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Abstract: Lung cancer is a highly heterogeneous disease. Cancer cells and other cells within the
tumor microenvironment interact to determine disease progression, as well as response to or escape
from treatment. Understanding the regulatory relationship between cancer cells and their tumor
microenvironment in lung adenocarcinoma is of great significance for exploring the heterogeneity of
the tumor microenvironment and its role in the genesis and development of lung adenocarcinoma.
This work uses public single-cell transcriptome data (distant normal, nLung; early LUAD, tLung;
advanced LUAD, tL/B), to draft a cell map of lung adenocarcinoma from onset to progression, and
provide a cell-cell communication view of lung adenocarcinoma in the different disease stages. Based
on the analysis of cell populations, it was found that the proportion of macrophages was signifi-
cantly reduced in the development of lung adenocarcinoma, and patients with lower proportions of
macrophages exhibited poor prognosis. We therefore constructed a process to screen an intercellular
gene regulatory network that reduces any error generated by single cell communication analysis
and increases the credibility of selected cell communication signals. Based on the key regulatory
signals in the macrophage-tumor cell regulatory network, we performed a pseudotime analysis
of the macrophages and found that signal molecules (TIMP1, VEGFA, SPP1) are highly expressed
in immunosuppression-associated macrophages. These molecules were also validated using an
independent dataset and were significantly associated with poor prognosis. Our study provides an
effective method for screening the key regulatory signals in the tumor microenvironment and the
selected signal molecules may serve as a reference to guide the development of diagnostic biomarkers
for risk stratification and therapeutic targets for lung adenocarcinoma.

Keywords: gene regulatory network; lung adenocarcinoma; single-cell transcriptome analysis;
macrophage; cell-cell communication

1. Introduction

Lung cancer is the most common cancer worldwide [1]. Non-small cell lung cancer
(NSCLC) accounts for 85% of lung cancer cases, with a 5-year survival rate of less than
16% [2]. NSCLC mainly contains two subtypes, lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC). A recent study showed that LUAD and LUSC differed in
age, sex, clinical stage, tumor site, histological grade, treatment, and 5-year overall survival,
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requiring separate analysis of LUAD and LUSC to provide more precise results. The ratio of
LUAD to LUSC patients was reported close to 2.44:1, indicating that there are more patients
with lung adenocarcinoma. In addition, patients with LUAD are less likely to receive
chemotherapy and radiotherapy than those with LUSC, and therefore, screening targets and
developing immunotherapy are critical [3]. On the other hand, a growing number of single-
cell studies have found a heterogeneous immune landscape between LUAD and LUSC,
with the presence of distinct cells and transcriptional modules associated with survival [4,5].
The prognosis for LUAD patients and treatment decisions are based on the clinical stage
of the disease at the time of diagnosis. Tumor progression is a continuous process of
change; it is more important to accurately assess lung adenocarcinoma from normal,
early to advanced stages. At present, the main treatment for early LUAD (tLung-tumor
lung) is surgical resection with lobectomy [6]. The treatments for advanced LUAD (tL/B-
tumor lung/with brain metastasis) include targeted therapies and chemo-radiotherapy [7].
Current clinical techniques may not provide complete information about the molecular
characteristics to distinguish between early and advanced LUAD [8], hence, single-cell
RNA sequencing was used to assess the intratumor heterogeneity of LUAD and proved
essential for understanding the biological nature and the developmental status of the
disease [9].

Technological advances have allowed single-cell analysis to reveal that cell-cell commu-
nication plays a crucial role in numerous biological processes that utilize a dynamic network
to support communication and cooperation between cells, e.g., tissue homeostasis [10,11],
cell development [12,13], disease pathogenesis and progression [14,15], and therapy resis-
tance [16]. Cell-cell communication in tumor microenvironments (TMEs) drives cancer
progression and influences the response to existing therapies [17]. Macrophages have long
been considered to be important immune effector cells in TMEs and play an important role
in regulating innate and acquired immunity, healthy tissue homeostasis and vasculogene-
sis [18]. However, macrophages are highly plastic in the TME. For example, tumor cells
can take advantage of macrophage plasticity to reshape them into an immunosuppressive
phenotype (e.g., tumor-associated macrophage, M2-like immunosuppressive phenotype,
etc.) [19]. M2 macrophage-derived exosomes could be taken up by tumor cells to promote
cell migration, invasion, and angiogenesis [20]. Tumor-associated macrophages (TAMs)
have increasingly been recognized as predicting a lung adenocarcinoma (LUAD) prog-
nosis [21]. The tumor microenvironment of LUAD is complex, including the immune
activation microenvironment and the immune suppression microenvironment [22]. In
these two different tumor microenvironments, macrophages with different functions play a
central role in the heterogeneity of the LUAD immune microenvironment [5]. For example,
AT2-like malignant cells with high expression of ANXA1, MDK and FN1 in LUAD may be
responsible for the recruitment of macrophages with high expression of FPR1 and SORL
through ligands [23]. In addition, the characteristics and components of antigen-presenting
macrophages are continuously reduced in LUAD, and the communication between tu-
mor epithelium and macrophages expressing CX3CR1 cognate receptors is increased [24].
Therefore, understanding the relationship between tumor cells and macrophages in the
microenvironment is crucial for the occurrence and development of LUAD. At present,
intercellular communication is mostly based on biomolecular interactions, e.g., ligand-
receptor link, ligand-target link. Therefore, there may be errors in the predicted outcomes
of these different cell communication prediction tools. A recent study has revealed great
diversity between the different lesions of LUAD at the single-cell level through cell-cell
communication, but cell interaction molecules cannot be experimentally verified [25]. Thus,
improving the credibility of cell-cell communication is important for the understanding of
the microenvironmental alterations and immune responses in lung adenocarcinoma.

