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Abstract: Uremic cardiomyopathy (UC), the peculiar cardiac remodeling secondary to the systemic
effects of renal dysfunction, is characterized by left ventricular (LV) diffuse fibrosis with hypertrophy
(LVH) and stiffness and the development of heart failure and increased rates of cardiovascular
mortality. Several imaging modalities can be used to obtain a non-invasive assessment of UC by
different imaging biomarkers, which is the focus of the present review. Echocardiography has
been largely employed in recent decades, especially for the determination of LVH by 2-dimensional
imaging and diastolic dysfunction by pulsed-wave and tissue Doppler, where it retains a robust
prognostic value; more recent techniques include parametric assessment of cardiac deformation by
speckle tracking echocardiography and the use of 3D-imaging. Cardiac magnetic resonance (CMR)
imaging allows a more accurate assessment of cardiac dimensions, including the right heart, and
deformation by feature-tracking imaging; however, the most evident added value of CMR remains
tissue characterization. T1 mapping demonstrated diffuse fibrosis in CKD patients, increasing
with the worsening of renal disease and evident even in early stages of the disease, with few, but
emerging, prognostic data. Some studies using T2 mapping highlighted the presence of subtle, diffuse
myocardial edema. Finally, computed tomography, though rarely used to specifically assess UC,
might provide incidental findings carrying prognostic relevance, including information on cardiac
and vascular calcification. In summary, non-invasive cardiovascular imaging provides a wealth of
imaging biomarkers for the characterization and risk-stratification of UC; integrating results from
different imaging techniques can aid a better understanding of the physiopathology of UC and
improve the clinical management of patients with CKD.

Keywords: Chronic kidney disease; uremic cardiomyopathy; T1 mapping; T2 mapping; cardiac
magnetic resonance; myocardial fibrosis

1. Introduction

In patients with chronic kidney disease (CKD), an increased rate of adverse cardiovas-
cular (CV) events with a worsening of renal function has been observed [1]. Accordingly,
the European Society of Cardiology identifies the presence of renal insufficiency as a marker
of increased risk of coronary artery disease (CAD), which is higher as renal dysfunction
worsens [2]. However, despite this well-defined association with CAD, CV events in pa-
tients with CKD are largely driven by non-atherosclerotic pathologies, especially at higher
degrees of renal dysfunction [3]. Indeed, the causes of death in patients with end-stage
renal disease (ESRD) are largely attributable to heart failure, often with preserved ejection
fraction (HFpEF), and related sudden cardiac death [4]. A major correlate and determinant
of these outcomes is the pathologic cardiac remodelling caused by renal dysfunction, which
is termed “uremic cardiomyopathy” (UC) [5]. Its underlying pathophysiology is rather
complex, extending beyond the clustering of traditional risk factors such as diabetes and
hypertension, and relies on effects resulting from pressure and volume overload as well
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as CKD-related factors [4]. These factors include, among others, inflammation, anemia,
oxidative damage and disruption of bone metabolism [6,7], which together contribute to
the peculiar myocardial changes detected in UC. Briefly (Table 1), UC is characterized by
cardiomyocyte hypertrophy and interstitial expansion due to diffuse fibrosis, with subtle
myocardial edema and replacement fibrosis that can also be present. Morphology of the
cardiac chambers is characterized by left ventricular hypertrophy (LVH) and right ven-
tricular (RV) dilation. Diastolic dysfunction and, later, systolic dysfunction can develop.
Vascular involvement is mainly characterized by the presence of vascular stiffness and
calcification. Notably, these changes at the CV level constitute markers of progressive
disease and worse prognosis. Different CV imaging modalities can provide non-invasive
detection and quantification of UC-related cardiac and vascular abnormalities, and indeed
several image biomarkers with relevant prognostic implications have been identified in
this setting (Table 1). The aim of the present review is to summarize the existing evidence
on the role of CV imaging in the assessment of CKD-related myocardial remodelling, with
a focus on echocardiography, cardiac magnetic resonance (CMR) imaging and computed
tomography (CT).

Table 1. Overview of imaging biomarkers provided by different modalities to assess different cardiac
pathologic abnormalities. Legend: - = no data available; + = available data, but not in CKD patients;
++++ = optimal non-invasive biomarker. Prognostic value refers to studies specifically performed in
CKD patients. b-SSFP = balanced steady-state free precession; LV = left ventricle; CT = computed
tomography; ECV = extra-cellular volume (); LGE = late gadolinium enhancement; PW = pulsed
wave; CW = continuous wave.

