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Abstract: Cnidarians are commonly recognized as sea jellies, corals, or complex colonies such as
the Portuguese man-of-war. While some cnidarians possess rigid internal calcareous skeletons
(e.g., corals), many are soft-bodied. Intriguingly, genes coding for the chitin-biosynthetic enzyme,
chitin synthase (CHS), were recently identified in the model anemone Nematostella vectensis, a species
lacking hard structures. Here we report the prevalence and diversity of CHS across Cnidaria and show
that cnidarian chitin synthase genes display diverse protein domain organizations. We found that CHS
is expressed in cnidarian species and/or developmental stages with no reported chitinous or rigid
morphological structures. Chitin affinity histochemistry indicates that chitin is present in soft tissues
of some scyphozoan and hydrozoan medusae. To further elucidate the biology of chitin in cnidarian
soft tissues, we focused on CHS expression in N. vectensis. Spatial expression data show that three
CHS orthologs are differentially expressed in Nematostella embryos and larvae during development,
suggesting that chitin has an integral role in the biology of this species. Understanding how a non-
bilaterian lineage such as Cnidaria employs chitin may provide new insight into hitherto unknown
functions of polysaccharides in animals, as well as their role in the evolution of biological novelty.

Keywords: chitin synthase; cnidaria; Nematostella vectensis; mesoglea; soft chitin

1. Introduction

Chitin, an unbranched long-chain glycopolymer, is the second-most prevalent biomolecule
on earth and is present across a wide array of eukaryotic taxa [1–3]. Though widely
occurring throughout Metazoa, chitinous structures have been studied most thoroughly in
arthropod cuticles [4], mollusk radula [5], and annelid chaetae [6]. Recently, chitin, long
assumed to be absent from vertebrates, has been shown to be endogenously produced
in fishes and amphibians [7,8]. Intriguingly, some gastropod mollusk epidermal chitin
and vertebrate chitin are present outside of hard skeletal tissues (e.g., as a component of
the gel-like substance in ampullae of Lorenzini in skates) [8–10], demonstrating that this
glycopolymer is utilized in more diverse contexts than previously realized.

The chitin biosynthetic pathway is present across Opisthokont clades [11,12], though it
appears to be absent in some non-bilaterian metazoan lineages ([2]; this study). The terminal
chitin-assembling enzyme, chitin synthase, is normally localized to plasma membranes,
where several transmembrane domains create a pore through which the newly synthesized
chitin molecule is secreted extracellularly [13]. The enzymatically active glycosyl transferase
domain is the defining motif of the chitin synthase enzyme, and the protein sequence of this
domain is highly conserved [2,12–14].
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Metazoan chitin synthases fall into two subfamilies, CHS Type I and CHS Type II, where
each subfamily can be defined by its unique domain architecture, and phylogenetic analyses
have resolved them as reciprocally monophyletic [2]. CHS Type I enzymes contain sterile
alpha motifs (SAMs), a domain known to be involved in a diversity of protein–protein,
membrane lipid, and RNA interactions [15,16]. However, the function of SAM domains in
animal chitin synthase enzymes has not been well described. All Type II chitin synthases
lack SAMs, and some orthologs contain myosin motor domains [17]. Chitin utilization in
animals has been most thoroughly investigated in rigid anatomical structures; however,
recent reports of chitin synthase (CHS) genes in cnidarian species that do not possess rigid
exo- or endoskeletons suggest that chitin may be being used in more taxa and in different
contexts than previously realized [2,8].

Cnidarians are the sister clade to Bilateria [18–20], and their phylogenetic placement is
key for understanding both bilaterian origins and the evolution of metazoans. Cnidarians
exhibit diverse life histories and body plans—from individual polyps to large colonies
to free-swimming medusae—making this group an intriguing and complex system for
studying the emergence of novel structures (Figure 1) [21,22]. Some cnidarian taxa are
soft-bodied or “gelatinous” (e.g., the medusae of scyphozoans and hydrozoans—“jellies”);
however, while chitinous structures have been described in several discrete lineages within
Cnidaria (e.g., stolons of colonial hydrozoans, black coral endoskeletons) [23–25], the
occurrence of chitin throughout Cnidaria is largely undescribed.
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Figure 1. Relationships of Cnidaria (after Zapata et al. 2015; [26]). Cnidarians are the sister taxon
to Bilateria, which consists of deuterostomes (chordates, echinoderms, and hemichordates) and
protostomes (ecdysozoans, lophotrochozoans). Anthozoans (corals, anemones) are the earliest-
diverging extant cnidarian clade. The Medusozoa clade is comprised of lineages that have medusa
stages, though not all species do. Myxozoans are a parasitic clade with highly derived body plans
but still possess cnidae. Animal silhouettes are available from PhyloPic (phylopic.org).

