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Abstract: The presence of obesity and metabolic syndrome is strongly linked with chronic kidney
disease (CKD), but the mechanisms responsible for the association are poorly understood. Here,
we tested the hypothesis that mice with obesity and metabolic syndrome might have increased
susceptibility to CKD from liquid high fructose corn syrup (HFCS) by favoring the absorption and
utilization of fructose. We evaluated the pound mouse model of metabolic syndrome to determine if
it showed baseline differences in fructose transport and metabolism and whether it was more sus-
ceptible to chronic kidney disease when administered HFCS. Pound mice have increased expression
of fructose transporter (Glut5) and fructokinase (the limiting enzyme driving fructose metabolism)
associated with enhanced fructose absorption. Pound mice receiving HFCS rapidly develop CKD
with increased mortality rates associated with intrarenal mitochondria loss and oxidative stress. In
pound mice lacking fructokinase, the effect of HFCS to cause CKD and early mortality was aborted,
associated with reductions in oxidative stress and fewer mitochondria loss. Obesity and metabolic
syndrome show increased susceptibility to fructose-containing sugars and increased risk for CKD and
mortality. Lowering added sugar intake may be beneficial in reducing the risk for CKD in subjects
with metabolic syndrome.

Keywords: metabolic syndrome; obesity; chronic kidney disease; fructose; high fructose corn syrup

1. Introduction

Metabolic syndrome is common in the United States and affects approximately one-
third of the adult population [1]. By definition, metabolic syndrome is a cluster of conditions
that include at least three of the following features: fatty liver, insulin resistance, high
blood pressure, obesity, and dyslipidemia. Metabolic syndrome is a major risk factor for
cardiovascular disease, stroke, and type 2 diabetes. It is also a major risk factor for chronic
kidney disease (CKD), even before hypertension or diabetes develops [2]. For subjects with
none of the criteria for metabolic syndrome, only 0.3% have CKD (defined as stage 3 or
higher) compared to 9.2 percent who carry all five criteria (i.e., 30-fold difference) [2]. We
have previously reported that in a genetic murine model of metabolic syndrome associated
with leptin resistance and hyperphagia, obese mice spontaneously develop CKD as they age
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and that if CKD is induced by a toxin (adenine), it will progress faster towards end-stage
kidney disease (ESKD) [3]. Mice with metabolic syndrome develop not only CKD but also
sarcopenia and have a reduced lifespan [3]. Thus, a better understanding of both what
causes metabolic syndrome and why metabolic syndrome is associated with CKD is of
great clinical importance.

Our group and others have identified sugar and high fructose corn syrup (HFCS) as
major drivers of metabolic syndrome [4,5]. Both of these added sugars contain fructose,
which we have identified as a nutrient that uniquely increases the risk of inducing metabolic
syndrome through its ability to suppress mitochondrial function and lower intracellular
adenosine triphosphate (ATP) levels [6,7]. The reduction in intracellular ATP acts as an
alarm signal to orchestrate a series of biological effects to aid survival, including inducing
hunger, foraging, leptin resistance, lipogenesis, fat accumulation, elevations in blood pres-
sure, and insulin resistance [8]. One of the biological actions of fructose is also to increase
glomerular hydrostatic pressure, likely as a mechanism to facilitate urinary excretion [9].
Fructose also stimulates vasopressin production [10]. In turn, chronic fructose-induced
alterations in glomerular pressure and vasopressin are associated with both glomerular and
tubular injury in laboratory rats [9,11,12]. There are clinical studies linking sugar and HFCS
intake with both CKD [13–15] as well as increased mortality in patients with CKD [16].

On the other hand, humans being overweight, obese, or metabolically unhealthy
independently increase the risk of developing CKD. Furthermore, the composite of over-
weight/obesity and metabolic abnormalities significantly increases such risk [17].

These studies raised the question of the effect of fructose intake on the development
and progression of CKD in animals with and without metabolic syndrome. We hypothe-
sized that animals with metabolic syndrome might be at greater risk for developing CKD
in response to fructose, especially if administered an HFCS-containing soft drink. To study
this, we utilized the pound mouse, a mouse with a genetic loss of the leptin receptors that
markedly predisposes the mouse to develop massive obesity and metabolic syndrome.

2. Materials and Methods
2.1. Study Approval

All animal experiments were conducted with adherence to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. The animal protocol was ap-
proved by the Institutional Animal Care and Use Committee of the University of Colorado
(Aurora, CO, USA).

