratory distress syndrome (ARDS) [10,11]. Numerous dis-
eases and disorders involve neutrophils and specifically β2-integrins (Table 2). Neutrophil
β2-integrins also bind pathogen-associated molecular patterns (PAMPs), such as LPS and
β-glucans [12–15]. Thus, neutrophils can also become activated directly by pathogens
during infection, resulting in effector responses, such as respiratory burst, phagocytosis,
and NET formation. Because of the essential role integrins play in neutrophil inflammatory
functions, they are attractive therapeutic targets [16,17]. However, β2-integrin-targeting
therapies have not been successful in clinical trials [18], and additional research is needed
to identify new methods of targeting these integrins. Within the scientific literature, there
have been many approaches to studying β2-integrins. This review article will provide an
overview of methods used for investigating β2-integrin function, activation, and signaling
in neutrophils. Hopefully, with the use of resources, tools and methods presented here, and
the continued development of new approaches, researchers will discover a more compre-
hensive understanding of β2-integrins that will lead to successful therapeutic targets to
benefit patients with neutrophil-mediated disease.
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Table 2. Diseases and disorders where neutrophil β2-integrins have been identified as key players
in disease.

Disease or Disorder Category References

Antineutrophil cytoplasmic
antibody (ANCA)-associated

vasculitis (AAV)
Autoimmune disease [19]

Aspergillus fumigatus Fungal infections [20,21]

Atrial fibrillation Cardiovascular disease [22]

Blood-brain barrier inflammation Acute illness [23,24]

Candida albicans Fungal infections [25]

COPD Chronic disease [26–28]

Interstitial lung disease (ILD) Chronic inflammation,
autoimmune disease [29]

Ischemia-reperfusion injury Acute injury/
Sterile inflammation [30–34]

Leukocyte adhesion
deficiency (LAD) Genetic disorder [35–37]

Myocardial Infarction Cardiovascular disease/
Sterile inflammation [33,34,38,39]

Rheumatoid arthritis Autoimmune disease [40]

SARS-CoV-2 Infectious disease [41,42]

Sepsis Acute illness [43]

Sepsis-induced acute lung injury Acute injury [44,45]

Solid organ transplant rejection Transplant rejection [46]

Systemic lupus
erythematosus (SLE) Autoimmune disease [12,40,47,48]

Thrombosis Cardiovascular disease [49]

Transfusion-related acute lung
injury (TRALI) Acute injury [50]

Trauma/Vascular injury Acute injury [51–53]

Wiskott Aldrich syndrome Genetic disorder [54,55]

3. Cell Types and Tools for Evaluating Integrins
3.1. Primary Cells

Neutrophils are hematopoietic cells that are terminally differentiated from myeloblasts.
They are the most predominant circulating leukocytes in the blood and their typical life span
in circulation ranges between less than 24 h to 5.4 days [56,57]. Most primary neutrophil
research uses cells collected from either humans or mice. Over the years, several methods
have been utilized to isolate neutrophils from human peripheral blood. Most protocols
include erythrocyte sedimentation and density centrifugation. Erythrocyte sedimentation
is typically achieved using dextran (varying concentrations 1–6%) or HetaSep [58]. For
density centrifugation, Ficoll and Percoll are the most commonly utilized options. The order
of these steps often varies depending on the research group. Despite their common usage,
there is concern that neutrophils isolated by Dextran and Ficoll are prematurely activated
by the presence of monocytes [59]. To avoid this background stimulation, some use a
one-step high-density Ficoll (1.114 g/mL) without erythrocyte sedimentation, or substitute
a discontinuous gradient for Ficoll [59,60]. Neutrophils may also be “rested” following
isolation prior to functional assays to reduce unintended activation [61]. Red blood cell
lysis usually follows the isolation of neutrophils; however, when the experimental method
does not require the removal of red blood cells, such as flow cytometry, avoiding lysis may
be one strategy to prevent unwanted neutrophil activation.
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These isolation methods routinely yield normal-density neutrophils (NDNs) but fail
to isolate the low-density neutrophils (LDNs) that exist in individuals with inflammatory
conditions. To isolate LDNs, negative selection by magnetic beads of both the peripheral
blood mononuclear cell (PBMC) layer and the granulocyte layer is necessary [58,62]. While
the application of magnetic microbeads facilitates the isolation of pure cell populations, this
method increases the cost of isolation and may still require lysis to remove contaminating
RBCs [63]. Neutrophils isolated via negative selection by microbeads do not display
iatrogenic activation because the labeling antibodies are not directed at neutrophils [64]. In
fact, magnetic separation of neutrophils results in significantly lower iatrogenic activation
compared with traditional dextran sedimentation followed by density centrifugation with
Percoll [65,66].