In this study, we used single-cell RNA sequencing data of three LUAD states (nLung-
normal Lung, tLung, tL/B) to explore the association between cell-cell crosstalk and
lung cancer progression based on differences in the tumor-macrophage communication
gene regulatory network signals. Further, we found that these signals, exhibiting signifi-
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cant differences in gene regulatory networks, played a key role in the transformation of
macrophages into immunosuppressive phenotypes using pseudotime analysis, and may
affect the occurrence and development of LUAD. In addition, we found that the tumor
microenvironment and gene regulatory network of lung squamous cell carcinoma retained
similar features but were different from LUAD. Overall, we demonstrate that communica-
tion between tumor cells and macrophages alters the functional status of the macrophages;
the resulting regulatory signals were significantly associated with poor prognosis in lung
adenocarcinoma patients.

2. Materials and Methods
2.1. Data Collection and Preprocessing

To describe the composition and functional status of lung adenocarcinoma (LUAD)
during tumor progression, single cell transcriptome profiles from the lung tissues of distant
normal (nLung), early LUAD (tLung) and advanced LUAD (tL/B) were collected from the
dataset GSE131907 in the GEO database [26]. Sequencing data were mapped to the GRCh38
human reference genome using the Cell Ranger toolkit (version 2.1.0). Quality measures
were applied to the raw gene-cell-barcode matrix for each cell based on: mitochondrial
genes (≤20%, unique molecular identifiers (UMIs), and gene count (ranging from 100 to
150,000 and 200 to 10,000). In total, 42,995 cells of lung tissues from distant normal (nLung),
45,149 cells of lung tissues from early LUAD (tLung) and 12,073 cells of lung tissues from
advanced LUAD (tL/B) were merged.

To validate the regulatory network changes during lung adenocarcinoma devel-
opment another set of single cell transcriptome data (GSE123902 [27], GSE117570 [28],
GSE148071 [29]) was used as a validation dataset. After quality control, a total of 34,920 cells
were selected for subsequent analysis (including 15,701, 14,984, and 4235 cells from distant
normal regions of lung samples, early LUAD, and advanced LUAD). The single-cell data of
the validation group were used to construct the gene regulatory network through the same
analysis process. In addition, in order to observe the heterogeneity of LUAD and LUSC, a
LUSC’s single cell transcriptome data (http://lungcancer.chenlulab.com (accessed on 22
March 2023)) was analyzed through the same pipeline. A total of 18,117 cells were selected
for subsequent analysis (including 6338, 7918 and 3861 cells from normal tissue samples of
LUSC, early LUSC and advanced LUSC) after quality control.

2.2. Data Integration, Unsupervised Dimensional Reduction and Clustering, and Cell
Type Identification

scRNA-seq data were normalized using the “NormalizeData” function; and were
scaled using the “ScaleData” function. The top 3000 highly variable genes were identified
using the “FindVariableFeatures” function. Next, we used the “RunPCA” function to
reduce the dimension of the scRNA-seq data. To integrate cells within a shared space
from different datasets for unsupervised clustering, “RunHarmony” of Harmony (version
0.1.0) [30] was used to identify anchors and run integration steps and eliminate batch
effects. Pcs were selected by ranking the principal components using the ElbowPlot
function in the Seurat R package. This function works by randomly permuting a subset
of data, and calculating projected PCA scores. When an inflection point reached the
20th pc, then, the first 20 principal components (PCs) were utilized in UMAP (uniform
manifold approximation and projection) analysis using “RUNUMAP”. Subsequently, a
single cell map at 0.2 resolution was presented by the “FindClusters” function. Further,
the “FindAllMarkers” function was used to detect gene expression markers. The above
analysis was performed using the Seurat (version 4.1.1) [31] R package. Afterwards, we
used the R package SingleR (version 1.6.1) [32], CellMarker dataset [33] and marker genes
of cells to annotate cell types in our study.

http://lungcancer.chenlulab.com
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2.3. Identification of Malignant Cells from Patients with Adenocarcinoma of the Lung

In order to isolate malignant tumor cells from patients with lung adenocarcinoma,
CNV aberrations were inferred from the patterns of chromosomal gene expression by
inferCNV (version 1.8.1) [34]. Since the data were 10× Genomics single-cell data, usually
the cutoff is set = 0.1, denoise = T. The expression profiles of lung tissues from distant
normal regions were used as a reference, the early LUAD and the advanced LUAD were
used as the observation group.