2.2. Animal Experiments

Pound mice with a C57BL/6NCrl genetic background were initially isolated in a
Charles River Laboratories barrier facility; this strain is made obese by the deletion of the
leptin receptor. Pound and wild-type (WT) littermates with a C57BL/6 background were
obtained from Charles River (Wilmington, MA, USA). KHK-A/C KO (B6;129-Khktm2Dtb)
mice were originally developed by David Bonthorn at Leeds University (UK) and were
bred and maintained at the Univ. Colorado for over seven generations to ensure the
mice were on the B6 genetic background. All experimental mice (female and male) were
maintained in temperature- and humidity-controlled specific pathogen-free conditions on
a 14-h dark/10-h light cycle and allowed ad libitum access to normal laboratory chow
(Harlan Teklad, #2920X). Caloric intake was calculated by measuring daily food (Teklad
2920X, 3.1 Kcal/g) and sugar water intake (4 kcal/g with varying % of HFCS depending
on the strain, wild type (10%) or KHK-A/C KO (18%)). Then, the total or fructose-derived
cumulative caloric intake was calculated as the cumulated sum of daily chow and/or sugar
water intake multiplied by the number of days in the study. Importantly, as body weights
were markedly different, the calculated dosing in oral fructose and FITC dextran assays
was normalized by lean mass. To this end, fat and fat-free (lean) mass was determined
by Echo-MRI. All experiments were conducted with adherence to the National Institutes
of Health Guide for the Care and Use of Laboratory Animals. The animal protocol was
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approved by the Animal Care and Use Committee of the Veterans Affairs Medical Center.
In all experiments, 8-week-old male mice were used.

2.3. Oral Fructose Tolerance Test

For portal vein and circulating fructose studies, animals were gavaged orally with
fructose at a dose of 1.25 g/kg corrected by lean mass. Portal veins and circulating blood
were collected on mice at the indicated times under isoflurane anesthesia, and serum
was obtained after centrifugation at 13,000 rpm for 2 min at room temperature. Fructose
levels were determined biochemically following the manufacturer’s instructions (bioassay
systems, EFRU-100).

2.4. Intestinal Permeability Assay

For the studies investigating intestinal permeability in obese and lean mice, lean
(fat-free mass) was first calculated with a EchoMRI Body Composition Analyzer (EchoMRI,
Houston, TX, USA) 24 h prior to the study. On the study day, mice were fasted for 5 h before
fluorescein isothiocynate (FITC)-Dextran 4 kDA administration (600 mg/kg dissolved in
PBS at a concentration of 125 mg/mL) via oral gavage and blood collected 45′ post challenge.
A volume of 150 µL of plasma was analyzed with a fluorescence spectrophotometer (520 nm)
using a Promega GloMax + plate reader along with a standard dilution of FITC-dextran.

2.5. Tissue KHK Activity

Kidney, gut mucosa, and liver samples were first homogenized in 20 mM Tris-HCl,
pH 7.5, 150 mM KCl, 1 mM EDTA, and 1 mM DTT using a polytron homogenizer, and
centrifuged for 10 min at 13,000 rpm at 4 ◦C. The protein content of the supernatant fraction
was quantified with the protein BCA assay, and Khk activity was measured on 50 µg lysate
protein after the addition of a buffer to 5 mM fructose in 50 mM imidazole, 1 M potassium
acetate, pH 5.2, and 1 mM ATP. ATP was measured both before and after a 2-h incubation
at 37 ◦C using the ATP determination kit (K354-100, Biovision) as per the manufacturer’s
instructions. Khk activity was calculated as the ratio between ATP levels at 2 h versus
baseline for each sample at zero time.

2.6. Biochemical Analysis

Blood was collected in Microtainer tubes (BD) from cardiac puncture of mice under
isoflurane, and serum was obtained after centrifugation at 13,000 rpm for 2 min at room
temperature. Serum parameters were performed biochemically following the manufac-
turer’s instructions [blood urea nitrogen (BUN): DIUR-100, Bioassay Systems, Hayward,
CA, USA; uric acid: DIUA-250, Bioassay Systems; Creatinine: C753291, Pointe Scientific;
fructose: EFRU-100, Bioassay Systems]. Urinary neutrophil gelatinase-associated lipopro-
tein (NGAL; MLCN20, R&D Systems, Minneapolis, MN, USA), and albumin (Albuwell
M; Ethos Biosciences) levels were normalized to units of creatinine. Determination of
parameters in tissue was performed in freeze-clamped tissues and measured biochemically
following the manufacturer’s protocol [uric acid: DIUA-250, Bioassay Systems; Hydrox-
yproline: DHYP-100, Bioassay Systems; thiobarbituric acid-reactive substances (TBARS):
DTBA-100, Bioassay Systems; and uric acid: DIUA-250, Bioassay Systems].

2.7. Histopathology

Formalin-fixed paraffin-embedded intestinal and kidney sections were stained with
periodic acid-Schiff (PAS). Histological examination was performed through the entire
cross section of the kidney from each mouse. Images were captured on an Olympus BX51
microscope equipped with a 4-megapixel Macrofire digital camera (Optronics, Goleta,
CA, USA) using the PictureFrame Application 2.3 (Optronics). Composite images were
assembled with the use of Adobe Photoshop. All images in each composite were handled
identically. Kidney score was performed as described in Table 1 analyzing pathology in
four major segments, renal corpuscle, cortex, medulla, and other pathological findings.
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Kidneys were stained with Picro Sirius Red to assess fibrosis as previously described.
Images were captured on an Olympus BX51 microscope equipped with a 4-megapixel
Macrofire digital camera (Optronics, Goleta, CA, USA) using the PictureFrame Application
2.3 (Optronics) and using polarized light. Composite images were assembled with the use
of Adobe Photoshop. All images in each composite were handled identically.

Table 1. Renal Injury Scoring in lean and obese mice on water or HFCS.