Pathologic
Abnormality Echocardiography Cardiac Magnetic Resonance Computed Tomography References

Value Imaging Biomarker Prognosis Value Imaging
Biomarker Prognosis Value Imaging

Biomarker Prognosis

LV
hypertrophy +++ 2D- and 3D imaging Yes ++++ b-SSFP cine

imaging Yes + Volumetric CT No [8–16]

Fibrosis + Backscatter
echocardiography No ++++ T1 mapping;

LGE. Yes + CT ECV No [16–32]

Edema - - - ++++ T1 and T2
mapping No - - - [16,24–26,28–30]

Microvascular
dysfunction ++ PW Doppler ++ Perfusion

imaging No - - - [23,33–35]

LV stiffness +++
PW-Doppler; tissue

Doppler;
sSpeckle tracking

Yes + Phase contrast
imaging No - - - [36–41]

LV systolic
dysfunction +++ 2D-imaging;

speckle tracking Yes ++++
b-SSFP cine

imaging;
feature tracking

Yes + Cine CT No [16,21,42–47]

Right heart
abnormali-

ties
+++

2D and 3D imaging;
CW-Doppler; tissue

Doppler;
speckle tracking

Yes ++++
b-SSFP cine

imaging;
feature tracking

Yes + Volumetric CT No [36,48,49]

Calcification +++ 2D-imaging Yes +
T1 and T2
weighted
imaging

No ++++ Calcium score Yes [50–63]

Vascular
stiffness + Tissue Doppler;

speckle tracking No +++ Phase-contrast
imaging No ++

Vascular
calcification

(indirect
estimate)

Yes [15,23,45,64,65]

2. Echocardiography
2.1. Cardiac Remodelling

Echocardiography represents the first-line modality used for the investigation of UC,
and many data are currently available from the literature. Though limited by geometric
assumptions, especially when 2D imaging is used [66], the evaluation of LV mass and
cardiac dimensions represents an important step in the echocardiographic evaluation of
UC. The increase in LV mass assessed by 2D-echocardiography is a well-known marker of



Biomolecules 2023, 13, 773 3 of 14

adverse cardiac remodelling, which is associated with worsening renal function and higher
rates of adverse outcomes [8]. The pattern of geometric remodelling has its own implica-
tions. Indeed, the progression of UC has been classically described as the development
of concentric remodelling, followed by concentric (wall thickness-to-radius ratio > 0.42)
and then eccentric hypertrophy with dysfunction. Though this remains a simplistic rep-
resentation, several longitudinal studies have reported this pathway [67,68]. Consistent
with the notion of eccentric hypertrophy as a later stage of UC, it is associated with higher
mortality rates [8], especially sudden cardiac death [9]. On the other hand, concentric LVH
has been found to increase rates of cerebrovascular events [10]. In this context, the use of
3D-echocardiography might provide more accurate measurements of LVH and LV function,
and it has been used in patients with CKD showing progressive adverse remodelling and
reduced function with the severity of renal disease [11].

2.2. Diastolic Function

Changes in myocardial function characterize the natural history of UC, with dias-
tolic rather than systolic abnormalities representing a key feature. A longitudinal study
analysing patients with ESRD undergoing replacement therapy found that diastolic abnor-
malities preceded the reduction of left ventricular ejection fraction, which became evident
only at year three after the baseline evaluation [36]. Furthermore, diastolic dysfunction
represents a common finding in CKD and is linked to poor prognosis [37]. Several echocar-
diographic techniques can be used to assess diastolic function, including pulsed wave,
continuous wave and tissue Doppler imaging (Figure 1) [69], albeit retaining poor accuracy
compared with the gold-standard of invasive evaluation [70]. Nevertheless, previous stud-
ies in CKD patients have shown that an increasing E/e’ ratio correlates with higher rates of
cardiovascular events [38], making this simple and easily obtainable marker of diastolic
function valuable in this setting. Remodelling of atrial chambers (i.e., increased left atrial
volume) is prognostic in CKD, where 3D-echocardiography might add value beyond the
standard 2D evaluation [71]. Atrial strain provides a parametric assessment of the atrium,
including the reservoir, conduit and pump functions, and represents a novel and attractive
ultrasound tool for the evaluation of diastolic dysfunction. Increased LV end-diastolic
pressure relates to altered atrial mechanics, and the addition of left atrial strain to im-
prove standard work-up of patients with suspected HFpEF has been hypothesized [72]. In
CKD, the assessment of atrial strain provided added diagnostic and prognostic value [39],
including association with major adverse cardiovascular events [40].
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Figure 1. Pulsed-wave Doppler (A) and tissue-Doppler (B) imaging of the left ventricular basal
septum for a 4-chamber apical view in a patient with CKD. This shows a second-degree diastolic
dysfunction pattern in A; the E/e′ ratio indicates a likely rise in left ventricular filling pressures.