Intriguingly, putative CHS genes were identified in the model anthozoan cnidarian,
Nematostella vectensis [2], which lacks any structures that are obviously rigid or chitinous.
The distribution of CHS genes throughout Cnidaria has not been explored. Leveraging the
recent availability of transcriptomic and genomic resources for diverse cnidarian species,
we report CHS homologs across Cnidaria and use phylogenetic inference to show that
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species within almost all major cnidarian clades possess CHS genes. We assessed the
diversity and gene genealogy of chitin synthases across Cnidaria and confirmed the presence
of chitin in cnidarian soft tissues using affinity histochemistry. We observed chitin in tissues
of multiple cnidarian species. Further, we show that each Nematostella CHS ortholog has a
discrete expression pattern throughout development. Our findings suggest that “non-rigid
chitin” is functionally deployed in cnidarians.

2. Materials and Methods
2.1. Animal Collection and Sample Preparation

Hydrozoan (Catablema nodulosa; Aequorea victoria) and scyphozoan (Phacellophora
camtschatica) medusae used for chitin histology were collected from Puget Sound, WA
(47◦40′39′ ′ N, 122◦24′39′ ′ W) public docks using a dipper (plastic beaker attached to PVC
piping). Nematostella vectensis were collected from the Duwamish Waterway (Herring
House Park) with a collection permit from WA Department of Fish and Wildlife. Hydra
were generously supplied by Celina Juliano and maintained as previously described [27].
Wild-caught hydrozoan and scyphozoan species were maintained in 32 ppt seawater (In-
stant Ocean) at 6 ◦C. All animal samples were not given food for 24 h prior to fixation
to clear gut contents and were thoroughly rinsed in seawater prior to fixation. Medusae
and hydroid polyps were fixed either in 4% paraformaldehyde (PFA) or Lavdovski’s fixa-
tive (ethanol:formaldehyde:acetic acid:ddH2O; 50:10:4:36) for 1 h at 4 ◦C or 16 h at 4 ◦C,
respectively. Nematostella were maintained and fixed as described previously [28].

2.2. Description of Chitin-Binding Domain Peptide Probe

To detect the presence and distribution of chitin, we utilized a fluorescent-tagged
probe that includes a chitin-binding domain (CBD) from a chitinase of the bacteria Bacillus
circulans. This peptide probe has been employed to detect and label chitin in an array of
animal taxa, including squid, insects, and fishes [7,29–31]. A complete preparation protocol
for the fluorescent chitin-binding probe is described in [7].

2.3. Tissue Embedding and Sectioning

Fixed cnidarian tissues were equilibrated in 15% sucrose in phosphate-buffered saline
(PBS) for three hours at room temperature and then in 15% sucrose/7.5% gelatin in PBS at
37 ◦C for three hours. Samples were then infiltrated with 20% gelatin in PBS overnight at
37 ◦C and embedded in fresh 20% gelatin in PBS using plastic molds. Embedded samples
were mounted onto a cryotome chuck with Tissue-Tek O.C.T. compound (VWR) and frozen
in liquid nitrogen. Embedded samples were sectioned at ~7 µm on a Cryostat cryotome
and mounted on charged Superfrost Plus slides (VWR).

2.4. Chitinase Treatment

Chitin was digested utilizing a chitinase enzyme isolated from the nematode Brugia
malayi (New England Biolabs, Ipswitch, MA, USA). Samples were permeabilized with
PBS + 0.2% Triton X-100 and equilibrated for 1 h at room temperature in chitinase buffer
(20 mM Na2HPO4 pH 6.0, 200 mM NaCl, 1 mM EDTA, 500 µg/mL BSA). Samples were
incubated at 37 ◦C for approximately 16 h in a 1:20 chitinase solution and thoroughly
washed in PBS prior to subsequent CBD affinity histochemistry. Fluorescent signals for
CBD probe binding between chitinase-treated and buffer control samples were calculated
in ImageJ (National Institutes of Health, Bethesda, MD, USA).

2.5. Chitin Affinity Histochemistry

Cnidarian tissues were permeabilized with 0.5% Triton X-100 in PBS. Tissue sections
were de-gelatinized with 0.3% gelatin in 50% ethanol PBS for 15–30 min at room temperature
in a glass slide holder. Slides were then washed for 5 min in PBS and rinsed briefly in water.
Slides were allowed to air dry completely prior to staining. Sections were permeabilized in
0.2% Triton X-100 in PBS. Samples were blocked in Protein-Free T20 (TBS) blocking buffer
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(Thermo Scientific, Waltham, MA, USA) for one hour at RT or overnight at 4 ◦C. Slides were
then incubated with CBD-546 (1:40) and DAPI (1:1000) (4′,6-diamidino-2-phenylindole;
Sigma-Aldrich, St. Louis, MO, USA) in TBS blocking buffer overnight at 4 ◦C. Samples were
thoroughly washed in PBS + 0.1%Tween-20, mounted in VectaShield (Vector Laboratories,
Newark, CA, USA), and imaged.