Wild Type KHK-A/C KO Pound Pound KHK-A/C KO
Water HFCS Water HFCS Water HFCS Water HFCS

Feature Points n = 7 n = 7 n = 7 n = 7 n = 6 n = 4 n = 6 n = 6

(1) Renal Corpuscle
Mesangial expansion None 0 x x x x x x x x

(0–2) Yes, central 1–2
(0–2) Yes, crescent 1–2

Hypercellularity None 0 x x x x x x
(0–2) Present 1–2 x x

Inflammation None 0 x x x x x x x x
(0–2) Moderate 1

Severe 2
Protein Casts in glomeruli

(Vessels) None 0 x x x x x x x

(0–2) Present 2 x
Protein Casts in glomerular

urinary space None 0 x x x x x x x x

(0–2) Present 1–2
if yes, give approx % of RC

with this Check > 25RC na

thickened basement
membrane None 0 x x x x x x x

(0–2) Moderate 1 x
Severe 2

renal corpuscle loss (0–2) None (<10%) 0 x x x x x x x x
Yes (>10%) 2

afferent arteriole
hyalinized/thickened No 0 x x x x x x x x

Yes 1
metaplasia Ct Only Ct

proxim c metaplas of renal
corpus pariet c <20% 0 x x x x x x x x

(>180 degree or stratified) >20% 1
Bowman’s Capsule thickened None 0 x x x x x x x x

(0–2) Present 1–2
Renal corpuscle subtotal 0 0 0 0 0.7 2.4 0 0

(2) Cortex
Acute Tubular Necrosis (0–2) None 0 x x x x x x x x

Moderate 1
Severe 2

Any cortical casts, cell, protein None 0 x x x x x x
(0–2) Moderate 1 x x

Severe 2
PCT Pathology (0–2) None 0 x x x x x x

Simplification 1 x x
Necrosis 2

PCT vacuolization present Y/N
Extent (a=little b=lots) A,B,C,N

Tubular Dilatation None 0 x x x
Present 1 x x x x x

DCT Pathology (0–2) None 0 x x x x x x x x
Prot,disrupt 1

Necrosis 2
DCT Glycogen granules (0–1) None 0 x x x x x x

Present 1 x x
Peritub/Interstit Inflamm None 0 x
Near level of the AA (0–2) Moderate 1 x x

Severe 2 x
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Table 1. Cont.

Wild Type KHK-A/C KO Pound Pound KHK-A/C KO
Water HFCS Water HFCS Water HFCS Water HFCS

Feature Points n = 7 n = 7 n = 7 n = 7 n = 6 n = 4 n = 6 n = 6

Increase peritub interstit -tis
fibrosis None 0 x x x x x x x

Near level of the AA (0–2) Moderate 1 x
Severe 2

Brown Pigmented macs None 0 x x x x x x x
Present 1 x

Hemosiderosis on collect duct None 0 x x x x x x x x
Present 1

Peri-arcuate artery inflamm None 0 x x x x x x x
Around 10–50% of AA Moderate 1 x
Around >50% of AA Severe 2

Cortex Subtotal 0 1.1 0 0 1.8 3.1 0.8 1.6
(3) Medulla

OM Casts (0–2) None 0 x x x x
Present 1–2 x x x x

IM Casts (0–2) None 0 x x x x
Present 1–2 x x x

Inflammation (0–2) None 0 x x x x x x
Present 1–2 x x

Medulla subtotal 0 0 0 0 1.1 1.6 0.7 1.2
(4) Other

Peri-interlobar artery
inflammation None 0 x x x x x x x

(0–2) Moderate 1 x
Severe 2

Pelvic Inflammation None 0 x x x x x x x x
(0–2) Moderate 1

Severe 2
Other subtotal 0 0 0 0 0 0.5 0 0

Summary

Scoring by Category Wild type KHK-A/C KO Pound Pound KHK-A/C KO
Water HFCS Water HFCS Water HFCS Water HFCS
n = 7 n = 7 n = 7 n = 7 n = 7 n = 6 n = 7 n = 7

(1) Renal Corpuscle 0 0 0 0 0.7 2.4 0 0
(2) Renal Cortex 0 0.5 0 0 1.8 3.1 0.8 1.6

(3) Medulla 0 0 0 0 1.1 1.6 0.7 1.2
(4) Other 0 0 0 0 0 0.5 0 0

Total 0 0.5 0 0 3.6 7.6 1.5 2.8

2.8. Western Blot Analysis

Protein lysates were prepared from mouse tissue using MAPK lysis buffer as previ-
ously described [18]. Protein content was determined by the BCA protein assay (Pierce,
Rockford, IL, USA). Total protein (50 µg) was separated by SDS-PAGE [10% (wt/vol)]
and transferred to PVDF membranes (Bio-Rad, Hercules, CA, USA). Membranes were
first blocked for 1 h at 25 ◦C in 4% (wt/vol) instant milk dissolved in 0.1% Tris-buffered
saline with Tween 20 TBS (TTBS) and incubated with the following primary rabbit- or
mouse-raised antibodies (1:1000 dilution in TTBS): KHK (HPA007040, Sigma, St. Louis,
MO, USA), Glut5 (07-1406, Millipore, Burlington, MA, USA), and actin (no. 3700, Cell
Signaling) and visualized using an anti-rabbit (no. 7074) or anti-mouse IgG (no. 7076)
horseradish peroxidase (HRP)-conjugated secondary antibody (1:2000, Cell Signaling) us-
ing the SuperSignal West Pico PLUS (34577, ThermoFisher Scientific). Chemiluminescence
was recorded with an Image Station 440CF, and results were analyzed with the 1D Image
software (Kodak Digital Science, Rochester, NY, USA). Data for proteins of interest are
normalized to β-actin expression.