2.3. Systolic Function

Systolic dysfunction, as signified by reduced left ventricular ejection fraction (LVEF),
develops later in the course of UC but retains prognostic value and might improve after
kidney transplantation [42]. Speckle tracking echocardiography provides a more accu-
rate evaluation of systolic function compared to the standard 2D-examination, making it
possible to assess cardiac deformation with the ability to detect subtle degrees of systolic
dysfunction. In CKD, even in patients with preserved LV ejection fraction, decreasing
global longitudinal strain of the LV was independently associated with adverse outcomes
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in multiple cohort studies [43–45]. The right heart is often involved in UC [48], with abnor-
malities detectable early in the course of the disease, even before the decline of LV ejection
fraction [36]. Right ventricular involvement retains prognostic significance in CKD [49]. Of
note, the use of 3D-echocardiography can aid a better visualization of this heart chamber,
which is characterized by a less regular shape than the LV [33].

2.4. Calcification

Vascular and cardiac calcification may be easily identified but less easily quantified by
echocardiography, though some methods have been developed for a quantitative calcium
evaluation and retain prognostic significance [73]. In patients with CKD, cardiac calcifica-
tion, as detected by echocardiography, is common [50] and is associated with cardiovascular
disease [51] as well as often involving cardiac valves with prognostic relevance [52,53].
Notably, mitral valve calcification seems to retain higher prognostic value compared to
other locations, such as the aortic valve [54,55].

2.5. Other Biomarkers

Other features of UC are less effectively imaged by echocardiography. Vascular stiff-
ness is hardly imaged directly by echocardiography, where the gold-standard for the
assessment of pulse wave velocity (PWV) is calculation tonometry or through mechan-
otransducers [74]. However, some observations on the use of echocardiography have
been reported [75]. Pulse wave velocity using applanation tonometry is a simple tool
that has demonstrated a correlation with prognosis in CKD [45]. Furthermore, tissue
Doppler imaging of the aortic wall has been described as a potential tool for the evaluation
of arterial stiffness [76]; however, to date no specific study using this approach in CKD
patients is available. Fibrosis and edema cannot be reliably imaged by echocardiography.
Backscatter analysis is a non-invasive tool that can be used to estimate LV fibrosis by as-
sessment of myocardial reflectivity, with values correlating with echocardiography derived
indexes of LV stiffness and diastolic dysfunction [77]. However, very few data are cur-
rently available—none specifically in the CKD population. Microcirculation is impaired in
CKD, with coronary flow reserve decreasing with the worsening of renal dysfunction [34].
Echocardiography can assess microvascular function by Doppler analysis of the left ante-
rior descending artery during adenosine administration, which, in CKD patients, is often
impaired [35] and is associated with the severity of underlying anemia [33].