Stereoscope imaging was performed on a Leica M205FA (Leica Microsystems, Rich-
mond, IL, USA) fluorescent stereoscope equipped with a DFC360FX monochrome CCD
camera and a DFC425C color CCD camera. Epifluorescent images were taken using a
Leica DMR upright epifluorescent microscope equipped with a SPOT RT Slider cooled
1.4-megapixel color/monochrome CCD camera (Diagnostic Instruments, Sterling Heights,
MI, USA) and an Insight 4 megapixel color CCD camera (Diagnostic Instruments). Confocal
images were obtained with a Leica TCS SP5 laser scanning confocal microscope. Image
editing was performed using ImageJ (National Institutes of Health freeware).

2.6. Semi-Quantitative PCR, Probe Synthesis, In Situ Hybridization

Total RNA was prepared from 50–100 mg of whole adult Nematostella homogenized
in TRIzol (Invitrogen, Waltham, MA, USA) utilizing a Bullet Blender (Next Advance,
Raymertown, NY, USA) and 0.5 mm stainless steel beads (Next Advance). Resulting
total RNA was then isolated and purified using the PureLink RNA Mini kit (Ambion,
Naugatuck, CT, USA) and treated with DNase I (Ambion) to eliminate potential ge-
nomic DNA contamination. RNA was reverse-transcribed to cDNA using the SuperScript
III First-Strand Synthesis System (Invitrogen) to generate cDNA. The cDNA was then
used as a template for PCR or semi-quantitative PCR to amplify target genes: Nv-actin
XP_001630583 (5′-CTATCCAGGCCGTACTCTCCC3′; 5′TAGTGGAACCACCAGACAAGA-
3′), Nemve1|93407 (CHS1) (5′-TTCATGGTGGCTGCACTGAT-3′; 5′-CACTCGGCTCCGTAT
AGCTG-3′), Nemve1|104030 (CHS2) (5′-GATGCAGTTCAGGTGGCGTC-3′; 5′-GTTGTC
ACACCGGTAGCGT-3′), Nemve1|123712 (CHS3) (5′-ACCGGAGTTACCCATCCAGA-3′;
5′-GCTGATTTGCCTCGTGCATT-3′). For semi-quantitative PCR, cDNA from each sample
was normalized to 1 µg. Nv-CHS expression was normalized to Nv-actin using ImageJ [32].

Target genes were cloned into the TOPO-PCRii vector (Invitrogen), and RNA probes
were synthesized by in vitro transcription (MEGAScript Kit; Ambion) driven by T3 or T7
RNA polymerase with DIG incorporation (Roche). Embryos and larvae used for in situ
hybridization or chitin histochemistry were collected at time-points that coincide with
major developmental stages (early planula, late planula, tentacle bud, primary polyp).
Animals were relaxed in 3% MgCl2 in FSW for 15 min. Embryos and larvae were fixed
in 4% PFA and 0.2% glutaraldehyde in PTw for 1 min at room temperature, and then in
4% PFA for 1 h at 4 ◦C on a rotating platform. Embryos were thoroughly washed in PTw,
gradually dehydrated into methanol, and stored at −20 ◦C. Nematostella vectensis embryos,
larvae, and adults were processed for in situ hybridization as previously described [33,34].

2.7. Bioinformatics Pipeline
2.7.1. Identification of CHS Homologs

Full transcriptomic and gene-model cnidarian datasets were acquired from [35], repre-
senting 67 cnidarians and 8 outgroup taxa (Supplementary Table S1). Nucleotide sequences
were translated using TransDecoder (https://github.com/TransDecoder/TransDecoder
accessed on 2 June 2018), and the resulting amino acid sequences were used for all subse-
quent bioinformatic analyses. To identify proteins with putative function in chitin synthesis,
HMMER version 3.1b2 [36] was used to annotate sequences predicted to possess at least
one chitin synthase domain (CHS2; PF03142; [37]).

Using hmmsearch, the CHS2 domain model was searched against each translated tran-
scriptome to identify proteins putatively possessing CHS2 domains meeting hmmsearch’s
default detection thresholds. Protein sequences predicted to possess CHS2 domains were
then isolated from their encompassing datasets and annotated with full domain architec-
ture using hmmscan and the Pfam domain database (version 32.0; [38,39]). All sequences

https://github.com/TransDecoder/TransDecoder
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containing a best-fit CHS2 domain meeting hmmscan’s default inclusion threshold were
then isolated. These isolated CHS2-containing sequences were clustered per dataset using
cd-hit version 4.6 (-c 0.95; [40]) to remove redundant proteins due to transcript fragments
or isoforms.