2.9. DNA Isolation and Quantitative Real-Time PCR

For mitochondrial DNA number, total (nuclear and mitochondrial) DNA was extracted
from renal tissues (A1120, Promega, Madison, WI, USA), following the recommended
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protocol. Mitochondria number was considered as the ratio between mitochondrial and
nuclear DNA and by determining DNA levels of a mitochondrial protein codified by
mtDNA (COXII) against the number of copies of another mitochondrial gene codified by
nuclear DNA, nDNA (UCP2). The TaqMan 7900 HT system was used to perform real-time
PCR amplification of the mtDNA regions using the following primers and probes: Forward
Primer for Cox II: 5′-aattgctatcccctctcacg-3′, Reverse Primer for Cox II: 5′-gtagcttcattggtgc-3′,
Forward Primer for UCP2: 5′- agcctacaagaccattgcacgaga-3′, Reverse Primer for UCP2: 5′-
ataggtcaccagctcagcacagtt-3′. All primers were obtained from Integrated DNA Technologies
Inc. (Coralville, IA, USA). The real-time PCR assays were performed in triplicate for each
sample. qPCR was performed in TaqMan 7900 HT Fast Real-time PCR System with primer
concentrations of 500 nM. Cycling variables were 5 min at 95 ◦C and then 54 cycles of 10 s
at 95 ◦C and 1 min at 60 ◦C.

2.10. Statistical Analysis

All numeric data are presented as means± SE. Independent replicates for each data
point (n) are shown in the figures. Data graphics and statistical analysis were performed
using Prism 5 (GraphPad). Data without indications were analyzed by one-way ANOVA
with a Tukey post hoc test. p values of <0.05 were regarded as statistically significant.

3. Results
3.1. Metabolic Syndrome Is Associated with Leaky Gut and Enhanced Fructose Absorption

To determine the potential effects of obesity on fructose uptake and metabolism, we
employed pound mice, a mouse strain with hyperphagia, and increased caloric intake as a
consequence of deficient leptin signaling [3,7]. At 8 months of age, a clean difference in fat
mass (Figure 1A) and body weight (56.3 ± 5.7 g vs. 34.2 ± 3.7 g, p < 0.01) was observed
between pound obese and lean littermates. Of interest, obese mice showed a 20–40%
increase in intestinal villus length in the duodenum and proximal jejunum compared
with lean counterparts (Figure 1B,C) and greater intestinal permeability to a paired dose
(normalized to lean mass) of fluorescein-labelled dextran (FITC-Dextran) (Figure 1D),
indicating that the pound mouse has a higher gut absorptive area associated with increased
gut leakiness.

Fructose metabolism in the intestinal epithelium has been reported to efficiently
increase villus length and expand the surface area of the gut [19] while increasing intestinal
permeability [20]. We, therefore, examined if fructose absorption and metabolism might
be increased in obese mice compared to lean mice. We measured fructose levels and
clearance in the portal vein and systemic circulation following a single fructose oral gavage
(1.25 g/kg, corrected for lean body mass) in lean and obese mice never exposed to fructose
before (naïve). As shown in Figure 1E,F, obesity was associated with greater intestinal
fructose absorption at 10′ and 15′ post-fructose administration (2.3 ± 0.4x increase in portal
vein fructose, p < 0.01) as well as with greater circulating levels of fructose associated
with reduced clearance. Consistent with greater extra-splanchnic fructose availability, the
expression of the main fructose transporter (Glut5) in the gut was significantly up-regulated
in obese mice despite not being exposed to fructose before (Figure 1G,H). Similarly, the
expression of ketohexokinase (KHK, also known as fructokinase), the first enzyme involved
in fructose metabolism [21,22], was also significantly up-regulated in the liver and kidneys
of obese mice (Figure 1G,H) compared to lean counterparts suggesting increased fructose
processing in these organs.

