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Abstract: Brain activity is time varying and dynamic, even in the resting state. However, little
attention has been paid to the dynamic alterations in regional brain activity in Parkinson’s disease
(PD). We aimed to test for differences in dynamic regional homogeneity (dReHo) between PD patients
and healthy controls (HCs) and to further investigate the pathophysiological meaning of this altered
dReHo in PD. We included 57 PD patients and 31 HCs with rs-fMRI scans and neuropsychological
examinations. Then, ReHo and dReHo were calculated for all subjects. We compared ReHo and
dReHo between PD patients and HCs and then analyzed the associations between altered dReHo
variability and clinical/neuropsychological measurements. Support vector machines (SVMs) were
also used to assist in differentiating PD patients from HCs using the classification values of dReHo.
The results showed that PD patients had increased ReHo in the bilateral medial temporal lobe and
decreased ReHo in the right posterior cerebellar lobe, right precentral gyrus, and supplementary
motor area, compared with controls. The coefficient of variation (CV) of dReHo was considerably
higher in the precuneus in PD patients compared with HCs, and the CV of dReHo in the precuneus
was found to be highly associated with HAMD, HAMA, and NMSQ scores. Multiple linear regres-
sion analysis controlling for demographic, clinical, and neuropsychiatric variables confirmed the
association between altered dReHo and HAMD. Using the leave-one-out cross validation procedure,
98% (p < 0.001) of individuals were properly identified using the SVM classifier. These results provide
new evidence for the aberrant resting-state brain activity in the precuneus of PD patients and its role
in neuropsychiatric symptoms in PD.

Keywords: Parkinson’s disease; resting-state fMRI; dynamic brain activity; regional homogeneity;
support vector machine; neurodegenerative diseases; movement disorders; neuroimaging; depression;
anxiety

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that mostly
occurs in aging people. It is characterized by several clinical features, including motor
dysfunction, such as bradykinesia, postural instability, resting tremor, and rigidity, accompa-
nied by many nonmotor symptoms, which result in serious health and social problems [1,2].
Despite significant research progress over the last few decades, the pathophysiological
mechanisms of PD are still not completely understood [3,4].

Advancements in neuroimaging techniques have made it easier to learn more about
PD. In particular, the use of resting-state functional magnetic resonance imaging (rs-fMRI)
to study spontaneous cerebral activity in PD has grown increasingly in recent years [5]. One
measure, known as regional homogeneity (ReHo), uses Kendall’s coefficient of concordance
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(KCC) to measure similarities between a given voxel and nearby voxels to detect the regional
functional integration of spontaneous neuronal activity [6]. ReHo measures the local
synchronization of spontaneous neuronal activity and does not directly correspond to an
increase or decrease in overall activity but rather provides information on the organization
of brain activity [6]. On the basis of this, a ReHo map of the KCC value distribution can
be produced. ReHo has been widely used to study aberrant brain functional activity in
neurological disorders, including PD, and there have been various reports about studies of
abnormal ReHo in PD [7–9]. A meta-analysis of ReHo research found that intrinsic brain
activity exhibits a pattern of dysfunction and adjustment that mostly involves default mode
networks (DMN) and motor networks [10].

Evidence has emerged recently indicating that brain activity is time varying, even
in the resting state [11]. Brain activity is dynamic throughout the scan period, but static
analysis overlooks these dynamic fluctuations. Dynamic measures such as dynamic ReHo
(dReHo) can provide new information on the dynamic nature of neural activity [12–16].
DReHo is a valuable measure for investigating abnormal brain activity in patients with
attention-deficit hyperactivity disorder [12], stroke [13], amyotrophic lateral sclerosis [14],
trigeminal neuralgia [15], and mild cognitive impairment [16]. In PD patients’ dynamic
regional brain activity assessments, dALFF changes in the left precuneus have already been
reported [16]. However, there has been no research about dReHo analysis in PD. Therefore,
dReHo was used as a dynamic characteristic of spontaneous functional brain activity in
both PD and healthy controls (HCs) in the current study. We wanted to see if patients with
PD had altered dReHo levels and, if so, whether the variation corresponded to changes in
clinical measurements. Additionally, we also compared ReHo between the two groups to
observe the different results provided by comparing ReHo and dReHo between the two
groups using two distinct analytic methods.