3. Cardiac Magnetic Resonance
3.1. Left Ventricular Hypertrophy

Most of the evidence that links CKD and LVH derives from studies performed with
echocardiography, though CMR offers undeniable advantages. Indeed, echocardiography
systematically overestimates myocardial mass [12] and is subject to higher variability [13],
which could, at least partially, account for the sometimes conflicting results found in
previous studies [14]; conversely, CMR allows an accurate and reproducible measurement
of the LV mass based on a slice-per-slice approach rather than on geometrical assumptions.
Significant CMR-measured LVH has been reported in patients undergoing hemodialysis
compared to controls [15]; however, less information on the earlier stages of CKD is
available. In a recent study that included a broad range of pre-dialysis CKD stages, LV
mass did not differ across stages 2–4, but significantly increased in stage 5, suggesting
that LVH is a late phenomenon in the natural history of the disease [16]. This could limit
the use of LV mass as a surrogate endpoint to monitor the effectiveness of medical or
interventional therapies; indeed, a recent study failed to show LVH regression 12 months
after a kidney transplant compared with patients continuing in dialysis [46]. Myocardial
structural and functional changes do occur in the early stages of CKD, including myocyte
hypertrophy, expansion of extracellular space due to fibrosis, edema and increased vascular
stiffness. The possible non-reversibility of LVH shifts the focus of attention to different,
earlier phenomena, amenable to modification by earlier interventions.
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3.2. Regional Fibrosis

CMR is the technique of choice for non-invasive detection of fibrosis. Late gadolinium
enhancement (LGE) imaging detects areas of dense, replacement fibrosis. This assessment
implies the use of gadolinium-based contrast agents (GBCAs), which is controversial
in patients with advanced renal disease because of the risk of development of systemic
nephrogenic fibrosis. However, the risk is negligible with the widespread use of more stable
macrocyclic compounds; accordingly, the most recent consensus documents do not restrict
its use in CKD, as long as low risk GBCAs are used [78], which even makes it questionable
to screen for renal dysfunction before a CMR examination in the outpatient setting [79].
The prevalence of LGE in CKD is relatively high, with reported rates of 28.4–79% in dialysis
patients [17]. Among CKD patients not on replacement therapy, LGE is not so common,
but a prevalence between 7 and 35% [18] has been described. Two common patterns have
been described in these patients: subendocardial distribution, indicating previously known
or silent myocardial infarction (Figure 2), and non-ischaemic scar (including patterns such
as midwall and epicardial scar or LGE in right ventricular insertion points), which may
be related to confluent areas of dense interstitial fibrosis or to inflammatory processes,
although its physiopathology is not completely understood (Figure 3). Among dialysis
patients, ischaemic etiology features in roughly half of the patients, being non-ischaemic
patterns that are much more frequent in less severe CKD, which is likely to reflect a much
higher burden of coronary disease and classical cardiovascular risk factors within the
first group. Data on the prognostic relevance of the presence of LGE are scarce, but one
recent study including 159 pre-dialysis patients (stages 2–5) found no association of LGE
with adverse cardiovascular outcomes after 3.8 years [18]. Some limitations apply when
considering the use of LGE as an early marker of uremic cardiomyopathy. Originally
conceived for ischaemic cardiomyopathy, this technique relies on the identification of a
healthy versus a diseased myocardium, and so is limited in the assessment of diffuse
interstitial fibrosis.

Biomolecules 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 
Figure 2. 54-year-old male, with stage III CKD secondary to nefroangiosclerosis, who presents with 
CMR concentric LVH in cine images (A), mildly increased native T1 (B) with normal T2, probably 
reflecting appropriate volume status with some degree of diffuse fibrosis. A previously unknown 
myocardial infarction is present as a subendocardial scar in mid-basal segments of the inferolateral 
wall (arrows in C and D). 

 
Figure 3. Typical findings of uremic cardiomyopathy with CMR. The patient presents with mild 
pericardial effusion, severe concentric LVH with hypertrophy of papillary muscles (A), diffuse 
intramyocardial LGE (B), and diffuse fibrosis, as shown by high values of native T1 (C) and ECV 
(post contrast T1, D). 

3.3. Diffuse Fibrosis and Edema 
The assessment of diffuse myocardial fibrosis has gained weight in the last few years, 

with the use of T1 and T2 parametric mapping sequences. Although T1 mapping is very 
sensitive to myocardial pathology, it lacks specificity; its increase may be due to fibrosis, 
but also to edema or infiltration. On the contrary, T2 mapping is specifically increased in 

Figure 2. 54-year-old male, with stage III CKD secondary to nefroangiosclerosis, who presents with
CMR concentric LVH in cine images (A), mildly increased native T1 (B) with normal T2, probably
reflecting appropriate volume status with some degree of diffuse fibrosis. A previously unknown
myocardial infarction is present as a subendocardial scar in mid-basal segments of the inferolateral
wall (arrows in C,D).
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Figure 3. Typical findings of uremic cardiomyopathy with CMR. The patient presents with mild
pericardial effusion, severe concentric LVH with hypertrophy of papillary muscles (A), diffuse
intramyocardial LGE (B), and diffuse fibrosis, as shown by high values of native T1 (C) and ECV
(post contrast T1, D).