3.2. Chronic Intake of a HFCS-like Beverage Accelerates Development of CKD in Obese Mice

To determine whether higher fructose intestinal absorption rates and metabolism
would be indicative of a much greater susceptibility of obese mice to the deleterious effects
of sugar, we then analyzed the effect to long-term exposure to clinically relevant doses
of a fructose–glucose beverage in lean and pound mice. To this end, a glucose–fructose
(45/55 ratio) solution similar to high fructose corn syrup (HFCS) was provided in the
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drinking water of obese mice at a concentration (10%) similar to those found in soft drinks.
As shown in Figure 2A,B, pre-administration of HFCS for 2 weeks further elevated portal
vein and systemic levels of fructose following a fructose oral gavage compared to weight-
matched naïve obese but not lean mice. We previously have demonstrated that obesity
accelerates kidney disease in mice by causing metabolic dysregulation in the proximal
tubule, which was associated with a significant reduction in the survival rate of obese
pound mice with lifespans of less than 12 months [3].
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intestinal histology. Scale bar 200 µm. (C) Relative jejunal villus length in lean and obese mice.
(D) Intestinal permeability measured as circulating levels of FITC-Dextran 4 kDa in lean and obese
mice. (E) Portal vein fructose levels in lean and obese mice challenged with a 1.25 g/kg oral
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group. The bar graphs show mean ± SEM. ** p < 0.01 versus lean mice by two-tail t-test analysis.
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arrows indicate the glycosylated nuclei in, dilated distal tubules. Scale bar 200 µm (F) Injury score in
lean (blue), lean fed HFCS (purple), obese control (red) and obese fed HFCS (green) at 6 months of
age. (G) Urinary NGAL in lean (blue), lean fed HFCS (purple), obese control (red), and obese fed
HFCS (green) at 6 months of age. (H) KHK-A/C (KHK) activity in kidney cortex of lean (blue), lean
fed HFCS (purple), obese control (red), and obese fed HFCS (green) at 12 months of age. (I) Renal
function determined as plasma creatinine (left), blood urea nitrogen (BUN, center), and albuminuria
(right) in lean (blue), lean fed HFCS (purple), obese control (red), and obese fed HFCS (green) at
12 months of age. n = 4–7 mice per group. The bar graphs show mean± SEM. * p < 0.05 and ** p < 0.01
versus respective lean or obese control mice, ## p < 0.01 between obese and lean mice on HFCS by
one way ANOVA and post-hoc Tukey’s comparison test.



Biomolecules 2023, 13, 780 9 of 17

The administration of HFCS to obese mice resulted in significantly earlier mortality
compared to obese controls (9.2 ± 2.3 months in HFCS-exposed obese vs. 14.6 ± 2.9 in
obese control mice, Figure 2C). In contrast, mortality was similar in lean mice independent
of whether they received HFCS. The reduced lifespan observed in obese mice receiving
HFCS was associated with significantly worse kidney damage that was observed as early
as 6 months. Specifically, blood urea nitrogen (BUN), plasma creatinine, and albuminuria
were relatively similar in lean mice with or without HFCS and control obese control mice;
kidney dysfunction was significantly greater in HFCS-exposed obese mice (Figure 2D).
HFCS-fed obese mice at 6 months of age also had worse kidney injury scores characterized
by proximal tubular dilatation, reduced brush border expansion, and the presence of
features of metabolic dysregulation and tubular injury including glycosylated nuclei and
increased urinary excretion of NGAL (Figure 2E–G). Kidney function continued to worsen
at 12 months in surviving mice, especially in obese mice receiving HFCS in association with
higher levels of KHK activity in the kidneys (Figure 2H,I).