Although the primary objective of this study was to investigate dynamic abnormalities
in brain function in Parkinson’s disease and the pathophysiological significance behind
these abnormalities, we also attempted to utilize these dynamic brain function abnor-
malities for diagnostic analysis. This approach aimed to provide new insights for future
diagnostic research in the field. It is possible to classify and predict individuals with
high accuracy using support vector machines (SVMs). Combined with measurements of
brain dynamic functional connectivity (dFC), they have been used to classify Alzheimer’s
disease (AD) and mild cognitive impairment (MCI) [17,18]. Furthermore, in a previous
study, SVMs were used to differentiate PD patients from HCs using the dALFF variation
classification [16]. In the present study, we also implemented SVMs to investigate whether
dReHo could differentiate PD patients from HCs at an individual level.

2. Materials and Methods
2.1. Participants

The present study recruited 67 patients who were matched for age, gender, and general
cognitive status with 34 HCs; none of the HCs had a history of neurological or psychiatric
disorders before being enrolled in the study. Table 1 shows a summary of the demographic
and clinical data of the included participants. All patients were diagnosed using the
Parkinson’s Disease Society of the United Kingdom brain bank diagnostic criteria [19].
We ruled out dementia [20], moderate to severe head tremors, other neurological and
psychiatric disorders, including alcohol and drug abuse, and deep brain stimulation.
People who were left-handed were also excluded. All PD patients underwent an MRI scan,
as well as motor and nonmotor function assessments, in a practically defined “off” state
after withdrawing all antiparkinsonian medications for 12 h. The researchers gathered
demographic and medical data from all participants. Hoehn-Yahr (H-Y) staging, the
Unified Parkinson’s Disease Rating Scale (UPDRS), the Mini-Mental State Examination
(MMSE), the Non-Motor Symptoms Questionnaire (NMSQ), the Hamilton Anxiety Rating
Scale (HAMA), and the Hamilton Depression Rating Scale (HAMD) were all employed to
evaluate PD patients. The control group was also assessed with the MMSE. The Declaration
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of Helsinki was adhered to throughout the course of this investigation. All participants
agreed to take part in the research in writing before their enrollment. The ethics committee
of Beijing Hospital approved the research.

Table 1. Clinical and Demographic features of Parkinson’s disease (PD) patients and healthy con-
trols (HCs).

PD HCs p-Value

No. of subjects 57 31
Age 64.16 ± 8.13 62.42 ± 7.19 0.122

Gender (M/F) 28/29 16/15 0.823
Disease duration 6.49 ± 3.59 N/A N/A

H-Y staging 2.20 ± 0.69 N/A N/A
UPDRS 49.90 ± 18.82 N/A N/A
MMSE 28.05 ± 1.95 27.71 ± 2.25 0.528
HAMD 9.30 ± 5.14 N/A N/A
HAMA 10.21 ± 5.49 N/A N/A
NMSQ 11.30 ± 5.32 N/A N/A

PD, Parkinson’s disease; HCs, Healthy controls; M, male; F, female; H-Y staging, Hoehn-Yahr staging; UPDRS,
Unified Parkinson’s Disease Rating Scale; MMSE, Mini-Mental Status Examination; HAMA, Hamilton Anxiety
Rating Scale; HAMD, Hamilton Depression Rating Scale; NMSQ, Non-Motor Symptoms Questionnaire. Data are
presented as range and mean ± SD.

