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Abstract: Background: Obstructive sleep apnea (OSA) is highly prevalent yet underdiagnosed.
This study aimed to develop a predictive signature, as well as investigate competing endogenous
RNAs (ceRNAs) and their potential functions in OSA. Methods: The GSE135917, GSE38792, and
GSE75097 datasets were collected from the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO) database. Weighted gene correlation network analysis (WGCNA)
and differential expression analysis were used to identify OSA-specific mRNAs. Machine learning
methods were applied to establish a prediction signature for OSA. Furthermore, several online tools
were used to establish the lncRNA-mediated ceRNAs in OSA. The hub ceRNAs were screened
using the cytoHubba and validated by real-time quantitative reverse transcription-polymerase chain
reaction (qRT-PCR). Correlations between ceRNAs and the immune microenvironment of OSA were
also investigated. Results: Two gene co-expression modules closely related to OSA and 30 OSA-
specific mRNAs were obtained. They were significantly enriched in the antigen presentation and
lipoprotein metabolic process categories. A signature that consisted of five mRNAs was established,
which showed a good diagnostic performance in both independent datasets. A total of twelve
lncRNA-mediated ceRNA regulatory pathways in OSA were proposed and validated, including
three mRNAs, five miRNAs, and three lncRNAs. Of note, we found that upregulation of lncRNAs in
ceRNAs could lead to activation of the nuclear factor kappa B (NF-κB) pathway. In addition, mRNAs
in the ceRNAs were closely correlated to the increased infiltration level of effector memory of CD4 T
cells and CD56bright natural killer cells in OSA. Conclusions: In conclusion, our research opens new
possibilities for diagnosis of OSA. The newly discovered lncRNA-mediated ceRNA networks and
their links to inflammation and immunity may provide potential research spots for future studies.

Keywords: obstructive sleep apnea; competitive endogenous RNA; prediction model; inflammation;
WGCNA; immune microenvironment

1. Introduction

Obstructive sleep apnea (OSA), the second most common sleep disorder, is char-
acterized by recurrent episodes of obstruction in the upper airway during sleep that in
turn causes intermittent hypoxia (IH) and sleep fragmentation [1]. Epidemiological evi-
dence showed that approximately over 936 million adults aged 30–69 years had OSA, and
425 million were estimated to be moderate to severely affected [2]. Men were substan-
tially more likely than women to have moderate to severe OSA [3,4]. Patients with OSA
always feel fatigued, have morning headaches, daytime sleepiness during the day, and
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dyslipidemia [5,6]. Without intervention, it causes multiple complications including car-
diovascular disease [7], stroke [8], and Alzheimer’s disease [9], etc., which present huge
socioeconomic burdens to both the individual and society as a whole.

Extensive studies have shown that IH, as a hallmark pathological feature of OSA, leads
to oxidative stress, inflammasome activation, and hyperlipidemia, which contribute to the
development and progression of OSA [10–12]. In addition, genetic factors together with
certain types of environments can influence the development of OSA. Work by our lab and
others has described the strong links between the gene polymorphisms of SLC52A3 [13],
TNF-α [14], and the pathogenesis of OSA. However, OSA is a complex disease with poly-
genic inheritance, and single-gene mutations alone might not fully explain the genesis and
development of OSA [15,16]. More efforts need to be focused on revealing the underlying
mechanisms of OSA. So far, the nocturnal polysomnogram (PSG) [17] is the gold standard
in OSA diagnosis. However, its use is limited due to the number of signals needed to track
the PSG, the cost, the time taken and complexity, which renders early OSA diagnosis and
timely intervention problematic. Therefore, cheaper, easier, and more accessible diagnostic
testing would assist disease management and lower the societal toll of the disease.

Large parts of the human genome produce non-coding RNAs that lack protein-
encoding capabilities such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs),
and various other classes [18]. Among them, miRNAs are transcripts with a length of
19–22 nucleotides in general, which post-transcriptionally regulate gene expression by
binding to specific recognition sites known as miRNA recognition elements (MREs) on
target transcripts [19].While lncRNAs exceed 200 nucleotides in length, they have emerged
as important players in the regulation of gene transcription, splicing, and translation by
directly combining with DNA, RNA, or proteins [20]. Accumulating evidence has demon-
strated that ncRNAs play an important role in various pathological processes and diseases
including OSA. LncRNA XIST was found to be upregulated and contributed to inflamma-
tion in the adenoids of patients with OSA [21]. Several lncRNAs could explain some of the
underlying mechanisms of the cardiovascular damage caused by OSA [22–24]. Addition-
ally, downregulated miR-21-5p was negatively correlated with the apnea–hypopnea index
and oxygen desaturation index in OSA patients [25]. Fernando Santamaria-Martos and
his colleagues showed that the circulating miRNA panel could be a potential biomarker
for OSA diagnosis [26]. However, exploring the characterization of ncRNA molecules and
their functional roles for OSA is still in its infancy, and further efforts are warranted to
elucidate the mechanism underlying them.