Primary human neutrophils are easy to obtain from willing donors, and a major
benefit of using primary human cells is the ability to obtain samples from humans with
diseases of interest. Neutrophils from LAD-I patients have been an invaluable resource
for researchers interested in β2-integrin-dependent and independent neutrophil functions
and cell signaling downstream of β2-integrins [35,67]. However, the risk to the patient
versus the benefit of health discovery research must also be a consideration when obtaining
samples from patients. For this reason, volume and cell number are likely to be even
more limited when samples are obtained from diseased patients. While sampling from
human populations can be extremely convenient, there are logistical considerations, such
as Institutional Review Board (IRB) approvals and the need for technically skilled person-
nel, which often restricts human research with primary neutrophils to experienced labs.
This was especially true during the COVID-19 pandemic when IRB protocols changed
to reduce the risk for participants and researchers, resulting in reduced access to human
participants. Commercially available (e.g., iQ Biosciences®, HemaCare®) cryopreserved
products are a potential alternative for researchers seeking to perform experiments with
primary neutrophils; however, while cryopreserved neutrophils retain some phagocytic
and migratory functions, these are diminished compared with freshly isolated cells [68].
Additionally, preservation of the oxidative metabolism and microbicidal activity requires
specialized storage techniques [69].

In addition to primary cells, enucleated neutrophils (cytoplasts) and neutrophil-
derived extracellular vesicles also have functional activity. Cytoplasts are enucleated
neutrophils that retain very similar chemotactic and bactericidal activity as their parent
neutrophils, and these functions are reportedly intact following cryopreservation [70,71].
Neutrophil-derived extracellular vesicles (EVs) also have functional antibacterial activ-
ity and express common neutrophil surface receptors, such as CD11b and CD18 [72–74].
Interestingly, neutrophil EVs can be stimulated through Mac-1 clustering, highlighting
the downstream signaling that occurs following outside-in β2-integrin clustering [75].
Although the information on neutrophil EVs is still limited, future studies should inter-
rogate the intracellular signaling related to the β2-integrin involvement of these EVs to
complement the amassing antimicrobial functional data.

Primary neutrophils from mice are commonly isolated from bone marrow or periph-
eral blood. Similar to humans, density centrifugation with either Percoll or Histopaque
discontinuous gradients is utilized [76–78]. Due to the wide availability of species-specific
resources, murine neutrophils can also be isolated from bulk populations using magnetic
microbeads or by fluorescence-activated cell sorting (FACS) [79,80]. Murine neutrophils
are widely used due to the availability of models that duplicate neutrophil function during
health and disease. Although they express the same β2-integrins, mouse neutrophils do
not provide a perfect parallel to humans. In humans, neutrophils are the predominant
circulating cell type in the blood (50–70% neutrophils, 30–50% lymphocytes), whereas mice
have an abundance of lymphocytes (10–25% neutrophils, 75–90% lymphocytes) [81]. Addi-
tionally, murine neutrophils do not express the same FcγRs as human neutrophils [82,83].
Murine neutrophils isolated from bone marrow also display different surface markers and
functional activities compared with neutrophils harvested from peripheral blood due to
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the presence of more immature neutrophils and neutrophil precursors in the bone marrow.
Magnetic bead selection is one method that can improve the isolation of mature neutrophils
from mouse bone marrow [84–86].

Neutrophils are a heterogenous population consisting of normal-density neutrophils
(NDNs), low-density neutrophils (LDNs), immature neutrophils, mature neutrophils, and
neutrophils with immunosuppressive capabilities [87]. Although mice do express these
neutrophil subpopulations, they do not always mirror the presentation of that in humans.
During acute infection and inflammation, murine peripheral blood neutrophils exhibit both
proinflammatory (CD11b−CD49d+IL-12+) and anti-inflammatory (CD11b+CD49d−IL-10+)
neutrophil subsets that have not yet been identified in humans [87]. Human autoimmune
disease often results in increased circulation of proinflammatory LDNs, but murine models
of autoimmune disease do not display these heterologous populations of neutrophils [87].
These phenotypic differences have been linked with functional differences as well, specif-
ically in murine cancer models [87,88]. Furthermore, in a study conducted by Soroush
et al., stimulation of murine pulmonary endothelial cells with tumor necrosis factor α

(TNFα) did not result in the upregulation of ICAM-1 expression whereas TNFα stimulation
of human pulmonary endothelial cells did induce ICAM-1 upregulation [89]. Thus, it
may be more difficult to model β2-integrin-dependent interactions of neutrophils with
murine-derived endothelial cells. Human neutrophils also have significant transcriptional
and epigenetic diversity. Females especially have elevated gene expression levels related to
immune responses that correspond with increased occurrences of autoimmune disease [90].
Further, mice cannot model the impact of ethnic diversity on neutrophils, despite recent
advances in high-diversity mouse populations [91,92].

3.2. Cell Lines

While freshly isolated primary cells are highly desirable for understanding neutrophil
β2-integrins, they are not always accessible or suitable for certain experiments. For example,
although reported [93,94], the manipulation of RNA and protein expression in primary
neutrophils is extremely difficult, so cell lines are beneficial for researchers aiming to
investigate the roles of individual proteins through knockdown or overexpression studies.
Despite some limitations and drawbacks of neutrophil-like cell lines (Table 3), they can be a
useful approach for studying integrin function and signaling via induced mutations, rather
than having to develop a new transgenic mouse line.