2.4. Functional Enrichment Analysis

R package clusterProfiler (version 4.0.5) [35] was used for Gene Ontology (GO) annota-
tion and enrichment analyses. p-value (p.adjust value) was calculated using the Benjamini
and Hochberg method [36]. A p.adjust value < 0.05 was considered significant. In the
enrichment analysis related to the regulatory network, p-values were not adjusted in order
to retain more variables for multivariate analysis. Graphic visualization was enabled using
ggplot2 (version 3.2.1).

2.5. Survival Analysis of the Proportion of Macrophages in Patients with Lung Adenocarcinoma

The LUAD mRNA expression data and associated clinical data in TCGA were down-
loaded from the UCSC Xena (http://xena.ucsc.edu/ (accessed on 10 July 2022)) database.
The proportional distribution of 22 infiltrated immune cell types in patients was obtained
by CIBERSORT [37] in TCGA-LUAD data. The patients were assigned to one of two groups
(high risk and low risk) according to the proportion of infiltrated immune cells. Then, the
relationship between the proportion of macrophage cells with survival was evaluated using
the R package survival (version 3.3.1) [38]. The “surv_cutpoint” algorithm of R package
survminer (version 0.4.9) was used to calculate the optimal threshold, and all survival
analyses adopted this approach. In order to retain more variables for multivariate analysis,
p-values were not adjusted.

In order to confirm the effect of tumor ligand signaling in the regulatory network
on the occurrence and development of lung adenocarcinoma, the GEPIA2 [39] tool was
used to evaluate the relationship between ligands in the gene regulatory network and the
survival of patients with lung adenocarcinoma.

2.6. The Gene Regulatory Network of Tumor Cell-Macrophage Interaction Construction

First, the R package, Nichenet (version 1.0.0) [40], was used to infer the gene regula-
tory network of tumor cell-macrophage interactions. Malignant cells were designated as
sender cells, macrophages were designated as receiver cells, “top_n_ligands” = 30, “condi-
tion_reference” was designated as nLung, “condition_oi” was designated as tLung, and
then, through the function of “nichenet_seuratobj_aggregate”, ligand-target pairs were
identified. Further, ligand-receptor (L-R), receptor-transcription factor (R-TF), transcription
factor-target (TF-target) were found by the “get_ligand_signaling_path” function. Using
the above steps, gene regulatory networks linking nlung and tLung and linking tLung and
tL/B were identified second. CellPhoneDB (www.cellphonedb.org (accessed on 7 August
2022)) [41] was used to identify ligand-receptor pairs between tumor cells and macrophages,
and those pairs with mean values greater than 0 were reserved. The ligand-receptor pairs in
the second step were verified using Nichenet, and these verified interaction pairs and their
downstream signaling molecules were retained. Third, pySCENIC (version 0.11.2) [42]
was used to identify the TF-target of the macrophages, retaining those regulatory chains
in the TF-targets that overlap with the previous step’s regulatory network. Finally, the
differentially expressed genes (DEGs) were found using the “Findmarker” function of
Seurat to screen the gene regulatory network signals (Section 3.3).

2.7. Immune Cell Trajectory Is Constructed by Regulating the Signaling Molecules of the Network

In order to validate the signals (receptor, TFs, target) of gene regulatory network 4.0
influenced macrophages during LUAD progression, monocle (version 2.14.0) [43] was

http://xena.ucsc.edu/
www.cellphonedb.org
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used to analyze the gene expression matrix with macrophage cells. We used the signals
(receptor, TFs, target) of the gene regulatory network 4.0, to sort cells in pseudotime order.
“DDRTree” was applied to reduce the number of dimensions and the visualization functions
“plot_cell_trajectory” was used to plot the minimum spanning tree on cells. Finally, cells of
nLung were defined as the starting point through “orderCells” function.

3. Results
3.1. Single-Cell Expression Atlas and Cell Typing in Normal Lung, Early and Advanced LUAD
Tissue Samples

To describe the composition and function of cells of LUAD during their different
statuses, single-cell transcriptome datasets were collected from LUAD with 26 tissue
samples from 16 patients, including 11 samples of distant normal lung tissues, 11 early
LUAD samples, and 4 advanced LUAD samples (Table S1). After quality control, a total of
100,210 cells were selected for subsequent analysis (including 42,995, 45,149, and 12,073 cells
from distant normal tissue of lung samples, nLung; early LUAD, tLung; and advanced
LUAD, tL/B, respectively). The R package “Harmony” was used to integrate data from
different samples. After reduction and clustering, cells were divided into 16 clusters. The
results of the cell types from the R package SingleR were kept as a reference (Figure S1A),
and clusters were annotated (Figure 1A), according to the expression level of marker genes
(Figure 1B). A total of 16 cell types were annotated: 8 types of immune cells (including T
cells, NK cells, macrophage cells, granulocyte cells, DC cells, mast cells, B cells, and plasma
cells), 2 types of stroma cells (including fibroblast cells and endothelial cells), and 6 types
of epithelial cells (including AT1 cells, AT2 cells, club cells, ciliated cells, basal cells, and
proliferating cells). After integration, the cells grouped primarily by dataset were combined
(Figure 1C,D).
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Figure 1. A single-cell atlas of nLung, tLung and tL/B. (A) The UMAP plot of high-quality cells to
visualize cell-type clusters. (B) Stacked violin plots displaying markers of the expression across sixteen
cell types. (C,D) The UMAP plot cell distribution in tissue source and patient source. (E,F) Proportion
of cells in nLung, tLung and tL/B and different stages (IA, IA3, IB, IIA, IIIA, and IV).