2.2. MRI Data Acquisition

A 3.0-T MRI scanner (Achieva TX; Philips Medical Systems, Best, The Netherlands) was
used at Beijing Hospital to perform all MRI scans. We used foam padding and headphones
to restrict head movement and reduce the noise of scanning. During the scan, the partici-
pants were instructed to lie still, relax, keep their eyes closed, remain awake, and not focus
on any specific thoughts. T1-weighted images with high resolution (three-dimensional
turbo field echo) were created using the following settings: echo time (TE) = 3.0 ms, rep-
etition time (TR) = 7.4 ms, flip angle = 8◦, field of view (FOV) = 240 × 240 mm, voxel
dimensions = 0.94 × 0.94 × 1.20 mm, matrix size = 256 × 256, slice thickness = 1.2 mm,
slices = 140. The following parameters were used to create functional images: TE = 35 ms,
TR = 3000 ms, matrix size = 64 × 64, flip angle = 90◦, FOV = 240 × 240 mm, voxel dimen-
sions = 3.75 × 3.75 × 4.00 mm, slice thickness = 4 mm, slices = 33, time points = 210.

2.3. Rs-fMRI Data Preprocessing

The functional images were preprocessed in MATLAB (MathWorks, Inc., Natick,
MA, USA) using RESTplus V 1.2 [21] and the SPM12 package (www.fifil.ion.ucl.ac.uk/
spm (accessed on 27 August 2018)). For signal acclimatization and equilibrium of the
participants, the preprocessing pipeline excluded the first 10 volumes. The remaining
200 time points had their slice timing adjusted. We paid attention to head motion when
realigning, ruling out motion greater than 2 mm displacement or 2◦ rotation. Functional
images were normalized to the Montreal Neurological Institute (MNI) template (using
DARTEL) and co-registered with structural T1 images [22]. They were then resliced
to a 3 × 3 × 3 mm3 resolution. Detrending was used to lessen systematic shift. The
Friston-24 head motion parameters [23], cerebrospinal fluid, and white matter signals were
controlled using nuisance covariates regression.

2.4. ReHo Calculation

ReHo maps were generated using RESTPlus V 1.2, following a previously published
procedure [6]. Kendall’s coefficient of concordance (KCC) was computed for the time series
of each voxel and its 26 nearest neighboring voxels in a voxel-wise manner across the
entire brain. To standardize the results, the KCC of each voxel was divided by the average
KCC of the entire brain, resulting in normalized ReHo maps. Finally, the ReHo maps were
smoothed using a Gaussian kernel (6 mm full-width-half-maximum, FWHM).

www.fifil.ion.ucl.ac.uk/spm
www.fifil.ion.ucl.ac.uk/spm
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2.5. DReHo Calculation

Using temporal dynamic analysis (TDA) toolkits based on DPABI V4.3 [24], dynamic
regional metric data were analyzed, which is a data-driven approach [25]. Within a predeter-
mined temporal window, ReHo was calculated according to the sliding window analysis’s
specifications. Over the course of the entire brain, Kendall’s coefficient of concordance
(KCC) was calculated between the time series of each voxel and the time series of its nearest
26 neighbor voxels [6]. A window length that is either short or too lengthy may not be able
to detect dynamic activity or allow for a robust assessment of dynamic changes. Previous
research established the optimal window length range as 10–75 TR, step = 1 TR [11,26]. In
the present study, dynamic analysis was conducted using a 30 TR sliding window with
a shifting step size of 1 TR. One hundred and seventy-one windows were created from
200 time intervals. In addition, in order to exclude the effect of window width on the
results, the window width was set to 25/35 TR to repeat all the calculations in the paper.

Within each time window, ReHo was calculated. Then, in order to analyze the variabil-
ity of ReHo, we produced coefficient of variation (CV) maps of ReHo for each individual.
DReHo was calculated by computing the CV of the ReHo at each voxel using 171 time win-
dows, yielding dReHo graphs for each subject. Finally, the individual dReHo maps were
spatially smoothed (full-width-half-maximum (FWHM) of the Gaussian kernel = 6 mm).