3.3. Diffuse Fibrosis and Edema

The assessment of diffuse myocardial fibrosis has gained weight in the last few years,
with the use of T1 and T2 parametric mapping sequences. Although T1 mapping is
very sensitive to myocardial pathology, it lacks specificity; its increase may be due to
fibrosis, but also to edema or infiltration. On the contrary, T2 mapping is specifically
increased in the presence of myocardial water, therefore the combination of both of these
offers more valuable information. Multiple studies have reported significant differences
in T1 and T2 between CKD and subjects with normal renal function [19–27,80] (Table 2A).
These findings include a wide range of CKD patients, not only those under replacement
therapy (hemodialysis or peritoneal dialysis), but also moderately diseased patients with
CrCl < 60 mL/min/m2. Native T1 emerges as an early marker of cardiac disease in CKD,
with increased values independent of the presence of LVH and conventional risk factors [28]
and mainly driven by CKD-related factors. The hypothesis that diffuse fibrosis is the
main driver of the increase in native T1 is consistent with previous histology studies in
CKD [81,82] and the extensive available information of T1 in other cardiomyopathies.
However, no histological correlate specifically in CKD is currently available, but there is an
ongoing trial addressing this question (NCT03586518). The role of T2 mapping has been
less extensively studied, although most studies have shown increased values from the early
stages of CKD (Table 1).
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Table 2. Summary of studies that reported parameters of diffuse fibrosis (section A) and vascular
stiffness (section B) with CMR in different CKD populations compared to controls. Studies are
presented in chronological order of publication. Values are reported for 1.5 and 3T in control group
(healthy) and CKD group (disease). The last column reports the percentage of patients who presented
with LGE, when available, and the proportion of ischaemic aetiology in brackets. Values of T1 and
T2 mapping are expressed in ms, PWV in m/s and distensibility in mm Hg−1. MOLLI = modified
Look-Locker inversion recovery; AA = ascending aorta; PWV = pulse wave velocity.

Author (N) Population Sequence
Health Disease

LGE (%)
1.5T 3T 1.5T 3T

A. Fibrosis

Edwards
(43) [19] 60–15 mL/min/1.73 m2

Native T1 (MOLLI
3(3)3(3)5) 955 ± 30 986 ± 37

30 (0)
ECV 0.25 ± 0.03 0.28 ± 0.04

Graham-
Brown (35)

[20]
Hemodialysis Native T1 (MOLLI

3(3)3(3)5, 50◦) 1292.7 1088.8

Rutherford
(33) [21] Hemodialysis Native T1 (MOLLI

3(3)3(3)5 35◦) 1161 ± 29 1184 ± 34

Antlanger
(37) [22] Hemodialysis Native T1 (MOLLI 5(3)3 35◦) 998 ± 47 1022 ± 50

Chen (276)
[23] ≤60 mL/min/1.73 m2 Native T1 (MOLLI

3(2)3(2)5 50◦) 1123 ± 31 1152 ± 43 35 (16)

Arcari (154)
[24] ≤60 mL/min/1.73 m2

Native T1 (MOLLI
3(2)3(2)5 50◦) 1062 ± 39 1161 ± 55

7 (4)
T2 FLASH 35.8 ± 2.3 41.8 ± 5.2

Han (43)
[25]

Hemodialysis
Native T1 (MOLLI 5(3)3 35◦) 1006 ± 25 1056 ± 32 -

T2-SSFP 46 ± 2 50 ± 3

Lin (23) [26] Peritoneal dialysis
Native T1 (MOLLI 5(3)3 35◦) 1256 ± 45 1302 ± 30 -

T2-TrueFISP 40.5 ± 1.6 44.6 ± 2.6

Qin (52) [27] Hemodialysis Native T1 (MOLLI 5(3)3 20◦) 1238 ± 31 1280± 45

B. Vascular stiffness

Edwards
(117) [64] 60–30 mL/min/1.73 m2 AA distensibility 4.12 × 10−3 2.94/2.18 × 10−3