The HL60 cell line is a human promyeoloblast cell line that can be differentiated into
neutrophil-like cells utilizing dimethylsulfoxide (DMSO) or retinoic acid [95,96]. PLB-985
cells are a genetically identical subline of HL60 that are also differentiated using DMSO
or retinoic acid [97–99]. Both methods of differentiation in HL60s and PLB-985s result in
mature neutrophil-like cells; however, compared with DMSO, differentiation with retinoic
acid resulted in dampened cellular responses to fMLP and increased random cellular mi-
gration [100]. The two methods also result in different expression levels of Scar1 and WASP
proteins [101]. Functionally, DMSO-differentiated HL60 neutrophil-like cells are mostly
similar to primary neutrophils but do express some differences (Table 3) [95,97,102–104].
Despite these differences, research using mutated HL60s has contributed to our under-
standing of LFA-1 in migration [105]. HL60s have also been used to model host–pathogen
interactions [106].
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Table 3. Cell lines used in neutrophil β2-integrin research 1.

Cell Line Requires Differentiation Endogenous β2-Integrin Expression Limitations/Drawbacks

HL60/PLB-985 Yes—DMSO or retinoic acid
(referred to as dHL60s)

αLβ2, differentiation
required for αMβ2

• Lack of specific and secretory
granules, which limits
upregulation of αMβ2
following stimulation

• DMSO dHL60s have different
IL-8R, signaling proteins, and
α-actinin compared with
humans.

• Lower αMβ2 expression and
dampened upregulation by
fMLP and LTB4 compared with
humans

K562 No No
• Requires stable transfection for

αMβ2 expression

HoxB8 Yes—GM-CSF or engraftment
into mice Yes—αLβ2 and αMβ2

• Additional cytokines are
needed to achieve “mature”
neutrophilic cells.

• Lower levels of ROS production
compared with murine
neutrophils due to decrease
gp91phox expression.

• Lower chemotactic responses
• Not suitable for degranulation

experiments

1 see the article text for references relevant to Table 3.

Although not as commonly used as HL60s, the human myeloid cell line K562 has
been utilized over the past 15 years in research focusing on granulocytes and β2-integrins.
Xue et al. used the K562 cell line to determine the impacts of kindlin-3 defects on inte-
grin function. Through these studies, it was demonstrated that kindlin-3 is required for
β2-integrin-mediated adhesion and cell spreading [107]. Another group of researchers
used K562 cells as a means to express constructs of αM fused to mCFP and β2 fused to
mYFP to assess Mac-1 cytoplasmic tail separation during integrin activation via FRET
analysis [108]. With this technique, investigators determined that integrin-ligand binding,
or integrin crosslinking, induced Mac-1 cytoplasmic tail separation, which was essential
for triggering outside-in signaling pathways. This key finding offers insight into why this
strategy of leukocyte adhesion blockade failed in clinical trials, as these integrin ligand
mimetics designed to block neutrophil-endothelial adhesion were activating neutrophils
through a different pathway [109,110]. K562 cells have been further used to evaluate poten-
tial small peptide inhibitors and monoclonal antibodies directed against β2-integrins [111].
Another benefit of K562 cells is that they only express the transfected β2-integrin, allowing
for studies examining only Mac-1 or LFA-1, if desired. They also respond similarly to
common stimuli of primary neutrophils, including Mn2+ [108,112].

HoxB8 cells are immortalized murine hematopoietic progenitors that are differentiated
into neutrophil-like cells using GM-CSF treatment. These cells perform many neutrophil
and integrin-mediated functions similar to primary murine neutrophils, with a few discrep-
ancies (Table 3) [113–116]. The usage of these cells has increased over the past several years,
primarily because HoxB8 cells can be generated from transgenic mice and used to examine
specific signaling molecule interactions related to β2-integrins [117,118]. They can also be
engrafted into naïve mice and functionally respond to bacterial pathogens [116]. Recently,
investigators used HoxB8 neutrophil-like cells to show that Rap1 and Riam binding to talin
is critical for β2-integrin function [117]. In addition to traditional methods of transfection
and siRNA, HoxB8 cells can also be manipulated by CRISPR/Cas9 technology to achieve
mutants of interest [117,118]. Importantly, murine HoxB8 neutrophil-like cells expressing a
human β2-integrin ortholog display fully functional signaling and adhesive properties in
response to common stimuli, such as PMA, TNFα, etc. [118]
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3.3. Tools
3.3.1. Anti-Integrin and Fluorescently Labeled Antibodies

Antibodies, including anti-integrin antibodies, are a common tool used to investigate
β2-integrins [67,106,119–121] (Table 4). These antibodies are advantageous for common lab
use due to their ease of application and relatively low cost. They are routinely used in three
different ways: function blocking, integrin crosslinking, or fluorescent labeling. As a tool to
block function, anti-integrin antibodies led to the discovery that Mac-1 is responsible for
neutrophil firm adhesion [67]. However, antibody binding of β2-integrins can also cause ac-
tivation, as demonstrated by antibody stimulation of neutrophils in the absence of a ligand
(e.g., ICAM-1) and subsequent β2-integrin outside-in activation and signaling [108]. This
dual nature requires careful experimental planning to prevent unintentional crosslinking
and/or Fc receptor engagement when used for inhibitory applications [122]. To avoid these
unintentional interactions, researchers can use F(ab) and F(ab)’2 fragments derived from
monoclonal antibodies [123,124]. These fragments are portions of antibodies where the
Fc fragments are cleaved off to prevent non-specific binding of Fc receptors to antibodies.
Both types of fragments are helpful in blocking antibodies, and F(ab)’2 provide additional
capabilities for precipitating proteins of interest.