The epithelial cells of LUAD exhibit significant heterogeneity [44]. The R package
infercnv was used to identify non-malignant cells and malignant cells. The hallmarks of
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cancer cells are aneuploidy and chromosomal copy number variations (CNV) [45]. The
expression profiles of distant normal regions of lung tissues were used as a reference, and
the early LUAD and the advanced LUAD were used as the observation group; we found
that the copy number of cells provided by lung tissues of early LUAD and advanced LUAD
in club cells, ciliated cells, AT1 cells, and proliferating cells exhibited significant changes
(Figure S1B). The lack of basal cells and AT1 cells in nLung, and the presence of tumor
biomarkers of LUAD [46] were observed in potentially malignant cells. Basal cells and
AT2 cells were both highly expressed tumor markers of LUAD (Figure S1C). In addition,
basal cells are highly correlated with proliferating cells, and AT2 cells are highly correlated
with club cells (Figure S1D). Therefore, we speculate that club cells, ciliated cells, AT1 cells,
proliferating cells, basal cells, and AT2 cells are malignant cells.

Overall, the distribution of cells in different patients, different sources, and different
pathologies was observed. While tumor cell numbers increase as the disease progresses, the
largest proportion of tumor cells exists in tL/B, while immune cells in tL/B are depleted
(Figure S1E). The increase in tumor cells may be related to the decrease in immune cells.
The proportion of fibroblast cells and endothelial cells did not appear to change. There was
no significant change in cell number for different pathological stages (Figure 1F).

3.2. The Role of Macrophages in the Immune Microenvironment

From the above, we have found that the number of immune cells was reduced and the
number of tumor cells increased as cell status progresses from normal to early LUAD and
advanced LUAD (tLung and tL/B). We then further analyzed the composition of immune
cells in the three disease stages and found that macrophages accounted for about 28% of the
largest proportion of immune cells in nLung. T cells accounted for the largest proportion
of immune cells in tLung and tL/B. Plasma cells were only found in tLung and tL/B
(Figure 2A). Further, we studied the proportion of each immune-cell type in the three stages
of LUAD, distant normal tissues of lung (nLung), early LUAD (tLung), and advanced
LUAD (tL/B). Compared with the cells in nLung, the proportion of B cells and plasma cells
was observed to increase in tLung (p < 0.05); the proportion of NK cells, macrophages and
granulocytes was observed to decrease in tLung (p < 0.05). Compared with the cells in tLung,
macrophage cells, plasma cells, and DC cells were observed to decrease in tL/B (p < 0.05)
(Supplementary Figure S2A,B). Interestingly, the changes in macrophages were more
pronounced than in other immune cell types (Figure 2B). Macrophages are first responders
for the immune system, initiating and coordinating a multipronged immune response [47].
Therefore, we speculate that the decrease in macrophages may be an important reason
for the occurrence and development of LUAD. Thereafter, we observed the relationship
between the number of macrophages and the survival rate of patients, a Cox proportional
hazards model was applied, and the patients with a lower proportion of macrophages
showed a lower chance of survival (Figure 2C and Figure S3A). Survival analysis confirmed
our speculation.