2.7.2. Phylogenetic Analysis

Unique cnidarian sequences that possess CHS2 domains (n = 95) were supplemented
with 63 additional chitin synthase proteins identified on the NCBI sequence repository
(Supplemental Table S1) using NP_524209.3 (chitin synthase 2, isoform D (Drosophila
melanogaster)) and analyzed. Multiple sequence alignment containing all 158 sequences
was obtained using MAFFT’s L-INS-I algorithm. Best-fit substitution model using Bayesian
information criterion was inferred using ModelFinder (-m MFP flag; [41]) included in
the IQ-TREE 1.6.12 distribution. Following model inference, IQ-TREE was used to infer
a maximum-likelihood topology of chitin synthase proteins [42] and perform ultrafast
bootstrapping for node support [43]. All nodes with <95% ultrafast bootstrap support were
collapsed as polytomies.

Using recently available public resources for single-cell gene expression data from Hydra
(https://singlecell.broadinstitute.org/single_cell/study/SCP260/stem-cell-differentiation-
trajectories-in-hydra-resolved-at-single-cell-resolution (accessed on 12 January 2023)) [44],
we searched for cellular-level expression distribution of Hv-CHS transcripts in adult
Hydra. A t-SNE plot of shared nearest-neighbor (SNN)-clustered single-cell data was
generated for each CHS homolog: HV-CHS1 (t13590aep|CHS3_CRYNH) and HV-CHS2
(t23128aep|CHS6_USTMA). Sequences for Hydra CHS orthologs are detailed in Supple-
mental Table S1.

3. Results
3.1. Predicted Homologs for the Enzyme Chitin Synthase (CHS) Are Present in Most Recognized
Cnidarian Clades and Expressed in Taxa or Life Stages with No Reported Rigid Structures

Using recently available transcriptomic and genomic data representative of deep
cnidarian taxon sampling [2,35], we identified CHS genes in thirty-two cnidarian species
(Figure 2; Supplemental Table S1). We did not identify CHS homologs in myxozoans.
Cnidarian chitin synthases cluster in the metazoan CHS Type II clade, as defined previ-
ously [2]. Some cnidarian taxa appear to have undergone lineage-specific expansions of
CHS genes, particularly in sea anemone Aiptasia (Anthozoa–Hexacorallia–Actinaria) and
the coral Montastrea cavernosa (Anthozoa–Hexacorallia–Scleractinia), which have four and
five predicted chitin synthases in their genomes, respectively (Supplemental Table S1).

Maximum likelihood phylogenetic inference shows a complex evolutionary history
for metazoan CHS, where all metazoan CHS sequences fall within either of the previously
described Type I or Type II CHS clades (Figure 2; [1]). Both metazoan CHS clades are
individually resolved as sister to non-animal CHS. Intriguingly, we did not identify CHS
homologs in placozoan or ctenophore genomes, suggesting independent losses in those
non-bilaterian lineages. Cnidarian taxa that possess more than one predicted CHS gene do
not always have paralogs that cluster together; instead, these cases reflect shared ancestral
diversification rather than crown-group expansions.

Domain organization of cnidarian chitin synthase genes varies (Figure 3). Some cnidar-
ian chitin synthases contain EGF domains and protein-binding domains such as sterile alpha
motifs (SAMs). A largely complete scleractinian CHS sequence from the coral Acropora
digitifera includes several predicted transmembrane regions, consistent with the expected
localization of the chitin synthase enzyme to the cell membrane [13].

https://singlecell.broadinstitute.org/single_cell/study/SCP260/stem-cell-differentiation-trajectories-in-hydra-resolved-at-single-cell-resolution
https://singlecell.broadinstitute.org/single_cell/study/SCP260/stem-cell-differentiation-trajectories-in-hydra-resolved-at-single-cell-resolution
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1 
 

 

Figure 2. Evolutionary relationships of cnidarian chitin synthases inferred by maximum likelihood
(ML) phylogenetic influence. Taxa from Anthozoa, Scyphozoa, Hydrozoa, and Staurozoa have chitin
synthase genes. All resolved cnidarian CHSs fall within the Type II clade (blue) in addition to several
CHS sequences identified among lophotrochozoans. In contrast, the Type I clade (red) comprises
sequences identified across Bilateria. Sister to each clade are non-metazoan CHS genes (black).
Two cnidarian sequences have been pruned from the Type I CHS clade as extreme branch-length
outliers. Nematostella CHS sequences are highlighted for visualization purposes only. All nodes
possess ultrafast bootstrap support ≥95%. For sequence references and species abbreviations, see
Table S1.
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3.2. Chitin Is Present in Cnidarian Soft Tissues