3.3. Blockade of Fructose Metabolism Protects against HFCS-Induced Kidney Dysfunction and
Injury in Obese Mice

To determine the importance of fructose metabolism in sugar-induced kidney dys-
function in obese mice, we generated pound mice deficient for both main isoforms of
KHK (KHK-A and KHK-C, namely KHK-A/C KO) and analyzed their response to HFCS.
Baseline analysis between pound obese and obese-KHK-A/C KO mice revealed similar
age-dependent weight gain (body weight at 8 months was 52.5 ± 2.7 g in obese-KHK-A/C
KO vs. 55.3 ± 4.6 g in wild-type obese littermates) and adiposity (41.3 ± 4.1% fat mass in
obese-KHK-A/C KO vs. 46.2 ± 2.8% in wild type obese littermates). However, consistent
with previous reports in KHK-A/C KO mice [23,24], HFCS intake was significantly reduced
in obese-KHK-A/C KO compared with wild-type obese counterparts (5.7 ± 1.2 mL/day in
obese-KHK-A/C KO vs. 11.3 ± 2.6 mL/day in wild type obese littermates, p < 0.01). Based
on this significant difference in HFCS intake, we administered 10% HFCS to obese mice
and gave 18% HFCS solution to obese-KHK-A/C KO mice to provide equivalent HFCS,
and we did this for 6 to 18 months. This way, we matched both sugar and caloric intake
as well as fructose-derived calories (Figure 3A). No differences in weight were observed
at 8 months of age between HFCS-exposed obese-KHK-A/C KO and wild-type obese
counterparts (Figure 3B). However, despite similar adiposity between groups, the survival
rate observed in pound mice on HFCS was significantly improved when KHK expression
was deleted (10.5 ± 2.6 months in HFCS-exposed obese vs. 17.4 ± 1.2 in HFCS-exposed
obese-KHK-A/C KO mice, Figure 3C), indicating that the specific blockade of fructose
metabolism in mice improves the lifespan of obese mice in response to HFCS in the drink-
ing water. Importantly, at 12 months of age, the increased survival rate in HFCS-exposed
obese-KHK-A/C KO mice was associated with a marked improvement in kidney function
as noted by lower plasma BUN (82.7 ± 8.1 mg/dL in HFCS-exposed obese vs. 54.3 ± 8.4
mg/dL in HFCS-exposed obese-KHK-A/C KO mice), creatinine (0.78 ± 0.05 mg/dL in
HFCS-exposed obese vs. 0.47 ± 0.08 mg/dL in HFCS-exposed obese-KHK-A/C KO mice),
and albuminuria (92 ± 19.8 µg/mg in HFCS-exposed obese vs. 66.3 ± 9.5 µg/mg in HFCS-
exposed obese-KHK-A/C KO mice) (Figure 3D–F), less histologic injury (Figure 3G,H and
Table 1), and lower urinary NGAL levels (43.9 ± 18.1 µg/mL in HFCS-exposed obese vs.
16.3 ± 6.7 µg/mL in HFCS-exposed obese-KHK-A/C KO mice, Figure 3I). Injury scoring in
this study is described in detail in Table 1. Specifically, chronic exposure of obese mice to
HFCS demonstrated particular pathological features in the renal corpuscle (hypercellularity,
protein casts in glomeruli, thickened basal membrane), cortex (tubular casts, glycogenated
nuclei, peritubular and peri arcuate inflammation, and pigmented macrophages), medulla
(cast and inflammation) as well as inflammation in peri-interlobar artery. Furthermore,
kidney fibrosis, as denoted by both cortical levels of hydroxyproline and tubulointerstitial
collagen staining with picrosirius red, was also significantly higher in obese mice on HFCS
compared to obese-KHK-A/C KO mice receiving the same amount of HFCS (Figure 3J,K).
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Figure 3. Blockade of fructose metabolism protects against HFCS-induced CKD in obese mice. (A) The
10-month cumulative caloric intake from chow (black) and high fructose corn syrup (HFCS, red) in
pair-matched obese wild type (obese) and KHK-A/C knockouts (KO). (B) Body weight at 10 months
of age of the same mice as in (A). (C) The survival rate of obese control and KHK-A/C knockouts on
water (black) or fed HFCS (red) over a 22-month period. (D–F) Renal function determined as plasma
creatinine (left), blood urea nitrogen (BUN, center), and albuminuria (right) in obese control and KHK-
A/C knockouts on water (black) or fed HFCS (red) at 12 months of age. (G) Representative PAS kidney
images of obese control and KHK-A/C knockouts fed HFCS at 12 months of age. Blue areas denote
inflammatory foci. Red arrows show tubular cast formation. Scale bar 200 µm. (H) Injury score in obese
control and KHK-A/C knockouts on water (black) or fed HFCS (red) at 12 months of age. (I) Urinary
NGAL in obese control and KHK-A/C knockouts on water (black) or fed HFCS (red) at 12 months of
age. (J) Renal hydroxyproline levels in obese control and KHK-A/C knockouts on water (black) or fed
HFCS (red) at 12 months of age. (K) Representative picrosirius red (PSR) images on brightfield and
polarized light of obese control and KHK-A/C knockouts fed HFCS at 12 months of age. Scale bar 40 µm
n = 4–7 mice per group. The bar graphs show mean± SEM. * p < 0.05, ** p < 0.01 versus respective water
control, ## p < 0.01 and NS not-significative by one-way ANOVA and post-hoc Tukey’s comparison test.
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3.4. Fructose Metabolism Controls Fructose Transport in the Kidney

Circulating fructose is filtered by kidney glomeruli and reabsorbed from the lumen
in the proximal tubule by the fructose transporter Glut5 (SLC2a5), where it is then me-
tabolized via KHK in the proximal tubule [12,25]. Much of the kidney injury in response
to fructose results from the proximal tubule metabolism associated with oxidative stress
and inflammation [25]. We found that renal Glut5 expression was significantly reduced
in obese-KHK-A/C KO mice on water or exposed to HFCS compared to obese littermates
(44.3 ± 5.3% reduction in HFCS-exposed obese-KHK-A/C KO mice compared to HFCS-
exposed obese mice, p < 0.01, Figure 4A,B) indicating that renal fructose metabolism is nec-
essary for Glut5 expression and fructose uptake in the kidney. Consistent with this finding,
urinary fructose excretion was elevated in obese-KHK-A/C KO mice (17.8 ± 7.4 nmol/mg
in HFCS-exposed obese vs. 330.8 ± 88.8 nmol/mg in HFCS-exposed obese KHK-A/C KO
mice, p < 0.01) (Figure 4C), and this was associated with less metabolic dysfunction in the
kidneys compared to obese controls receiving HFCS (Figure 4D–I). Of interest, the loss of
fructose in the urine in obese KHK-A/C KO mice was similar to that of lean KHK-A/C
KO counterparts receiving consuming similar amounts of HFCS (286.8 ± 76.8 nmol/mg).
While kidneys of HFCS-exposed obese mice had significantly reduced energy charge (total
nucleotide levels, Figure 4D) and higher oxidative stress as noted by higher levels of thio-
barbituric reactive substances (TBARS) and uric acid (Figure 4E,F), it was significantly less
in obese-KHK-A/C KO receiving HFCS. Similarly, higher mitochondrial oxidative stress
(noted by elevated mitochondrial superoxide production detected with dihydroethidium)
(Figure 4G,H) and lower proximal tubule mitochondrial number (Figure 4I) were present in
obese mice receiving HFCS, while the obese-KHK-A/C KO receiving HFCS were protected.
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control and KHK-A/C knockouts on water or fed HFCS at 12 months of age. (C) 24-h urinary fructose
levels in obese control and KHK-A/C knockouts on water (black) or fed HFCS (red) at 12 months of
age. (D) Energy charge (total nucleotide ATP+ADP+AMP levels) in obese control and KHK-A/C
knockouts on water (black) or fed HFCS (red) at 12 months of age. (E) Renal thiobarbituric reactive
substances (TBARS) in obese control and KHK-A/C knockouts on water (black) or fed HFCS (red) at
12 months of age. (F) Renal uric acid in obese control and KHK-A/C knockouts on water (black) or
fed HFCS (red) at 12 months of age. (G,H) Representative dihydroethidium images and quantification
of obese control and KHK-A/C knockouts fed water or HFCS at 12 months of age. Scale bar 100
µm. (I) Renal mitochondrial (mtDNA) to nuclear DNA (nDNA) ratio in obese control and KHK-A/C
knockouts on water (black) or fed HFCS (red) at 12 months of age, COXII cytochrome C Oxidase II,
UCP2 Uncoupling protein 2. n = 4–7 mice per group. The bar graphs show mean ± SEM. * p < 0.05
and ** p < 0.01 versus respective water control, # p < 0.05 and ## p < 0.01 significative by one-way
ANOVA and post-hoc Tukey’s comparison test.