2.6. Support Vector Machine Analysis

We applied SVMs to classify data using intergroup differences in the CV maps of
dReHo in the area that showed significant differences between the two groups. The
K-nearest neighbor (KNN) imputation with N = 3 was employed to apply the feature
imputation to complete the missing values. This feature was used to establish the available
models with the SVMs. The sample contained 88 participants and was divided into a
training group of 71 participants and a testing group of 17 participants. The participants in
the two groups had comparable ages, gender ratios, disease durations, and Hoehn-Yahr
stages. To obtain an idea of how general our classifier could be, we ran it through the
leave-one-out cross validation (LOOCV) method. An analysis of the permutation test
showed that this classification accuracy was statistically significant [27]. Every 5000 times
the classifier randomly assigned PD and HC labels to the training subjects, the permutation
test was repeated, and the classification process was repeated. The classifier’s overall
sensitivity, specificity, accuracy, and ROC were then calculated to test its performance.

2.7. Statistical Analysis

Clinical data were analyzed using SPSS (Version 23.0. Armonk, NY, USA: IBM Corp).
The Kolmogorov–Smirnov test was used to determine data normality. The intergroup
differences in age and MMSE scores were investigated using two-sample t-tests or the
Mann–Whitney U test. In terms of gender differences, the chi-square test was employed.

DPABI V4.3 was used to compare ReHo and dReHo between the PD and HC groups.
Differences in ReHo and dReHo were compared using two-sample t-test analysis, in which
age and gray matter density (GMD) were included as covariates. Multiple comparisons
were corrected using the Gaussian random field (GRF) method (voxel level, p < 0.001;
cluster level, p < 0.05). Spearman correlation analysis was employed to calculate the
associations between altered dReHo variability and H-Y staging, UPDRS, disease duration,
and MMSE/HAMD/HAMA/NMSQ scores. To control for the effect of other parameters
on the significant correlations, we further performed partial correlation and multiple linear
regression analyses.

R version 3.6.0 was used for support vector machine analysis. A p-value of <0.05 was
considered statistically significant if not specified.
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3. Results
3.1. Clinical and Demographic Characteristics

Finally, the analyses involved 57 PD patients and 31 HCs. Four patients with PD
and two HCs were excluded because they were left-handed. As a result of excessive head
motion, five people with PD and one HC were excluded. Poor image quality led to the
exclusion of one PD patient.

Table 1 shows a summary of the demographic and clinical data. In terms of age,
gender, and MMSE scores, the results did not show any significant differences between the
PD patients and HCs (p > 0.05).

3.2. Difference in ReHo between PD Patients and Controls

The PD patients had increased ReHo in the bilateral medial temporal lobe and de-
creased ReHo in the right posterior cerebellar lobe, right precentral gyrus, and supplemen-
tary motor area compared with the controls (Figure 1 and Table 2).
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Figure 1. Differences between groups in terms of ReHo. Compared with the controls, the PD patients
had increased ReHo in the bilateral medial temporal lobe and decreased ReHo in the right posterior
cerebellar lobe, right precentral gyrus, and supplementary motor area.

Table 2. ReHo differences between PD and HCs.

Region Cluster Size (Voxel) MNI (x, y, z) t-Value

Right Posterior Cerebellar Lobe 17 (15, −81, −54) −5.5695

Left Medial Temporal Lobe 52 (−27, 0, −42) 5.1186

Right Medial Temporal Lobe 74 (27, 9, −39) 5.4905

Right Precentral Gyrus 123 (39, −9, 42) −5.7469

Supplementary Motor Area 70 (0, 24, 48) −5.2007

3.3. DReHo Analysis and Correlation Analysis

The CV of dReHo was substantially higher in the precuneus in PD patients than in HCs
(p < 0.001) (Table 3 and Figure 2). The cluster size was 13 voxels. The CV of dReHo in the
precuneus was significantly correlated with HAMD, HAMA, and NMSQ scores (r = −0.441,
−0.312, and −0.345; p = 0.001, 0.018, and 0.009) in PD patients (Figure 3). There were no
significant correlations between altered dReHo and disease duration, disease severity (H-Y
staging and UPDRS score), or MMSE score. To verify whether the correlations between
altered dReHo and HAMA, HAMD, and NMSQ scores were due to a common association
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between disease progression, we performed partial correlation analyses while controlling
for disease duration as a covariate, and the results remained consistent with those obtained
without controlling for disease duration. In addition, for better control of the contribution
of other parameters, we performed multiple linear regression analysis, with altered dReHo
as the dependent variable and age, education, head motion (mean framewise displacement
(FD), introduced by Jenkinson et al. [28]), and UPDRS, MMSE, HAMA, HAMD, and
NMS scores as independent variables. In the multiple linear regression analysis, we
found that the HAMD score was the only parameter with statistical significance. The
standardized coefficients beta value was −0.403, the significance (sig.) was 0.04, and the
95% confidence interval ranged from −0.008 to 0. This result suggested that there was a
significant association between altered dReHo and HAMD score after controlling for other
factors, such as UPDRS, head motion parameters, age, and education level.