The above study found that the decrease in macrophages may be associated with the
occurrence of lung adenocarcinoma. Moreover, changes in the function of macrophages
may also affect the development of lung adenocarcinoma during the process that decreases
the number of macrophages. Thus, the “FindMarker” function of the package Seurat
was used to identify the differentially expressed genes in the macrophage cell population
between nLung and tLung and tL/B. In tLung, the upregulated genes were associated
with the positive regulation of the immune system process and its response to hypoxia
(e.g., T-cell activation, lymphocyte proliferation and response to decreased oxygen levels),
whereas the genes downregulated primarily belonged to proliferation-related pathways
(e.g., mononuclear cell proliferation, myeloid cell differentiation). According to the results
of functional analysis, macrophages from tLung patients are in a state of promoting immune
activation compared with nLung people, and the downregulation of proliferation-related
function may be related to the decrease in the proportion of macrophages. The upregulated
genes in tL/B were related to the response to positive regulation of angiogenesis and vas-
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culature development, and the downregulated genes in tL/B were related to the positive
regulation of cell adhesion, antigen processing, and T-cell activation through the GO func-
tion enrichment analysis (Figure 2E and Figure S3B). The results showed that macrophages
are in an immunosuppressive state in the tL/B stage and may promote tumor growth
by promoting the increase in angiogenesis and vasculature development. In conclusion,
during the development of LUAD, the proportion of macrophages gradually decreases, and
their function evolves from immune activation (trying to fight against tumors) to immuno-
suppression, which may create an environment suitable for tumor growth. These results
suggest that macrophages may be regulated by tumor cells during the transformation from
tLung stage to tL/B stage.
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Figure 2. Biological function of a macrophage cell and its impact on patient survival. (A) Immune
cell composition in nLung, tLung, and tL/B. (B) Box plot of the cell percentage of macrophage cells
in the three sources: distant normal tissue (nLung), early LUAD (tLung), and advanced LUAD
(tL/B). * p adjusted < 0.05, and *** p adjusted < 0.001 (t.test). (C) Correlation between the proportion
of macrophages with survival rate; orange represents high ratios and green represents low ratios,
(p = 0.031). (D,E) The GO function enrichment analysis results of downregulated genes of the early
LUAD (tLung) (distant normal tissue (nLung) as the control), and downregulated genes of the
advanced LUAD (tL/B) (early LUAD (tLung) as the control), p adjust < 0.05.

3.3. Construction of the Regulatory Network of Macrophages Regulated by Tumor Cells

Macrophages exhibit strong plasticity and functional heterogeneity, and their phe-
notypic transformation is complex [48]. A recent study found that tumor cells can alter
the macrophage phenotype. To further investigate which molecules of tumor cells might
mediate the change in macrophage cells, we constructed the gene regulatory network com-
prised of four elements: ligand-receptor-transcription factor (TF)-target. Gene regulatory
networks were constructed in four steps (Figure 3). First, we applied Nichenet to obtain
intercellular signal transduction networks and constructed ligand-receptor-TF-target links
(Network 1.0); second, ligand-receptor (L-R) pairs of the gene regulatory network were
verified by CellPhoneDB, the overlapping ligand-receptor pairs and their downstream
signals were retained (Network 2.0); third, SCENIC was used to verify TF-target pairs of
Network 2.0. The verified TF-targets of Network 2.0 were preserved (Network 3.0); fourth,
differentially expressed genes (DEGs) were used to filter important signals of Network 3.0
(Network 4.0). After multiple screening of regulatory networks, the number of signaling
molecules is reduced, which means that the resulting overlapped common filter, derived
from multiple communication tool analyses, can reduce the false positive results with the
use of a single tool.
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The construction of the gene regulatory network may further improve the accuracy
and integrity of the signal transduction process. By comparing the networks of nLung and
tLung, it was found that multiple signaling pathways were involved. In Network 4.0, 67
signals of nLung and 84 signals of tLung were retained. Regulatory links based on four
ligands (GAS6, TIMP1, VEGFA, TGFB1) were found in nLung Network 4.0 (Figure 4A).
However, in tLung Network 4.0, a total of six ligands (GAS6, TIMP1, VEGFA, TGFB1, LIF,
CXCL2) were included. The functional analysis illustrated that the upregulated signals
(receptor, TF, target) in tLung were related to the immunological effect and some upregu-
lated targets of tLung were related to the response to decreased oxygen levels (Figure 4B
and Figure S4B). For example, after TIMP1 interacts with FGFR2 (receptor), the expression
of ADM mediated by the transcription factor JUN is elevated. A typical hypoxic factor of
ADM has been used as an important factor in the tumor microenvironment for predicting
clinical prognosis in lung adenocarcinoma [49]. The downregulated molecules in tLung
were related to inflammatory response. VEGFA regulates the reduced expression of CD44
through signal transduction. Alveolar macrophages (AMs) are CD44-expressing cells lo-
cated in the alveolar space that maintain lung homeostasis. When CD44 is downregulated,
AMs are unable to bind glycosaminoglycans and hyaluronan, which reduces their viability
and leads to a decrease in the number of AMs in the lung [50]. It is worth noting that a reg-
ulatory network dominated by LIF-LIFR was found in the tLung network. Recent studies
have implicated LIF-LIFR signaling in playing a key role in tumor growth, progression,
metastasis, stemness and therapy resistance; the LIF-LIFR axis may be considered as a
promising clinical target for cancer therapy [51].

In the comparison of the network of tLung and tL/B, 45 signals of tLung and 38
signals of tL/B were retained. Regulatory links based on five ligands (CCL5, CCL3L3,
CCL3, BMP2, SPP1) were found in Network 4.0 of tLung and tL/B (Figure 5A). The
functional analysis illustrated that the downregulated signals (receptor, TF, target) in tL/B
were related to immune response (e.g., antigen processing and presentation, IL-17 signaling
pathway), and the upregulated targets of tL/B were related to mononuclear cell migration
(Figure 5B and Figure S4D). BMP2 regulates the increased expression of EGR2 through
signal transduction; EGR2 was highly expressed in tL/B and was reported to be a conserved
marker of alternately activated macrophages (M2 macrophages) [52].
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Figure 4. Changes in regulatory networks in nLung and tLung. (A) Gene regulatory network of
distant normal tissue (nLung) and gene regulatory network of early-stage LUAD (tLung). The
network consists of ligand-receptor-TF (transcription factor)-target. (B) The GO function enrichment
analysis results of targets of tLung network.