The use of fluorescently labeled antibodies has also been an invaluable tool for re-
searchers. Using specific antibodies, surface expression levels of integrins, including the
bent versus open conformations, can be examined quantitatively and qualitatively [125].
This methodology led to the discovery that neutrophils from patients with antiphospholipid
syndrome (APS) have an upregulation of activated CD11b, which contributes to increased
neutrophil adhesiveness [126]. Fluorescently labeled antibodies can also be used in vivo.
Wilson et al. administered PE-anti-Ly6G intravenously to evaluate neutrophil infiltration
induced by P. aeruginosa in talin-1 or kindlin-3 knockout mice [127]. As researchers con-
tinue to seek novel protein targets to regulate β2-integrins, fluorescently labeled antibodies
combined with flow cytometry and/or microscopy may be a first step to understanding
the impact inhibitors may have on β2-integrin expression and activation.

Table 4. Common antibodies used to interrogate β2-integrins.

Antibody Clone Conformation/Purpose References

Anti-CD18

IB4

Recognizes CD18
expression

[128,129]Crosslinking of CD18
In vitro blocking of
human β2-integrins

GAME-46

Recognizes murine
CD18 expression

In vitro and in vivo
blocking of murine

CD18

[127,130,131]

CBR LFA-1/2
Crosslinking of CD18

Recognizes CD18
expression

[105,132]

Anti-CD11b CBMR1/5 Recognizes high-affinity
/activated CD11b [133–135]

Anti-CD11b

ICRF44 Recognizes CD11b
expression [136]

M1/70

Recognizes CD11b
expression

In vivo blocking of
murine CD11b

[137,138]
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Table 4. Cont.

Antibody Clone Conformation/Purpose References

Anti-human β2-integrin KIM127

Recognizes bent
low-affinity (E+H−)

β2-integrin
conformation

[135,139]

Anti-human
CD11a/CD18 m24

Recognizes
extended/high-affinity

(H+) β2-integrin
conformation

[139]

3.3.2. Divalent Cations

Divalent cations (e.g., Mn2+, Ca2+, Mg2+) are required for many biological processes,
including the binding of integrins to their ligands. Both manganese (Mn2+) and magnesium
(Mg2+) act by binding the metal-ion-dependent adhesion site (MIDAS) domain. Mn2+

binding to the MIDAS domain induces outside-in β2-integrin activation by forcing integrins
to assume a high-affinity conformation that enhances ligand binding [105]. Because of
this effect on the MIDAS domain, Mn2+ can also be applied as a rescue strategy when
examining integrin defects caused by mutation or chemical inhibition. In the absence of
inside-out activation signals, Mn2+-stimulation can be used as the proximal-most event in
the outside-in β2-integrin signaling cascade. Using this approach, Xu et al. determined
that Mn2+ treatment could not rescue the binding defects of myosin light chain kinase
(MYLK)-deficient murine neutrophils, indicating a critical role for MYLK in outside-in
β2-integrin activation [45].

Like manganese, calcium and magnesium are required for biological processes. There-
fore, researchers commonly include calcium and magnesium supplementation in media,
and manipulation of cation presence has led to a better understanding of integrin regu-
lation. Calcium chelation is known to decrease integrin expression and is often used as
a positive control for inhibition in experiments [112,134]. Divalent cation stimulation of
neutrophils with manganese or higher concentrations of magnesium induces the high-
affinity conformation of β2-integrins without activating the neutrophil itself or increasing
β2-integrin surface expression [140]. Through the manipulation of cation concentrations,
Spillmann et al. demonstrated that β2-integrins must be in their active/high-affinity states
to mediate adhesion [140]. A complete understanding of how divalent cations impact neu-
trophil function and integrin activation is also useful for interpreting clinical information
following certain treatments. For example, magnesium sulfate treatment for preterm birth
impairs neonatal innate immune cell recruitment and β2-integrin-dependent neutrophil
responses [141].

3.4. Common Ligands
3.4.1. Recombinant ICAM-1

β2-integrins bind to intercellular adhesion molecules (e.g., ICAM-1) expressed on the
surface of endothelial cells to transmigrate from the vasculature into inflamed tissues. This
binding interaction induces outside-in activation and signaling of neutrophil β2-integrins.
One of the most utilized ligands for understanding β2-integrin activation and signaling
is ICAM-1 because it is a powerful tool for modeling physiologically relevant neutrophil
interactions. In vitro, ICAM-1 stimulates neutrophil activation and adhesion in shear
flow assays and even induces the clustering of neutrophil β2-integrins [33,45,108,112].
Although the usage of recombinant ICAM-1 is extremely common, there have been several
discrepancies in the literature surrounding the nomenclature and usage of this ligand.
Recombinant ICAM-1/Fc is often used interchangeably with recombinant ICAM-1. Based
on our own observations (unpublished findings) and those cited in the literature, the
Fc domain of ICAM-1/Fc is likely engaging Fc rectors on neutrophils and causing an
inside-out activation cascade [122,133]. In light of this finding, we suggest that the choice
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of ICAM-1 construct is critical for the appropriate design of experiments interrogating
neutrophil inside-out or outside-in activation, or both.