To assess whether chitin is present in cnidarian tissues, we performed fluorescence
chitin affinity histochemistry on hydrozoan (Catablema nodulosa; Aequorea victoria) and
scyphozoan (Phacellophora camtschatica) medusae tissues and on an anthozoan (Nematostella
vectensis). We found that chitin is broadly distributed in tissues that are not associated with
rigid skeletal structures (Figure 4). Phacellophora camtschatica tentacle, Catablema nodulosa
tentacle, and Aequeorea victoria bell tissue show chitin labeling (Figure 4A–C). Chitin labeling
is present broadly in the anemone Nematostella vectensis (Figure 4D–F). The distribution
of chitin appears to be largely acellular, consistent with the canonical process of secretion
of the chitin molecule from chitin-producing cells into extracellular spaces. Some cells
show chitin labeling in the cell periphery (Figure 4C, arrows), possibly corresponding to
membranes of cells actively synthesizing chitin.

To confirm that the fluorescent chitin-binding domain (CBD) probe was binding to
chitinous structures, whole adult Nematostella were incubated with the chitin-digesting
enzyme chitinase. Chitinases degrade chitin by breaking glycosidic bonds along the
chitin polymer [45]. Chitinase digestion experiments show that the CBD probe binds
preferentially to chitin in Nematostella (Supplemental Figure S1), as labeling was signifi-
cantly reduced in enzyme-treated samples by an average of 40% across sample images
(Supplemental Figure S1A,C) compared to controls (Supplemental Figure S1B,D).
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(arrows). 
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orthologs (Hm-CHS1: XP_012554922.1, t13590aep; Hm-CHS2: XP_004207525.2, t23128aep) 

Figure 4. Chitin is found in the adult tissues of scyphozoan and hydrozoan medusae and in an
anthozoan. Nuclei (blue, DAPI). Chitin (red, CBD-546). (A) Scyphozoan (Phacellophora camtschatica)
tentacle. Chitin is widely present in the dermis throughout the tentacle. Scale bar: 50 µm. (B) Tentacle
of hydrozoan medusa Catablema nodulosa. Scale bar: 50 µm. (C) A cryosection of hydrozoan medusa
Aequorea victoria bell tissue shows chitin is widely present. Some chitin staining is acellular, though
several cells show chitin labeling within them. Arrows point to individual cells where chitin labeling
appears to be localized to the plasma membrane. Scale bar: 50 µm. (D) Oral view of chitin labeling
in whole adult Nematostella shows that chitin is widely present. Asterisk marks the location of the
mouth. (E) Chitin labeling is widely present throughout Nematostella vectensis tissue cryosections,
including the tentacles, pharynx, body wall, and mesoglea. Mouth is marked with an asterisk. Scale
bar: 200 µm. Chitin labeling is widely present throughout Nematostella tissues. Mouth is pointing
left. Scale bar—200 µm. (F) Magnified view (white box) in (E), showing chitin labeling in the pharynx.
Individual elongated cells are stained for chitin. Scale bar—50 µm.

3.3. The Distribution of Chitin and Expression of Chitin Synthases in Hydra

Fluorescent histochemical labeling of chitin in Hydra shows that chitin is prevalent in
the head (Figure 5A), with especially intense chitin labeling in the foot (Figure 5B). The
Hydra foot is the structure that attaches the polyp to the substrate, and other hydrozoan
polyp species have been shown to have a prevalence of chitin stabilizing the stolons [24,46].
Hydra trunk tissue shows punctate chitin labeling (Figure 5C,D; Supplemental Figure S2),
with individual cells that appear to have chitin localized to the cell membrane (arrows).

The model solitary hydrozoan polyp Hydra vulgaris has two predicted chitin synthase or-
thologs (Hm-CHS1: XP_012554922.1, t13590aep; Hm-CHS2: XP_004207525.2, t23128aep) [2,44].
Single-cell gene expression data from Hydra [44] show that HmCHS-1 is broadly expressed
throughout the animal in both endodermal and ectodermal epithelial cells, and in nemato-
cytes (Figure 5E). Hm-CHS1 is most highly expressed in tentacle epithelial cells derived
from endoderm, nematoblasts, and endodermal epithelial cells in the head. Hm-CHS2
expression is more restricted and is localized primarily to the ectoderm of the basal disc
and in female gonadal cells (Figure 5F).
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Nematostella vectensis is an established cnidarian model for studying metazoan 
evolution and developmental processes [47]. Embryonic and larval development in 
Nematostella has been well documented [48–50]. In brief, approximately 24 h post-
fertilization (24 hpf), the Nematostella gastrula organizes into a ciliated, free-swimming 
planula larva with an apical sensory tuft at the aboral pole. As development progresses, 
mesenteries—multifunctional tissues comprising muscles, digestive cells, and gonads—