Table 3. DReHo differences between PD patients and HCs.

Region Cluster Size (Voxel) MNI (x, y, z) t-Value

Precuneus 13 (3, −54, 60) 4.5626
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Figure 2. Differences between groups in terms of dReHo variability. The CV of dReHo in the
precuneus was found to be higher in the PD patients, as shown in sagittal (A), transverse (B), and
coronal (C) views.
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Figure 3. To compare the CV values of dReHo in the precuneus of the two groups (A), we used box
plots with whiskers (min–max) and applied scatterplots to examine how the precuneus’s CV value
related to HAMD (B), HAMA (C), and NMSQ scores (D).
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The results using the window lengths of 25/35 TR were almost the same as those of
30 TR, which further confirmed the reliability of our results. The results using the window
lengths of 25/35 TR are detailed in the Supplementary Materials.

3.4. Classification Results

The above results showed that the region with between-group differences was located
in the precuneus. We then saved this cluster as a mask. Following this, we used DPABI to
extract the signal data of this area in each participant. Finally, we used SVMs to investigate
whether dReHo could differentiate PD patients from HCs. Figure 4 depicts the outcomes.
The linear SVM classifier’s accuracy trained with LOOCV was 98%, with 100% sensitivity
and 95.6% specificity (p < 0.001, non-parametric permutation approach). The area under the
classifier’s receiver operating characteristic (ROC) curve was 0.991. We used the validation
group to test the classification method’s reliability, and the area under the classifier’s ROC
curve was 0.967.
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4. Discussion

In this study, we mainly explored the dynamic neural activity pattern of PD with the
new TDA method of dReHo. The comparison of ReHo and dReHo between the PD patients
and controls obtained different results. The CV of dReHo was obviously increased in the
precuneus of PD patients, which was associated with depressive symptoms.

The present study found increased ReHo in the bilateral medial temporal lobe and
decreased ReHo in the right posterior cerebellar lobe, right precentral gyrus, and medial
frontal gyrus in PD patients compared with controls. These findings are consistent with
previous reports [7,8,29–34]. The cerebellum, precentral gyrus, and supplementary mo-
tor area are closely associated with motor function, and the motor system is impaired
in PD. Previous research has reported that ReHo is reduced in these areas among PD
patients [7,8,29,31–35]. The medial temporal lobe is involved in Parkinson’s disease at
Braak stage 4, closely following substantia nigra involvement, which leads to motor symp-
toms in Braak stage 3 [36]. Altered ReHo in this area has also been commonly reported to
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be abnormal in PD patients and is associated with neuropsychiatric symptoms, especially
depression [31,34,35].

In the present study, analysis of dReHo obtained different results from ReHo. Because
ReHo represents the local synchronization of spontaneous neuronal activity of an entire
period, while dReHo reflects fluctuations in ReHo by dividing the period into many short
time windows, they have different physiological mechanisms. DReHo may detect altered
brain activity from another perspective [12–16]. In recent years, dReHo has gradually
been used in the study of neurodegenerative diseases. In a study on mild cognitive
impairment (MCI) (with depression or without depression), dynamical measurements
offered improved insight into the association between memory deficits and depressive
symptoms [16]. The latest findings demonstrated that dReHo may be a useful biomarker
for the early detection and diagnosis of diseases such as amyotrophic lateral sclerosis
(ALS) [14]. Furthermore, a previous study showed that dALFF in the left precuneus of
PD patients differed significantly from that of HCs, and the CV of dALFF was correlated
with the course of the disease [16]. Our new research demonstrated that dReHo was
obviously increased in the precuneus of PD patients, which provided meaningful and
robust information from a dynamic perspective.