In conclusion, the construction of the gene regulatory network improves the accuracy
and integrity of deciphering signaling molecules in intercellular communication. In addi-
tion, with respect to the progression of lung adenocarcinoma, the changes in the regulatory
network may be closely related to the changes in macrophage cells. These ligand signals of
tumor cells may be crucial for the occurrence and development of lung adenocarcinoma.
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Figure 5. Changes in regulatory networks in tLung and tL/B. (A) Gene regulatory network of early-
stage LUAD (tLung) and gene regulatory network of advanced-stage LUAD (tL/B). The network
consists of ligand-receptor-TF (transcription factor)-target. (B) Left: the GO function enrichment
analysis results of targets of tLung network. Right: the KEGG function enrichment analysis results of
signals (receptor, TF, target) of tLung network.

3.4. The Signal Changes in the Gene Regulatory Network Are Related to the Change in
Macrophage State

To further verify the relationship between the changes in signaling molecules during
disease progression and macrophage status, we used signal molecules in the gene regu-
latory network as features for the trajectory analysis of macrophage cells. The R package
“monocle” was used to sort individual cells by these signals to construct the tree-like
structure of the entire lineage differentiation trajectory (Figure 6A). Macrophages were
divided into seven states (state 1, 2, 3, 4, 5, 6 and 7). The macrophages in nLung were
dominated by state 3 and state 4; the macrophages in tLung and tL/B were dominated by
state 5 and state 6 (Figure 6B,C). During the development of lung adenocarcinoma, the
proportion of macrophages in states 3 and 4 mainly decreased, while the proportion of
macrophages in states 5 and 6 increased, on the premise that the overall proportion of
macrophages decreased; this means that the immune effector function of macrophages
may be changed (Figure 6C). Further, we mapped macrophage states 3, 4, 5 and 6 in Seurat
and found that states 3 and 4 were concentrated with alveolar macrophages, while states
5 and 6 were concentrated with tumor-associated macrophages (Figure S6D,E). Pathway
analysis indicated that the signaling pathways involved in the antigen processing and
presentation and MHC class II protein complex binding were enriched in state 3 and state
4 (Figure S5A,B). Macrophages, as typical antigen-presenting cells, were enriched in the
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antigen processing and presentation of exogenous peptide antigen via MHC class II [53].
Highly expressed genes in state 6 were related to the response to oxidative stress. Path-
way analysis suggested that cells in state 5 were dependent on negative regulation of the
immune system process (Figure S5C). Furthermore, the aberrantly expressed signaling
molecules in the gene regulatory network were significantly expressed in macrophage state
5 and state 6 (Figure 6D,E). For instance, CD44 expression was downregulated and ADM
expression was upregulated in state 5 and state 6.
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Figure 6. Macrophage trajectory. (A) Pseudotrajectory of macrophages. (B) Pseudotrajectory of
macrophages in source. (C) Proportion of macrophages in different states of the three sources (nLung,
tLung, tL/B). (D) Heatmap shows the gene expression dynamics of branch 3 in the macrophage
group. Genes (rows) of the gene regulatory network are clustered and cells (columns) are ordered
according to the pseudotime development. (E) Heatmap shows the gene expression dynamics of
branch 2 in the macrophage group. Genes (rows) of the gene regulatory network are clustered and
cells (columns) are ordered according to the pseudotime development.

The results of the pseudotime analysis of the macrophages further confirmed that
signal molecules in the regulatory network are key factors affecting the change in the
functional state of macrophages, and the abnormal expression of ligand signals (TIMP1,
VEGFA, TGFB1, LIF, CCL3L3, BMP2, SPP1) in tumor cells may be an important reason for
the transformation of macrophages into an immunosuppressive state.

3.5. The Independent Validation Set of Lung Adenocarcinoma (nLung, tLung and tL/B) Was Used
to Verify the Regulatory Network