3.4.2. Fibrinogen

Fibrinogen is a glycoprotein found in the blood that is enzymatically converted to fibrin
to promote clotting after damage occurs to vasculature or tissues. Neutrophil β2-integrins
bind fibrinogen at sites of inflammation; therefore, it is used in vitro to determine integrin-
dependent responses [33,113,142–145]. Lowell et al. determined that Src family kinases
were important for β2 and β3-integrin signaling by evaluating hck−/− fgr−/− double
mutant murine neutrophils on fibrinogen [142]. The double mutant neutrophils failed to
spread on fibrinogen, but PMA stimulation was able to overcome the defect, indicating that
Src kinases act upstream of PKC during integrin-mediated signaling. Fibrinogen initiates
outside-in integrin signaling in both β2 and β3-integrins [145,146]; therefore, experiments
utilizing this ligand for β2-integrins must rule out effects caused by β3-integrin engagement
as well.

3.4.3. PolyRGD

β-integrins bind extracellular matrix proteins (e.g., fibrinogen, fibronectin, collagen,
and von Willebrand factor) via their RGD (arginine-glycine-aspartic acid—RGD) site [147].
PolyRGD is a synthetic tripeptide used to engage integrins, and it is known for producing a
robust CD18-dependent respiratory burst [54,148]. Other investigations found that Fc receptor
knockout mice had decreased respiratory burst in response to polyRGD [149], suggesting
that inside-out activation via Fc receptors, or Fc receptor cooperation, may also play a role in
neutrophil responses to polyRGD. Because RGD binding sites exist on all β-integrins, polyRGD
stimulates β1, β2, and β3-integrins expressed on neutrophils [84,150,151]. Therefore, the
PolyRGD may not the best tool for isolating β2-integrin activation and signaling. However, it
could be a useful tool for investigators interested in redundancy or cross-talk between parallel
β-integrin activation and cell signaling cascades.

3.4.4. iC3b

Complement C3 fragment iC3b is a component of the complement system formed
when complement factor I cleaves C3b. β2-integrins bind iC3b and are recognized as
complement receptor 3 (CR3) [152]. In a physiological context, iC3b is an opsonin to
support β2-integrin-mediated phagocytosis of pathogens [25]. Xue et al. used iC3b to
stimulate K562 kindlin-3 knockdown cells and determined that kindlin-3 is required for
iC3b-mediated outside-in β2-integrin signaling [107]. IC3b can also be used as a coating
for neutrophil adhesion or in shear flow experiments [107]. Assays using iC3b as a tool
are likely most relevant for in vitro modeling of diseases that may have iC3b-containing
immune complex deposition contributing to neutrophil aggregate formation, such as
Systemic Lupus Erythematosus (SLE) [12].

3.5. Assays
3.5.1. Flow Cytometry

Flow cytometry is a high-throughput technology that analyzes single cells from bulk
populations. The technology detects and measures physical and chemical characteristics
based on cell size and fluorescence. Neutrophils can be easily distinguished using flow
cytometry based on their size and high granularity determined by a high side scatter profile
when evaluating both side and forward scatter measurements. The usefulness of flow
cytometry is widely known across many fields of research, and leukocyte researchers have
also harnessed this powerful tool to assess β2-integrins. Using fluorescently labeled anti-
bodies, researchers can measure the expression, avidity, and affinity of β2-integrins to learn
more about how a protein or inhibitor impacts expression or to determine whether certain
diseases cause changes in β2-integrin expression. Flow cytometry can also be used to
measure neutrophil binding to ligands, such as ICAM-1, in the presence of pharmacological
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inhibitors or when isolated from transgenic mice [153,154]. Flow cytometry analysis of inte-
grin expression is a relatively easy but powerful assay to complement other experiments.
One caution is that neutrophil populations may exhibit autofluorescence, including aut-
ofluorescence attributed to contaminating eosinophils [85,155,156]. Non-specific staining
can also occur if excessive concentrations of labeled antibodies are used, illustrating the im-
portance of concentration optimization [157]. A significant benefit of flow cytometry is that
multiple aspects of the neutrophil can be evaluated at once, such as integrin expression and
cell viability. Imaging flow cytometry is a newer methodology used in neutrophil research.
Specifically, this technology can be used to measure the fluorescence and morphology of
neutrophils during functions, such as phagocytosis [158]. Because of its higher power in
cellular analyses, this technique provides a breadth of information about cells. However,
large data files can create challenges for data management and analysis [159].

3.5.2. Static Adhesion

Static adhesion is a common assay that has been used to assess neutrophils for over
twenty years. Fluorescently labeled (e.g., calcein AM) neutrophils are added to ligand-
covered plates for a designated time followed by subsequent washing and fluorescence
readings [123,160]. This assay can evaluate the adhesion of neutrophil and neutrophil-
like cells on most ligands, including human umbilical vein endothelial cell (HUVEC)
monolayers [161,162]. Unfortunately, static adhesion assays are subject to technical vari-
ability due to the inversion procedure to “dump” cells. Further, static adhesion assays
cannot fully recapitulate the physiological environment that occurs during shear flow
adhesion. For example, neutrophil migration and adhesion under static adhesion require
vinculin; however, vinculin was not required for integrin-mediated migration and adhesion
when neutrophils were examined under shear flow [115]. Despite these differences, static
adhesion assays do offer a high-throughput means to examine β2 integrin-mediated firm
adhesion [66,123].