Rich evidence suggests that the precuneus is a critical cerebral region in PD patients.
The precuneus is in the posteromedial cortex of the parietal lobe and has been a hot topic of
the highest metabolism in cerebral regions, which plays a critical role in motor and cognitive
tasks [37]. Additionally, it has been found to have the most obvious decreased metabolism
in the posterior cortical region of PD patients when using other neuroimaging technolo-
gies [38–40]. A number of studies have revealed that the precuneus is closely associated
with both motor and nonmotor symptoms in PD [38,40–46]. It is believed that the pre-
cuneus is involved in the default mode network (DMN), and the inter-network connectivity
from DMN to motor systems is impaired in PD [41]. Voxel-based morphometry discovered
morphological changes in the precuneus of PD patients who had cognitive impairment and
isolated apathy; attention and working memory dysfunction were observed in patients with
PD who had apathy [43]. Using static brain activity analysis, Hu discovered an association
between HAMD score and altered functional connectivity between the precuneus and the
left median cingulated cortex (MCC) [44]. Even in the early stages of PD, precuneus cortical
thickening has been shown in patients with mild–moderate depression. This finding may
point to an early role for this region in the onset of depression in PD patients [45]. Our
current research has also discovered significant negative correlations between dReHo and
nonmotor symptoms, particularly depression and anxiety. This suggests that changes in
dynamical homogeneity in this region may serve as a compensatory mechanism for anxiety
and depression symptoms. The precuneus is a perceptual processing center that is linked
to visuospatial function, situational memory extraction, and self-awareness [47]. Studies
have shown that patients with serious depression have unusually high bilateral precuneus
functional connectivity. Antidepressant treatment reduces clinical symptoms while normal-
izing bilateral precuneus functional connectivity [48]. In conclusion, precuneus functional
status is likely to be an imaging tool for measuring the severity of depressive symptoms in
PD patients.

Many studies have combined machine learning algorithms with brain DFC networks to
classify patients in the early stages of AD. A prior study combined DFC analysis with SVM
to classify early MCI patients and healthy controls, with almost 80% accuracy compared
to 62–72% accuracy using sFC [17]. Another recent study tested that the SVM classifier
correctly classified 80.36% of subjects using the LOOCV method. When using dALFF
variation in the left precuneus, it may be possible to distinguish between PD patients and
HCs on an individual level [16]. In our investigation, we also attempted to apply SVM
analysis. When the LOOCV method was used, the accuracy of this classification was 98%;
this result provides insight for future longitudinal cohort studies that could enroll patients
with early Parkinson’s disease to identify its diagnostic value.
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There are several limitations to our research. First, all of the patients were on long-term
medication. Despite the fact that patients underwent fMRI scans 12 h after medication
withdrawal, it was not possible to remove the possibility of long-term consequences of
therapy. Second, because of the insufficient number of samples, we employed SVM to
double-check the classification accuracy. Although the sample size ratio of the PD patients
to HCs was close to 2:1, such a sample distribution may have had an impact on the machine
learning classification effect. Our ROC curve performed well when we actually trained the
model. In future investigations, in order to ensure classification accuracy, a larger sample
size and more matched sample size ratio should be used, and a separate test sample should
be employed.

5. Conclusions

In conclusion, this study sheds light on the dynamic alterations in regional brain
activity in PD. Our findings revealed a significant increase in the CV of dReHo in the pre-
cuneus of PD patients compared to HCs. Furthermore, the CV of dReHo in the precuneus
was found to be strongly associated with HAMD, HAMA, and NMSQ scores, especially
depressive scores, highlighting the role of the precuneus in neuropsychiatric symptoms in
PD. This study not only provides new evidence for aberrant resting-state brain activity in
the precuneus of PD patients from a dynamic perspective but also suggests the potential of
dReHo as a valuable imaging tool for understanding the pathophysiological mechanisms
of PD and assisting in its diagnosis.
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