To further verify the reliability of the gene regulatory network screening method and
the consistency of signal molecules, we collected an independent lung adenocarcinoma
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single-cell transcriptome dataset as a validation set to construct its gene regulatory network.
In the independent validation set, we found regulatory chains with GAS6, TIMP1, SPP1,
and VEGFA as ligands, which was consistent with our findings above, indicating that these
regulatory relations may be ubiquitous in tumor cells and macrophages (Figure 7A,B). Due
to the small number of cells in the validation set, some signals were not validated. Next, a
survival analysis of the validated ligands revealed that the high expression ligand signals
VEGFA, TIMP1, and SPP1 were significantly associated with a lower chance of survival in
patients with lung adenocarcinoma (Figure 7C). The upregulation of VEGFA can induce
angiogenesis and recruit monocytes to the tumor niche, which are then transformed into
tumor-associated macrophages (TAM) in the tumor to participate in tumorigenesis [54]. The
upregulation of TIMP1 can regulate cell behavior by inducing signaling pathways involved
in cell growth, proliferation and survival [55], and previous studies have found that TIMP1
may be a potential biomarker for the pathogenesis of LUAD [23]. The upregulation of SPP1
can promote the proliferation, migration and invasion of lung cancer cells, and increase the
resistance of lung cancer to cisplatin [56]. Overall, VEGFA-, TIMP1, and SPP1-mediated
regulatory networks may not only be the main cause of macrophage changes, but also these
three signals may be markers of malignant changes in lung adenocarcinoma. Targeting
VEGFA, TIMP1, and SPP1 may be a potential therapeutic strategy for lung adenocarcinoma.
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Figure 7. Validation of regulatory networks. (A) Gene regulatory network of distant normal tis-
sue (nLung) and gene regulatory network of early-stage LUAD (tLung). (B) Gene regulatory net-
work of early-stage LUAD (tLung) and gene regulatory network of advanced-stage LUAD (tL/B).
(C) Kaplan-Meier estimates of overall survival from LUAD patients in TCGA based on ligands
(VEGFA, TIMP1, SPP1).

Next, the same method of cell interaction network construction was applied to lung
squamous cell carcinoma (LUSC), another type of non-small cell lung cancer. We observed
that although the cell composition was similar to that of LUAD, the proportion of cells
varied greatly from that of LUAD during the process of change from healthy to early
to advanced stage, and the proportion of macrophages tended to increase. Further, by
constructing a gene regulatory network for LUSC, we found that there is a common
ligand signal GAS6 in tumor progression, but the target genes regulated by GAS6 are
obviously different.

Altogether, the results of the validation group further verified the accuracy of our gene
regulatory network construction method. The construction of a gene regulatory network is
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feasible for discovering important signals in cell-cell communication, and also provides a
reference for screening the prognostic and therapeutic markers of patients.

4. Discussion

Lung adenocarcinoma is currently the leading cause of cancer death, and survival rates
for lung cancer patients are poor. Lung adenocarcinoma tissues are highly heterogeneous.
Single-cell RNA sequencing (scRNA-seq) analysis can provide a better understanding of
cellular collective behavior and mutual regulatory mechanisms within a tissue ecosystem.
In our study, transcriptional-level sequencing data of more than 135,000 single cells were
collected, and various cell types were analyzed, providing a new perspective for under-
standing the cell composition characteristics and pathogenesis development in the LUAD.

The immune microenvironment of lung adenocarcinoma plays an important role in
the initiation and development of lung adenocarcinoma. We found that the infiltration of
macrophages in the immune microenvironment was significantly decreased with disease
progression, and the function of macrophages was also significantly altered. In addition, we
found, through survival analysis, low infiltration of macrophages is associated with poor
survival in patients. Macrophages are an important part of the immune microenvironment.
As the disease progresses, tumor-associated macrophage (TAM) subtypes play a dominant
role in macrophage cells. TAMs exhibit an immunosuppressive protumor phenotype that
promotes tumor progression, metastasis, and resistance to therapy [57,58]. The current
study found that TAMs not only manipulate cancer cells toward progression and metastasis
but also suppress the immune responses and cause chemoresistance [59]. Therefore, our
results provided a supportive reference for the impact of macrophage cells on the occurrence
and development of LUAD. It is worth noting that T cells (especially CD8 + T cells) play a
very important role in the tumor microenvironment, but when we calculated the proportion
of cells, we found that the proportion of T-cell infiltration did not change significantly
in the lung microenvironment of patients during the process of change from healthy to
early to advanced lung cancer. Moreover, by calculating T-cell immunoinfiltration with
prognostic survival of lung adenocarcinoma patients, no significant relationship was found
between the proportion of T-cell immunoinfiltration and the survival time of patients. We
speculate that the total number of T cells may not have changed, but their function and
composition have changed, based on the following experiment. T cells in normal tissues
highly expressed T-effector cell markers, but tumor-infiltration of LUAD T cells mainly
displayed exhausted and regulatory T-cell features, indicating compromised T-cytotoxic
activity [60]. CD4 + T and regulatory T (Treg) cells associated with immune suppression and
CD8 + exhausted cells were enriched in the LUAD, showing a shift in T-cell composition
and gene expression towards immune suppression during LUAD progression [23].