3.5.3. FRET

Förster Resonance Energy Transfer (FRET) (also referred to as Fluorescence Resonance
Energy Transfer) is a method that shows energy transfer between two light-sensitive molecules
based on distance [163]. With this newer technology, two proteins of interest can be labeled
to quantitatively measure the interactions between the proteins. FRET can detect neutrophil
β2-integrin conformational changes in the extracellular domain and the cytoplasmic tail when
the α and β chains are labeled separately. Lefort et al. used this method to determine
how inside-out activation of Mac-1 results in integrin headpiece extension from the bent
conformation. Cytoplasmic domain FRET in K562 cells demonstrated that Mac-1 binding to
ICAM-1 resulted in the separation of integrin cytoplasmic tails [108]. The sensitivity of this
method has made it easier to determine protein interactions within living cells, including how
integrins respond during neutrophil stimulation.

3.5.4. Integrin Crosslinking

Integrin crosslinking is a technique where anti-integrin antibodies (e.g., anti-CD18 mAb)
are coated on a plate and used as the stimulus for β2-integrin activation and signaling [148].
This approach has historically been used to induce outside-in signaling of integrins. However,
Jakus and colleagues determined that there was cooperative interaction between FcγRIIa
and integrins during integrin crosslinking with anti-CD18 mAb due to the presence of Fc
domains on mAbs. In this study, they demonstrated that anti-CD18 mAb crosslinking resulted
in neutrophil respiratory burst. When anti-CD18 F(ab’)2 was used instead, respiratory burst
no longer occurred despite significant neutrophil adhesion. This finding helped to prove that
full neutrophil activation resulting in respiratory burst requires more than just integrin-ligand
binding and outside-in β2-integrin activation [122]. This technique provides many benefits
to understanding the cooperative signaling of integrins and FcγRs, but researchers should
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elect to use F(ab) or F(ab’)2 fragments, rather than intact antibodies, when trying to limit their
stimulation to outside-in β2-integrin activation.

3.5.5. Flow Chamber Assays

Neutrophils are migratory cells where dynamic motion is a critical part of their func-
tion. Many in vitro neutrophil assays are unable to capture the dynamic process of neu-
trophil diapedesis. Flow chamber experiments can determine neutrophil crawling velocity,
arrest, polarization, migration patterns, and diapedesis using microscopy. This technique
offers a multitude of options for the use of ligands, cell type (whole blood, primary or
differentiated neutrophil-like), chemoattractants, function-blocking antibodies, and im-
munofluorescence microscopy [54,137,164]. Flow chambers can also be coated with desired
ligands and perfused with whole blood via tubing directly attached to murine carotid arter-
ies. With this approach, Zarbock and colleagues demonstrated that E-selectin engagement
is required for LFA-1-dependent rolling on ICAM-1 [165]. Microfluidic systems are also
often used to determine the strength of neutrophil adhesion in relation to the ligand or
a known amount of tension [137,166]. Morikis et al. demonstrated that neutrophils had
increased adhesion and calcium flux in response to higher tension ligands while under
shear flow [166]. Their study highlighted how high-affinity neutrophil β2-integrins recog-
nize different levels of shear stress and tension and modulate downstream function and
signaling to correspond to the stimulus [166].

In addition to the ligands utilized in shear flow assays, neutrophil interactions with
cell monolayers can also be evaluated. Sule and colleagues demonstrated that neutrophils
from patients with antiphospholipid syndrome display increased adhesion to HUVECs
due to upregulated β2-integrin activation [126]. This system can also be designed to model
organ-specific neutrophil interactions, such as blood-brain barrier inflammation. Gorina
et al. showed that neutrophils use β2-integrins to crawl on ICAM-1 prior to diapedesis
across isolated primary mouse brain microvascular endothelial cells [23]. In summary, the
advantage of shear flow assays is that they offer a multitude of options to model healthy
and diseased states.

3.5.6. Immunoblotting and Co-Immunoprecipitation

As the field continues to push toward effective drugs for targeting β2-integrins, we
must consider other proteins that may serve as therapeutic targets. Many of the assays
already discussed can be adapted using target-specific inhibitors to probe the involvement
of individual proteins in β2-integrin activation and function. Another useful method is
immunoblotting, which continues to be a frequently utilized approach for determining
specific cell signaling patterns. A significant portion of our understanding of integrin
signaling comes from immunoblotting experiments. Through immunoblotting, key signal-
ing molecules downstream of integrin activation, such as Syk, have been identified [148].
Specifically, Lefort et al. demonstrated that Mac-1 outside-in activation with ICAM-1 acti-
vates only the Akt apoptosis regulatory pathway and not the p38 MAPK pathway [108].
With immunoblotting, researchers can determine the signaling mechanism that underlies a
given function [21].