(stage 3–2)

Chue (189)
[65] 90–15 mL/min/1.73 m2 AA distensibility 4.1 × 10−3 2.8 × 10−3

Odudu (54)
[15] Hemodialysis AA distensibility 4.1 × 10−3 2 × 10−3

PWV 5.3 ± 1.9 7.9 ± 3.5

Chen (276)
[23] ≤60 mL/min/1.73 m2 PWV 7.3 ± 2.4 9.2 ± 2.6

Both T1 and T2 were independently related to biomarkers of myocardial injury (hs-
TnT) and B-type natriuretic peptides [25,28], showing a stronger relationship with ad-
vancing renal failure, all of which suggests a link between increased myocardial water
and ongoing myocardial injury in CKD. In a study comparing CKD patients to healthy
controls as well as other hypertrophic disease models, such as hypertensive and hyper-
trophic cardiomyopathy, native T1 was significantly higher in all patient groups compared
to controls. However, T2 was specifically increased in CKD, with a strong relationship
between the two of them, suggesting that the increase in T1 in these patients might be
driven not only by fibrosis, but also, to a certain extent, by increased myocardial fluid [24].
This question has been addressed by several studies that looked into the acute changes in
T1 and T2 immediately before and after hemodialysis [29,30] and demonstrated detectable
and significant changes in both parameters following hemodialysis. Despite the uncertain
association of these changes with global fluid status [22] (either measured by bioimpedance
or change in body weight), the most likely explanation is a reduction in myocardial water
content [28,29]. Of note, the detection of these subtle changes in myocardial composition is
dependent on the timing of the CMR, the fluid status previous to the HD and the intensity
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of the therapy, making T1 mapping evaluation a potential surrogate endpoint with which
to assess the efficacy of different hemodyalisis schemes [31]. On the contrary, the role of
myocardial edema was negligible in a study that failed to show a decrease in native T1 and
T2 early after kidney transplantation (8 weeks), supporting the hypothesis that increased
T1 is mainly driven by fibrosis in uremic cardiomyopathy [83].

A recent cross-sectional study, including the whole range of renal disease (stages 2–5),
demonstrated a stepwise increase in native T1 and T2 and serum biomarkers with every
stage of CKD [16]. Moreover, T1 was an independent predictor of peak oxygen uptake
during cardiopulmonary exercise testing in this cohort. Although the increase in native T1
and T2 was gradual from the earliest stage of CKD, classical surrogates of UC, such as LVH,
remained stable until advanced disease was present. A similar behaviour of native T1 and
T2 was later reported across the spectrum of CKD [28]. These findings suggests that T1 and
T2 mapping may be used from the very beginning of renal disease to stage and track the
adverse changes at the myocardium level.

T1 mapping is a relevant prognostic marker in a variety of cardiac conditions, but
outcome data reporting the prognostic value of T1 in the context of CKD are still scarce.
A small study that included 52 HD patients showed that, after 38 months of follow-up,
native T1 independently predicted major adverse cardiovascular events (MACE) [27].
Additionally, in the specific scenario of severe aortic stenosis and CKD, a native T1 > 1024
ms (1.5T, MOLLI 3(3)5, 35◦) was the strongest predictor of MACE after 3.8 years [32].
Although limited by small sample size and other considerations, these studies lead the
way for much needed further research that fills the knowledge gap in the prognostic
stratification of CKD.

3.4. Vascular Stiffness

Observational studies have described increased aortic stiffness, measured as PWV
or distensibility, across the spectrum of CKD [15,23,64,65] (Table 2B). Furthermore, dis-
tensibility decreases in a staged manner with worsening CKD, and glomerular filtration
and age are independently related to distensibility [41]. Although the development of
myocardial fibrosis in CKD, measured by native T1, has been shown to happen indepen-
dently of afterload, probably mediated by mineral bone metabolism and neurohormonal
activation among other processes, the increased aortic stiffness reported in CKD patients
accelerates this process. In a study with 276 patients, fibrosis and aortic stiffness (expressed
as T1 and PWV) had a markedly stronger association in the presence of CKD, suggesting a
physiological relationship that is strengthened with the severity of CKD [23].