Cell-cell communication influences cell phenotype and function [61]. At present,
most of the cell-cell communication is ligand-receptor based. The construction of a gene
regulatory network further elaborates the process of signal transmission between cell-
cell communication and improves the integrity of cell-cell communication. In addition,
the analytical methods of different cell-cell communication tools lead to different scores
that are difficult to compare and evaluate. These methods make it difficult to validate
the results [51,56]. We used several cell communication tools to evaluate consistency to
improve the accuracy and confidence of signaling molecules. Based on the regulatory
network analysis, we identified a number of ligands that have important regulatory effects
on macrophage function, for instance, VEGFA, TIMP1, SPP1. It was demonstrated that
TIMP1 could be a potential biomarker for LUAD pathogenesis through a protein fluo-
rescence immunostaining experiment [24], promoting angiogenesis through the VEGFA
signaling pathway and downstream target molecules in LUAD [62]; SPP1 plays a crucial
role in mediating macrophage polarization and lung cancer escape, suggesting that these
molecules are potential therapeutic targets for LUAD [63].

Similar results were obtained in independent verification sets for the regulatory rela-
tionships between the above regulatory molecules. First, we selected the same technical
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platform for (10× genomics) lung adenocarcinoma single-cell data for analysis using the
same process, thereby reducing the error introduced by the different platforms. In the
validation set, VEGFA, TIMP1 and SPP1 were still found to be significantly associated with
the survival of lung adenocarcinoma patients. Both lung adenocarcinoma (LUAD) and
lung squamous cell carcinoma (LUSC) are subtypes of non-small cell lung cancer (NSCLC),
and we then applied the process to the LUSC single cell RNA-seq datasets from 10× ge-
nomics platform. We observed that although there were some similarities between the
different NSCLC subtypes, there is also a great deal of heterogeneity due to their different
tumor microenvironments.

5. Conclusions

In conclusion, the construction of gene regulatory networks provides a comprehen-
sive view of intercellular communication, which not only enhances the understanding of
the molecular integrity of cell communication, but also provides a more credible signal
transmission relationship. Important regulatory molecules (VEGFA, TIMP1, SPP1, etc.)
of macrophages in lung adenocarcinoma were identified by the gene regulatory network
method. Targeting VEGFA, TIMP1, and SPP1 may be potential therapeutic strategies for
LUAD. Our research provides evidence of the tumor ecosystem heterogeneity between
tLung and tL/B, in terms of cell proportion, macrophage developmental trajectories, in
addition to the crosstalk between tumor and macrophages. Moreover, we have illustrated a
strategy for constructing gene regulatory networks based on the cell-cell communication
analysis of single-cell RNA sequencing data. We proved that such regulatory networks
provide robust intercellular regulatory signals in the tumor microenvironment. This strat-
egy may be applied to other cancer studies by single-cell RNA sequencing technology.
The exploration of cell-cell communication by way of gene regulatory networks may
lead to the discovery of novel therapeutic targets and biomarkers of response for current
immunotherapies for LUAD and other cancers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13040671/s1, Figure S1: (A) cell types of nLung, tLung
and tL/B were identified by singleR. (B) Copy number variation of AT1 cell, ciliated cell, club cell,
proliferating cell. The distant normal tissue (nLung) was used as reference, the early-stage LUAD
(tLung), and the advanced stage LUAD (tL/B) were used as observation groups; red represents
overexpression of genes and blue represents low expression. (C) The violin plot tumor markers
of LUAD malignant cells. (D) The heatmap plot the correlation between different epithelial cells.
Figure S2: (A) different percentages of cells in the sample (Patient_id_Source). (B) Box plot of the
cell percentage of different immune cell types in three sources: distant normal tissue(nLung), early
LUAD (tLung), and the advanced LUAD (tL/B). * p. adjust < 0.05, ** p. adjust < 0.01, and ***
p. adjust < 0.001 (t-test). Figure S3: (A) correlation between the proportion of macrophages with
survival rate, orange represents high proportion, green represents low proportion, (M0 macrophage,
p = 0.039; M1 macrophage, p = 0.0013; M2 macrophage, p = 0.12). (B) The GO function enrichment
analysis results of upregulated genes of the early LUAD (tLung) (distant normal tissue (nLung)
as the control), and upregulated genes of the advanced LUAD (tL/B) (early LUAD (tLung) as the
control), p. adjust < 0.05. Figure S4: (A) ligands differentially expressed between nLung and tLung,
(B) downstream signals differentially expressed between nLung and tLung, (C) ligands differentially
expressed between tLung and tL/B, (D) downstream signals differentially expressed between tLung
and tL/B. Figure S5: (A–D) the GO function enrichment analysis results of states 3, 4, 5, and 6
macrophages. Figure S6: (A) the umap plot clusters of macrophages in nLung, tLung and tL/B.
(B) The violin plot tumor-associated macrophage markers of different clusters. (C) The violin plot
alveolar macrophage markers of different clusters. (D) The umap plot cell types of macrophages
in nLung, tLung and tL/B. (E) The umap plot states of macrophages in nLung, tLung and tL/B.
Figure S7: (A) a single-cell atlas of nLung, tLung and tL/B in LUSC. (B) Proportion of cells in nLung,
tLung and tL/B. (C) Changes in regulatory networks in nLung and tLung. (D) Changes in regulatory
networks in tLung and tL/B. Table S1: Clinical information from single-cell transcriptome data of
lung adenocarcinoma patients.
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