Figure 5. Hydra expresses CHS in diverse tissues. (A) Chitin labeling in whole Hydra vulgaris. There
is widespread chitin labeling in the hypostome. (B) At the aboral pole, the distal-most portion
of the foot is strongly labeled for chitin. (C) Detail of chitin staining in Hydra trunk epidermal
tissues. CBD labeling shows broad distribution of chitin in the epidermis. (D) The capsules of some
nematocysts appear to be chitinous (yellow box). (E) Single-cell expression analysis of HV-CHS1
(t13590aep|CHS3_CRYNH) as visualized with the Hydra single-cell transcriptome portal [44] shows
expression in endodermal and ectodermal epithelial cells, and in nematocytes. (F) Expression of HV-
CHS2 (t23128aep|CHS6_USTMA) as visualized with the Hydra single-cell transcriptome portal [44]
shows expression in the ectoderm of the basal disc and in female gonadal cells. Nuclei, blue or grey
(DAPI); chitin labeling is red (CBD-546). Hy—hypostome (oral region); Tn—tentacle. (A,B) scale
bar—100 µm. (C,D) scale bar—50 µm.

3.4. Chitin Synthase Genes Are Differentially Expressed in the Model Sea Anemone Nematostella
vectensis during Development

Nematostella vectensis is an established cnidarian model for studying metazoan evo-
lution and developmental processes [47]. Embryonic and larval development in Ne-
matostella has been well documented [48–50]. In brief, approximately 24 h post-fertilization
(24 hpf), the Nematostella gastrula organizes into a ciliated, free-swimming planula larva
with an apical sensory tuft at the aboral pole. As development progresses, mesenteries—
multifunctional tissues comprising muscles, digestive cells, and gonads—form via contin-
ued inward migration of endoderm and ectoderm. Tentacle tissue organizes at the oral
pole of the planula, and four projections of tissue—tentacle buds—form around the site of
the mouth. The tentacle buds and body column gradually elongate, and the planula settles
onto the substrate and metamorphoses into a polyp. Primary polyps initially possess four
tentacles and two mesenteries.

3.4.1. Three Nematostella CHS Paralogs Are Expressed during Development

Nematostella has three CHS paralogs in its genome ([51]; this study). Semi-quantitative
PCR shows that transcript abundance for all three CHS genes increases through devel-
opment, with the highest expression levels being in the primary polyp (15 days post-
fertilization) and adult (Figure 6A). Chitin synthase-1 (Nemve1|93407) is faintly detectable
at 24 hpf, and expression increases at 4 dpf through the adult stage. Chitin synthase-2
(Nemve1|104030) expression is detectable at 24 hpf and gradually increases; this gene
appears to have the lowest relative expression of the three CHS orthologs. Chitin synthase-3
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(Nemve1|123712) expression is detectable at 48 hpf, with strong expression through the
rest of development and in the adult. The expression levels of chitin synthase genes were
normalized to actin expression (Figure 6A, bottom panel).
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Figure 6. Three chitin synthase paralogs are expressed in Nematostella vectensis during development.
(A) Electrophoresis gels (left) showing semi-quantitative PCR of Nv-CHS through development (1 dpf
through 15 dpf). Concentrations of cDNA were normalized to 1 µg. Normalized semi-quantitative
PCR expression of three predicted chitin synthase genes during Nematostella vectensis development
(right). (B–E) Chitin histochemistry in wild-type Nematostella development. Confocal images of chitin
labeling at sequential developmental stages. Scattered cells labeled with chitin in early larval stages
(B,B’,C,C’). In the tentacle bud stage (D,D’) chitin labeling is abundant along the body column and
beneath the budding tentacles (arrows). Chitin is widely distributed in the primary polyp stage
(E,E’). Oral end labeled with an asterisk (*). Day post-fertilization (dpf); Adu.—adult polyps. All
panels—chitin (red, chitin-binding domain CBD-546 probe), nuclei (blue, Hoechst). Scale bar—50 µm
in all panels.

3.4.2. Chitin Is Distributed throughout the Developing Planula and Primary Polyp

In Nematostella planula stages, the CBD probe labels extracellular areas and scattered
cells (Figure 6B–E). Chitin labeling is prevalent in the body column and in the pharynx
of the tentacle bud larva (Figure 6D). There is concentrated chitin labeling under the
budding tentacles (Figure 6D, arrows). In primary polyps, there is widespread chitin
labeling (Figure 6D) that is similar to chitin labeling in adult Nematostella tissues (compare
to Figure 4D–F). Chitin is not detectable by histochemistry prior to the late planula stage
(approximately 144 hpf; Figure 6B), possibly due to the reduced sensitivity of the CBD
probe compared to other detection methods we have applied to assay chitin synthesis
(e.g., RT PCR, in situ hybridization).