Co-immunoprecipitation (Co-IP) assays are used to identify the protein–protein inter-
actions occurring within cells by indirectly capturing proteins that are bound to specific tar-
get proteins [167]. The unknown proteins are then evaluated using traditional immunoblot-
ting techniques. Co-IP has been useful for determining binding partners of β2-integrins
in both neutrophils and lymphocytes [45,168]. Co-IP can also be used to determine CD18
binding partners on the surface of neutrophils [130]. Through Co-IP experiments, Willeke
et al. demonstrated that Syk binds to CD18 in fibrinogen-stimulated neutrophils, expanding
the understanding of Syk’s role in β2-integrin activation and signaling [66].
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3.5.7. Microscopy

Since the mid-1900s, researchers have utilized microscopy to evaluate neutrophils.
The various methods of microscopy have aided researchers in their understanding of neu-
trophils, specifically how neutrophils change shape and polarize upon stimulation [164,169].
Confocal and immunofluorescence microscopy are the more commonly used microscopy
platforms for evaluating neutrophils. Both methods utilize fluorescently labeled antibodies
to evaluate β2-integrin clustering and surface distribution, subcellular localization, and
colocalization with other proteins, such as F-actin [170–173].

Electron microscopy can be used to determine the binding of ligands to specific
integrins. For example, Xu et al. used negative-stain electron microscopy to determine
how the integrins αMβ2 and αXβ2 bind to iC3b, demonstrating that the different integrins
bind to unique sites on iC3b [174]. Negative-stain electron microscopy can also be used to
determine conformational changes of β2-integrins, deciphering between extended closed
and extended open integrin conformations [135].

In a recent study, Wen et al. used high-resolution quantitative dynamic footprinting
(qDF) microscopy, which is a total internal reflective fluorescence (TIRF)-based method, to
analyze the relationship between kindlin-3 and β2-integrin activation in a shear flow assay
of differentiated neutrophil-like HL60s [36]. Utilization of this method also demonstrated
that integrins can obtain a high-affinity conformation (H+) without becoming extended
(E−) while rolling along ICAM-1 [175]. This E−H+ conformation results in decreased
neutrophil adhesion under flow. These findings were particularly interesting because they
indicated an endogenous anti-inflammatory mechanism that could be harnessed by new
integrin-targeting therapies [175].

3.6. In Vivo Experiments

While a vast amount of neutrophil β2-integrin research has been conducted in vitro,
the use of mouse models has also made a significant impact on the field. The in vitro
experiments utilizing primary cells or cell lines are essential for building a fundamental
understanding of β2-integrins; however, in vitro findings are not always consistent with
in vivo results. For example, in vitro experiments have consistently identified β2-integrins
as essential receptors for neutrophil migration and adhesion, while more recent in vivo
experiments have shown that the need for β2-integrins in vivo is variable. Table 5 sum-
marizes a selection of in vivo models where β2-integrin dependence may vary depending
on the stimulus or the organ in question. These differences are also noted when compar-
ing leukocyte migration within a 3D collagen matrix versus placed on top of a collagen
matrix [176,177]. The current understanding of these differences is that neutrophils are
flexible in their responses to their environment. Migration on a 2D surface depends on
cellular adhesion while movement within a 3D network, like collagen, depends on ac-
tomyosin contraction or actin polymerization [176,178–180]. What this does not explain
is why pneumonia-causing pathogens have differential dependence on β2-integrins for
neutrophil migration (Table 5) [181] or why certain β2-integrins are required while others
are not [182]. These studies likely point toward evidence that the activation of internal cel-
lular pathways following DAMP/PAMP recognition is also variable [183,184]. The recent
development of humanized β2-integrin knockin mice should allow for better evaluation
of integrin requirements in these disease models due to its ability to evaluate β2-integrin
activation states in vivo [139].
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Table 5. Evidence for β2-integrin dependence in murine models in vivo.

Disease Model β2-Integrin Dependent References

Alzheimer’s disease Yes [185]

Atrial fibrosis Yes [22]

HMGB1-induced peritonitis Mac-1: Yes
LFA-1: No [186]

Influenza No [187]

LTB4-induced intestinal
transepithelial migration Yes [187]

Pneumonia

S. pneumonia Mac-1: yes
LFA-1: no

[188]
[181]

P. aeruginosa Yes [127,181]
E. coli LPS Yes [181]

Pulmonary aspergillosis Yes [20,189]

SLE-induced glomerular
disease

Mac-1: No
LFA-1: Yes [190]

Thioglycollate peritonitis Mac-1: No
LFA-1: Yes [186,191,192]