4. Discussion

Here, we tested the hypothesis that consumption of fructose-containing added sug-
ars might accelerate the development of CKD and overall mortality in obese mice with
metabolic syndrome. The model we used was the pound mouse, which has a mutation
in the leptin receptor, leading to hyperphagia and all of the features of the metabolic syn-
drome [26]. We had several novel observations. First, we found that the pound mouse with
obesity and metabolic syndrome showed enhanced fructose transport and metabolism,
along with a leaky gut, even before exposure to HFCS. Second, when the obese mouse
was administered HFCS, it showed enhanced absorption and developed worse obesity
associated with CKD and increased mortality rates. Third, in KHK-KO pound mice, the
development of kidney disease and early mortality was prevented despite the mice still
gaining excess weight. The preserved kidney function was associated with the downreg-
ulation of the fructose transporter in the proximal tubule (Glut5), decreased intrarenal
oxidative stress and uric acid levels, and less mitochondrial oxidative stress and injury.
Overall, these studies document the critical role of fructose in driving kidney damage in
animals with obesity.

Our first finding was that the obese pound mouse had evidence for enhanced fructose
metabolism, as noted by higher levels of the intestinal transporter, Glut5, as well as higher
liver fructokinase (KHK) activity, along with higher portal and systemic blood levels of
fructose following administration of fructose (based on lean mass) compared to its lean
littermate. One of the major regulators for Glut5 and KHK is fructose (such as present in
sucrose or HFCS) [27], but this upregulation was observed in mice despite them having
not previously been exposed to dietary fructose, our study used fructose-naïve animals.
The upregulation of this pathway may be due to the hyperuricemia that is observed in
the pound mouse, as increased uric acid can stimulate both aldose reductase in the polyol
pathway [28] as well as KHK [29]. In turn, the increase in endogenous fructose would likely
have a role in stimulating the growth of the intestinal villi [19] as well as disrupting the tight
junctions leading to a leaky gut [30]. Thus, the pound mouse is not only hyperphagic from
disrupted leptin signaling but also shows enhanced sensitivity to fructose, a larger intestinal
absorptive area, and gut leakiness that may enhance weight gain and inflammation.

The second finding was that when pound mice were placed on HFCS, they showed
an increased risk for not only obesity (Figure 3B) but also with greater risk for CKD
and for mortality than lean mice placed de novo on HFCS or compared to obese pound
mice that did not receive HFCS. Excessive fructose administration is known to cause
kidney injury and has been previously reported to accelerate kidney injury in animals with
CKD [11,12]. While one mechanism appears to be mediated by an increase in glomerular
hydrostatic pressure with a reduction in cortical blood flow [9,31], a major mechanism
involves direct tubular injury related to the metabolism of fructose by KHK in the proximal
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tubule [25]. This is associated with mitochondrial dysfunction, local oxidative stress, and
inflammation [12,25,32]. The striking finding in this study was that the injury was much
more severe, leading to marked azotemia and reduced survival. The reason appears to
be from the marked sensitivity to fructose, as noted by higher expression of the fructose
transporter (Glut5) and higher KHK activity associated with higher fructose absorption.
Pound mice also became fatter on HFCS despite the underlying inactivation of leptin
signaling. While gaining fat and developing CKD, lean mice did not develop the same
degree of kidney disease and maintained typical survival rates. Thus, having metabolic
syndrome from the start made the pound mice especially sensitive to the effects of added
sugars such as HFCS. The observation that added sugars may shorten lifespan has also
been observed in humans [33], including in patients with CKD [16].