3.4.3. Chitin Synthases Are Differentially Expressed in the Ectoderm during
Nematostella Development

To assess the tissue-level distribution of chitin synthase expression, we performed
in situ hybridization on developing Nematostella. All three Nv-CHS genes are expressed
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in the ectoderm, with distinct expression patterns in the ectoderm of the late gastrula,
planula, tentacle bud, and primary polyp stages (Figure 7). Nv-CHS1 is expressed diffusely
throughout the embryo ectoderm and is most highly expressed in the developing pharynx
and mesenteries (Figure 7A). In the late planula stage, Nv-CHS1 is expressed in the body
wall, becoming concentrated in the aboral end and in the developing tentacles in the tentacle
bud stage (Figure 7B,C). In the primary polyp, expression is localized to the mesenteries
(Figure 7D).
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Figure 7. Nematostella vectensis chitin synthases are expressed in the ectoderm during development.
Typical expression patterns of Nv-CHS genes in late gastrula, planula, tentacle bud, and primary
polyp stages. Oral end facing right in all panels. (A–D) Nv-CHS1 is expressed diffusely throughout
the ectoderm, with highest levels of expression in the pharyngeal ectoderm. (B) In the late planula
stage, CHS-1 is expressed throughout the ectoderm. (C) Expression in the tentacle bud stage occurs
throughout the ectoderm but is highest at the aboral end and in the developing tentacles. (D) In
the primary polyp, expression is concentrated in the mesenteries. (E) Nv-CHS2 is expressed in a
punctate pattern throughout the ectoderm in gastrula/planula stages, becoming concentrated in the
oral pole (F). (G) In tentacle bud stage, expression is concentrated in the developing tentacle ectoderm.
(G’) View of oral pole of tentacle bud stage, showing nv-CHS2 expression in the developing tentacles.
Arrow pointing to mouth. (H) In primary polyps, Nv-CHS2 expression is localized to the tips of the
tentacles. (I,J) Nv-CHS3 is widely expressed in a punctate pattern throughout the planula body wall
ectoderm, and tentacle buds. (K) E–K—superficial plane views of samples. (E’–K’) Deep plane views
of larvae. Scale bar—50 µm in all panels.
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Nv-CHS2 is expressed in a punctate pattern throughout the ectoderm in the gas-
trula/planula stages, becoming concentrated in the oral pole as development progresses
(Figure 7E–H). In the tentacle bud stage, expression is concentrated in the developing
tentacle ectoderm (Figure 7G). In primary polyps, expression is localized to the tips of
the tentacles (Figure 7H). Nv-CHS3 is widely expressed in a punctate pattern throughout
the planula body wall ectoderm and developing pharynx (Figure 7I,J). In the tentacle
bud stage, there is expression throughout the body wall ectoderm with relatively high
expression in the tentacle buds and at the aboral pole (Figure 7K). Recently available single-
cell sequencing data from Nematostella show Nv-CHS1 (sequence identifier NVE14301)
expression mostly in ectodermal cells, while Nv-CHS3 (sequence identifier NVE8515) is
widely expressed in ectodermal cells, and in the gastrodermis [52,53]. The transcript re-
covered from the Steger et al. single-cell dataset for Nv-CHS2 (NVE22726) is truncated
and unavailable for single-cell expression analysis. The widespread expression of chitin
synthase genes in Nematostella is intriguing, as the animal lacks hard structures that may be
obviously chitinous.

4. Discussion

Numerous cnidarians with no previous descriptions of chitinous structures possess
chitin synthase genes. Histochemistry confirms the presence of chitin in the soft tissues of
scyphozoan and hydrozoan medusae, as well as in the model species Hydra and Nematostella.
The diversity of domains in cnidarian chitin synthase genes suggests that CHS paralogs
may have specialized to perform multiple functions. The expression of chitin synthase
and detection of chitin in cnidarian soft tissues suggests an expanded role for chitin
in cnidarians.

4.1. The Molecular Toolkit for Chitin Synthesis Is Present in More Cnidarian Taxa Than Previously
Reported, including in Soft-Bodied Species or Life-History Stages

Chitinous structures have been described in some cnidarian taxa as a component of
endoskeletons (e.g., antipatharian anthozoans) or protective coatings (e.g., hydrozoan polyp
theca) or comprising morphological stabilizing structures that interface with substrates.
For example, some sea anemones (Anthozoa–Hexacorallia) are reported to synthesize
a chitinous coating on the basal disc [54]. For many cnidarians, however, collagenous
mesoglea or hydrostatic support are common sources of structural form and stability.