Intravital Microscopy

Intravital microscopy in the mouse cremaster muscle is a well-established method
for examining neutrophil function, characteristics, and interactions in the blood vessels.
Leukocyte recruitment can be visualized in a variety of scenarios, including chemokine
stimulation, fluorescently labeled leukocytes or transgenic mice expressing a fluorescent
protein, and/or the application of pharmacological inhibitors [165,193,194]. Phillipson and
colleagues used intravital microscopy to demonstrate the functional differences in LFA-1
and Mac-1 during MIP-2-induced neutrophil recruitment. Specifically, they found that
LFA-1 is responsible for neutrophil adhesion while Mac-1 was responsible for neutrophil
crawling [194]. This model was also used in experiments showing that E-selectin-induced
slow rolling of neutrophils was LFA-1 dependent and Mac-1 independent [165]. As tech-
nology advances, researchers have expanded the field of intravital microscopy. Park and
colleagues developed an intravital lung imaging system to examine neutrophil recruitment
during sepsis-induced acute lung injury (ALI). In this study, investigators determined
that decreased pulmonary microcirculation is due to obstructions of clustered neutrophils.
Further, these neutrophils had high levels of surface Mac-1 expression, and the application
of a Mac-1 inhibitor decreased sequestration in the pulmonary microvasculature [44]. Lim
and colleagues also developed an advantageous model for evaluating β2-integrins. They
generated a knockin mouse strain expressing CD11b conjugated to a monomeric yellow flu-
orescent protein (mYFP). This model can be utilized to image CD11b expressing cells in live
mice or evaluate cell populations for CD11b expression in vitro. Although this approach
results in all cells expressing CD11b to be YFP positive, this model allows for the analysis
of functionally competent neutrophils in vivo without compromising β2-integrin–ligand
interactions due to antibody binding [195]. Because of the breadth of options for exam-
ining neutrophils using intravital microscopy, this technique is an excellent next step for
researchers wanting to translate in vitro findings into organ-specific in vivo scenarios [196].

4. Perspectives on the Study of Neutrophil β-Integrins

FcγRs often cooperate with β2-integrins in a complex mechanism of neutrophil acti-
vation and function. β2-integrin stimulation often results in neutrophil FcγR activation
as well. For example, polyRGD is used to stimulate β2-integrins; however, neutrophils
isolated from FcγR−/− mice have diminished respiratory burst response to polyRGD stimu-
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lation, suggesting FcγR-cooperation with polyRGD activation and signaling [149]. Further,
wild-type murine neutrophils stimulated with polyRGD displayed p38 MAPK phosphory-
lation, which is not activated when neutrophil β2-integrins, are stimulated in an outside-in
manner using ICAM-1 [108,149]. Previous work by Jakus et al. demonstrated that stimu-
lation of neutrophils with anti-integrin monoclonal antibodies requires both β2-integrins
and FcγRs [122]. These findings are strengthened by the fact that many FcγR-stimulated
neutrophil events are β2-integrin-dependent. For example, equine neutrophil adhesion and
respiratory burst stimulated by low-density insoluble immune complexes are dependent
on both FcγR and β2-integrins [123,124]. Other studies have also demonstrated the inter-
connectedness of FcγRs and β2-integrins [120,197]. These findings add a layer of difficulty
to experiments designed for deciphering the intracellular signaling events exclusive to
either FcγRs or β2-integrins.

Although this review has focused primarily on β2-integrins, neutrophils also express
β1- and β3-integrins [7,198]. The majority of β-integrin research in neutrophils has focused
on β2-integrins; however, these less-studied integrins may also play significant roles in neu-
trophil activation and signaling [14]. Lomakina and Waugh demonstrated that neutrophils
significantly adhere to vascular cell adhesion molecule 1 (VCAM-1) through the integrin
α4β1 [199]. Further, there is evidence to demonstrate that engagement of β3-integrins
and β1-integrins activate β2-integrins [198,200,201]. While the presence of these “other”
β-integrins adds additional complexity to investigations focused on β2-integrin-exclusive
signaling, they also represent an opportunity for additional research that may lead to
a more complete, and even potentially clinically relevant, understanding of neutrophil
β-integrin receptor functions in vivo.

5. Conclusions

β2-integrins have been the focus of intense research for decades, and many tools
and assays have been developed to assess these receptors in neutrophils and neutrophil-
like cells. These tools have been employed by researchers in very diverse fields, looking
to decipher important questions regarding the biological function of β2-integrins. The
combination of these cell types, tools, and assays offers a powerful resource to further
understand β2-integrins and inform the future development of successful neutrophil
targeting therapies.
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Abbreviations

AKT serine/threonine kinase
CD18 β chain of β2 integrins
CD11 α chain of β2 integrins
CR3 complement receptor 3
DAMP damage-associated molecular pattern
dHL60 differentiated HL60 cells
DMSO dimethylsulfoxide
eGFP enhanced green fluorescent protein
EV extracellular vesicle
FcγR Fcgamma receptor
fMLP N-formylmethionine-leucyl-phenylalanine
GM-CSF granulocyte-macrophage-colony-stimulating factor
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GPCR G-protein-coupled receptor
iC3b complement protein fragment produced when complement factor I cleaves C3b
ICAM-1 intercellular adhesion molecule 1
IL-8R interleukin 8 receptor
ITAM immunoreceptor tyrosine-based activation motif
LDN low-density neutrophil
LFA-1 lymphocyte-function-associated antigen-1, αLβ2, CD11a/CD18
LPS lipopolysaccharide
LTB4 leukotriene B4
Mac-1 macrophage-1 antigen, αMβ2, CD11b/CD18
MIP-2 macrophage inflammatory protein-2
NBT nitroblue tetrazolium
NDN normal-density neutrophil
NET neutrophil extracellular trap
nEV neutrophil extracellular vesicle
PAMP pathogen-associated molecular pattern
PMA phorbol 12-myristate 13-acetate
PMN polymorphonuclear leukocyte, neutrophil
PKC protein kinase C
ROS reactive oxygen species
Syk Spleen tyrosine kinase
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