3.5. Other Biomarkers

Other UC features that can be imaged by CMR include microvascular dysfunction by
perfusion imaging, which, in one study, was more frequently found in CKD patients than
in controls [23], and diastolic function by phase contrast imaging [41], albeit with specific
data scarcely available in UC. Feature tracking CMR can be used to derive a parametric
function for myocardial deformation, with information comparable to those obtained by
speckle-tracking echocardiography [84]. In CKD, reduced longitudinal strain has been
found compared to controls [21], with values showing an improvement in ESRD patients
after kidney transplantation [47]. Overall, these data are less robust compared with those
obtained by tissue characterization and standard cardiac function evaluation.

4. Computed Tomography

CT does not represent the first-line test of choice for evaluating cardiovascular involve-
ment in CKD, and imaging biomarkers derived from this modality are not as robust as
those obtained by echocardiography and CMR. However, CT of thorax and/or abdomen,
performed with other indications, can provide additional ancillary data to support a di-
agnosis of UC. Myocardial end-diastolic volume and mass can be quantified even with
ECG-triggered CT [85]. In patients undergoing coronary CT, the measurement of LV mass
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and end-diastolic volume, plus its ratio as index of concentric remodelling, was able to
differentiate hypertensive from non-hypertensive patients [86], highlighting the potential
diagnostic value of this approach. Furthermore, CT-derived LV end-diastolic volume [87]
and mass [88] demonstrated prognostic relevance in cohorts of patients undergoing coro-
nary CT. Right ventricular morphology can also be evaluated, with increasing volume being
associated with increased mortality in patients with pulmonary embolism [89]. Though
no such robust data are available in patients with CKD, previous evidence is likely to be
transferrable to this subset of patients, suggesting that CT evaluation of the left and right
ventricular chambers can aid risk stratification in this setting.

CKD presents with common and extensive arterial and valvular calcification (Figure 4)
due to a pronounced impairment in bone and mineral metabolism, which is easily seen
by CT. A disproportionate amount of coronary, aortic and mitral calcium is a well-known
finding in patients with ESRD undergoing dialysis [56]. However, even among young
dialysis patients (20–30 years old) with otherwise low CV risk, calcification is common and
significant; even more importantly, this calcification is rapidly progressive [57]. However,
data on coronary artery disease in the earlier stages are more limited. A population study
found an association with significant coronary calcification, which was directly related
to the stage of renal dysfunction, with no relevant calcification in stages 1–2 compared
to a population with no CKD; this association was notably stronger among diabetics [58].
Coronary calcification, quantified by Agatston calcium score (Figure 4A,B), retains prog-
nostic significance in this setting, as outlined by multiple studies [59–61]. Calcification of
the aortic wall is frequently observed as well. This is associated not only with increased
vascular stiffness, as expected, but also with higher degrees of diastolic dysfunction [62],
marking a more advanced stage of disease with worse prognosis [63].
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valve (C) and posterior mitral anulus (D) and vascular calcification of the abdominal aorta and iliac
arteries (E).

The evaluation of myocardial tissue composition by CT is a promising field from which
some data are emerging. Extra-cellular volume can be quantified by CT, demonstrating
high reproducibility and an age-related increase, which suggest the marker to be consistent
with the actual pathologic changes in the myocardium [90]. In patients with amyloidosis,
ECV by CT is associated with markers of more advanced disease and higher mortality at
follow-up [91]. However, the need for iodinate contrast media administration, which has
well-known nephrotoxic effects, especially in patients with underlying pre-existent renal
disease [92], limits this application in patients with CKD.
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5. Conclusions

Multiple imaging modalities contribute to a comprehensive and complementary
overview of UC. Echocardiography is a widespread and cheap technique that can be
used as a first-line imaging test to assess end-organ damage in CKD. CMR is generally
less available than echocardiography; however, it can provide more accurate information
to aid an early diagnosis of cardiac involvement in CKD, with its imaging biomarkers
more suitable for use as surrogate endpoints in clinical trials testing newer therapeutic
approaches. Finally, CT is rarely used to specifically assess UC. Nonetheless, the use of
this imaging test is widespread, and much information can be drawn from the ancillary
cardiovascular findings obtained during examinations performed with other indications.
In summary, a multimodal approach, integrating results from different imaging techniques,
can aid a better understanding of the physiopathology of UC and improve the clinical
management of patients with CKD.

Funding: This research received no external funding.
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