The final major finding was that the increased mortality rates and CKD induced by
HFCS were largely prevented in the KHK-KO obese pound mice. The mechanism was
shown to not only simply block the metabolism of fructose by KHK in the kidney but also
block the uptake of fructose in the proximal tubule by downregulating the Glut5 receptor.
This was an interesting observation as it may explain why fructosuria is so prominent in
subjects lacking KHK (essential fructosuria). The reduced uptake of fructose was associated
with the preservation of mitochondria, reduced mitochondrial and intracellular oxidative
stress, and normalization of uric acid levels in the kidney. These studies emphasize the key
role of fructose in driving kidney damage and implicate fructose as one of the mechanisms
by which metabolic syndrome may cause CKD. Interestingly, knocking out KHK in the
pound mouse tended to correct the weight gain associated with the addition of HFCS but
did not do so completely. This finding further emphasizes the overriding importance of
leptin resistance in driving weight gain [34]. In addition, it is important to note that renal
dysfunction and injury in obese KHK-A/C KO tend to be mildly ameliorated compared to
obese wild-type controls even in the absence of HFCS. This would indicate the presence of
active endogenous production and metabolism of fructose (as opposed to that provided
by the HFCS) in the kidney of obese mice. In this regard, we and others have shown that
the endogenous production of fructose and its metabolism via fructokinase in states of
diabetes or ischemia are important deleterious steps in the pathogenesis of acute [35] and
chronic [36] kidney disease.

In conclusion, our studies suggest that the effects of fructose are amplified in mice with
obesity and metabolic syndrome (Figure 5). This amplification is due to the upregulation
of the fructose transporter, increased relative absorption rates, and higher metabolism.
The sum of these metabolic adaptations translates into developing CKD more rapidly in
association with a lower lifespan. The take-home message is that the intake of added
sugars is especially hazardous in obese subjects with metabolic syndrome, as it significantly
increases the risk of developing CKD.

Our study has several limitations. Unlike a more generally used model of diet-induced
obesity, here, we employ a genetic model of obesity in which leptin signaling is curtailed
causing hyperphagia and greater caloric intake. We preferred to use this model as opposed
to for example a high-fat (western diet) diet as these diets are generally rich in sugar (up to
34%) and therefore, fructose. Thus, the interpretation of how specifically important liquid
sugar is in accelerating kidney disease in obese mice would be more difficult if sugar is
also provided with the chow. In addition, it allowed us to utilize both male and female
mice in this study and to have a more cohesive group of animals with minimal standard
deviation. However, the blockade of leptin signaling itself may also exert deleterious
effects on renal function and injury independently of body weight or obesity. For example,
hyperleptinemia is observed in subjects with chronic kidney disease [37] and leptin levels
increase with its progression [38,39]. Another limitation of using the pound mouse is that
it may not be the best genetic background (B6) to study chronic kidney disease. The B6
background demonstrates only modest susceptibility to kidney disease on its own, and it
normally requires experimental intervention such as nephrectomy, DOCA-Salt, angiotensin
II, or in our case liquid sugar, which has a greater deleterious effect in obese mice. Other
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genetic backgrounds such as the 129, FVB and DBA/2 strains are more susceptible to
kidney disease, and therefore, in these strains, liquid sugar could accelerate kidney disease
not only in obese but also in lean mice on these strains. Another limitation is that our
study does not elucidate the site or organ where fructose metabolism is important to
accelerate kidney disease in obese mice and the specific isoform of KHK involved in the
process. In this regard, there are two major isoforms of KHK, KHK-A and KHK-C. Of these,
KHK-A is a ubiquitous protein with a low affinity for fructose, while KHK-C is expressed
primarily in the gut, liver, and kidney and has a high affinity for fructose. Previously,
we demonstrated the importance of KHK-C as the main isoform driving fructose-derived
metabolic dysregulation and disease [24,36,40,41]. This is in part due to its high affinity for
fructose, which causes acute depletion of ATP and the activation of the purine degradation
pathway and uric acid formation. High urinary fructose in obese KHK-A/C KO mice
would suggest that it is KHK-C activation that drives the disease in obese mice, but a study
employing KHK isoform-specific deficient mice is needed. Similarly, our study will not
elucidate the site where fructose is metabolized to induce kidney disease in obese mice.
The presence of no major differences in weight gain between obese wild type and obese
KHK-A/C KO mice on HFCS would suggest that it is the local metabolism of fructose in
the kidney that accelerates kidney dysfunction in obese mice, but future studies employing
tissue-specific and isoform-specific obese mice are thus warranted.
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Figure 5. The proposed mechanism whereby sugar exacerbates renal disease in obese mice. Obesity
is associated with intestinal dysfunction and increased permeability/leakiness. In these conditions,
for the same exposure to sugar, portal veins and systemic levels of fructose are markedly elevated
in obese mice in association with higher fructokinase (KHK) expression in the liver and kidney.
Furthermore, renal energy charge and mitochondrial function in obese mice are reduced compared to
lean counterparts, and therefore, higher fructose delivery and metabolism in the kidney lead to greater
metabolic dysfunction, oxidative stress, and inflammation. This effect induced by dietary liquid sugar
is markedly ameliorated when renal fructose metabolism is deleted as it impairs glut5-dependent
fructose uptake and reabsorption causing fructosuria.
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