Here we report that most major cnidarian clades possess and/or express at least one
chitin synthase in their genomes or transcriptomes. Transcriptomic data show that several
cnidarian lineages that have no previous reports of chitin in their tissues (e.g., Octocorallia,
Cubozoa) express CHS genes. Chitin has been explicitly described as being absent from
octocoral tissues [25]; however, all Octocorallia species assayed in this study possess at least
one CHS gene. Early works describing the presence of chitin in Scleractinia hypothesized
that the zooxanthellae—symbiotic dinoflagellate algae—were the source of chitin in stony
coral tissue, allowing for the deposition of the endoskeleton [55]. We show that stony coral
species queried in this study possess the genes required to synthesize chitin endogenously.
Additional cnidarian species may possess chitin synthase genes in their genomes, but these
genes are not expressed in the tissues or life stages from currently available transcriptomes
and genomic data are not yet available.

4.2. Distribution of Chitin in Cnidarian Tissues

The presence of chitin in the stolons and theca of hydrozoan colonies has been doc-
umented [54,56,57]. The description of chitin in Scyphozoa has been in the suborder
Dactyliophorae and Semaeostomae, where it encapsulates nutrient reserves in strobila or
polyps [58,59]. Chitin has not been previously reported within the tissues or structures of
any adult scyphozoan or hydrozoan medusae. Using a sensitive affinity histochemistry as-
say, we show that chitin is present in tissues of adult scyphozoan and hydrozoan medusae.
Furthermore, transcriptomic data confirm that genes for chitin synthesis are expressed
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in soft-bodied adults. Future works should explore how chitin is being deployed in soft
tissues, with what proteins or minerals it may be complexed, and which cnidarian cell
types are synthesizing chitin.

4.3. CHS Is Expressed during Nematostella vectensis Development

We show that all three chitin synthase paralogs are expressed in developing Nematostella,
each with its own pattern of expression. It is unclear which specific cell types are expressing
CHS and subsequently producing chitin in the soft-bodied anemone Nematostella. The
punctate expression patterns of CHS-2 are similar to previously described spatial expression
of secretory, neural, or cnidocyte genes [60–63]. Intriguingly, Nv-CHS1 and Nv-CHS3
are expressed abundantly at the aboral pole; chitinous parisarcs of some hydroids and
anemone basal discs stabilize the animal’s aboral tissues in its interactions with sediment
substrates [54,57].

5. Conclusions

Chitin is widely distributed across Cnidaria and is present in soft tissues in multiple
cnidarian species. Moreover, the presence of the molecular machinery for chitin assembly
in nearly all major cnidarian taxonomic clades and the existence of endogenous chitin in
the soft tissues of multiple lineages suggests an important and unexpected role for chitin in
cnidarian biology.

We posit that chitin can be deployed in structurally malleable tissues in cnidarians
and that it can be complexed with a number of biological compounds (e.g., proteins
or other glycomolecules) to achieve a diversity of structural presentations that do not
involve firm fibrous chitin strands or mineralization. Cnidarians use chitin in a variety
of morphological contexts. All cnidarian clades surveyed, except for Myxozoa, appear
to possess the molecular capacity to synthesize chitin, as assessed by their possession of
cognate chitin synthase homologs. Many cnidarian taxa express multiple paralogs of chitin
synthase, indicating diverse and integral roles for chitin in their biological processes. Future
expression studies and functional analyses will be necessary to determine the nature and
precise roles of chitin in soft-bodied cnidarians.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom13050777/s1. Supplemental Figure S1: Stereoscope images of chitin depletion via
chitinase digestion in adult Nematostella. Nuclei, blue (DAPI); chitin labeling is red (CBD-546).
Arrows point to the location of the mouth. Compare fluorescent signal in A vs. B, and C vs. D. Paired
figures are labeled nuclei of samples (DAPI). Samples in A and C were treated with chitinase enzyme
to digest chitin present in the samples. Samples in B and D were incubated in buffer alone, without
enzyme. (A) Oral end (mouth, pharynx, tentacles) of Nematostella incubated with chitinase enzyme.
Chitin labeling is depleted. (B) Oral end of untreated Nematostella showing preserved chitin labeling.
(C) Magnified tentacle of specimen digested with chitinase. Chitin histochemical labeling is depleted.
(D) Magnified tentacle of untreated specimen showing chitin labeling. Supplemental Figure S2: Detail
of chitin staining in Hydra vulgaris trunk epidermis. Nuclei, blue (DAPI); chitin labeling is red (CBD-
546). Detail of chitin staining in Hydra vulgaris trunk epidermal tissues. Much of the chitin labeling
appears to be acellular, though there are some cells (white arrows) that show chitin labeling within
them. It is possible that these cells are synthesizing chitin, given the staining pattern. Chitin is usually
assembled near the cell membrane and subsequently secreted. Supplemental Figure S3: Sense probe
controls of Nematostella in situ hybridization. Negative controls (sense RNA probes) in Nematostella
CHS in situ hybridization. Little background staining is observed. Scale bar—50 µm in all panels.
Table S1: Taxonomic and source tissue data for metazoan and choanoflagellate CHS sequences [64–79].
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