Leonardo Salmena et al. proposed the “competing endogenous RNA” (ceRNA) hy-
pothesis in 2011, and, since then, ceRNA-related research has developed rapidly and made
great contributions to revealing the occurrence and development of diseases [27], prog-
nosis [28], and therapeutic response [29]. The ceRNA hypothesis proposes that RNAs,
including messenger RNAs (mRNAs) and ncRNAs, expressed concurrently and with a
similar complement of MREs, are capable of indirectly regulating one another by com-
peting for a shared, limited pool of miRNA molecules [30,31]. In other words, if one
ceRNA (mRNA or lncRNA) increases, it titrates away miRNA from repressing other ones,
and increases expression of another ceRNA (mRNA or lncRNA) in the network. To our
knowledge, there are no studies to date examining the roles of ceRNA in OSA. Therefore,
understanding ceRNA interaction in great depth may explain the mechanisms underlying
OSA pathophysiology.

In this study, for the first time, we constructed the lncRNA-mediated triple regulatory
networks in OSA. We compared the differential expression profiles between OSA and
healthy controls collected from the NCBI GEO database. Weighted gene correlation network
analysis (WGCNA) was performed to screen out key modules and mRNAs associated with
OSA. Afterward, we applied machine learning methods to establish an mRNA signature,
which possesses a good performance in classifying OSA patients and is healthy in both
training and validation sets. Several online databases, Cytoscape software, and quantitative
real-time reverse transcription-polymerase chain reaction (qRT-PCR) experiments were
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used to construct the ceRNA networks in OSA. We also explored the potential regulatory
mechanisms of the ceRNA networks. Of note, hub ceRNA networks showed closely
correlation with the inflammation response and changes in the immune microenvironment
in OSA. We hope this study can provide new avenues for understanding the molecular
mechanisms in OSA.

2. Materials and Methods
2.1. Data Collection and Preprocessing

The mRNA expression profiles of OSA, including GSE135917 [32], GSE38792 [33],
and GSE75097 [34], were compiled from the GEO database using the R package “GEO-
query” [35] (version 2.60.0). The GPL6244 (Affymetrix Human Gene 1.0 ST Array) platform
was used for both GSE135917 and GSE38792 datasets. Studies have shown that continuous
positive airway pressure (CPAP) can alter the expression profiles of OSA patients [36–38],
even returning them to their initial, untreated levels [39]. We were therefore concerned that
including the transcriptome of patients undergoing CPAP treatment may have masked
changes that were strongly linked to the occurrence and development of OSA. So, in this
study, we excluded 24 OSA patients who had followed CPAP treatment in GSE135917
and then merged it with GSE38792. The “removeBatchEffect” function of the limma [40]
package (version 3.48.3) was used to remove the batch effect and ensure homogeneity of
samples. A total of 16 normal controls and 44 OSA patients were included in the merged
data. The GPL10904 (Illumina HumanHT-12 V4.0 expression beadchip) platform was used
for the GSE75097. For our analysis, the “neqc” function of the limma package was used
for background correction and normalization. We also excluded 14 OSA patients who
had followed the CPAP analysis. At the end, 6 normal controls and 28 OSA patients were
included as the validation set.

Next, we collected normalized data of the miRNA expression profile GSE99239 [41]
from the GEO database. It used the GPL19128 (Exiqon miRCURY LNA microRNA array;
7th generation—hsa, mmu & rno (miRBase 18.0)) platform. GSE99239 consisted of 4 normal
controls and 4 OSA patients, and all samples were included in the analysis.

The gene probes in the datasets included in this study were annotated with official
gene symbols. The flowchart and details of data processing are shown in Figure 1.
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2.2. Differential Expression Analysis

To identify differentially expressed genes (DEGs) between OSA patients and controls, the
R package “limma” was implemented. Cut-off criteria were obtained for the merged mRNA
expression data using adj p-value < 0.05 and |log2FC| > 0.58. Differentially expressed miRNAs
(DEmiRNAs) were obtained by using adj p-value < 0.05 and |log2FC| > 2 as the threshold
value. The results of differential expression analysis were displayed by using the R-package
“ComplexHeatmap” [42] (version 2.8.0) and “ggplot2” [43] (version 3.3.5).

2.3. Weighted Gene Co-Expression Network Analysis

The weighted gene co-expression network analysis (WGCNA) is an algorithm that
reveals gene co-expression modules, explores the relationship between gene modules
and external clinical traits, and identifies genes that play key roles in diseases. In this
study, we chose the top 25% of genes with the largest variations in expression profiles
for WGCNA analysis by utilizing the “var” function and the “WGCNA” package [44]
(version 1.70-3). The “hclust” function was used to cluster samples in the merged mRNA
dataset and detect the outlier samples, and the sample GSM949170 was excluded. The
“pickSoftThreshold” function was used to select the appropriated soft powers β to con-
struct the scale-free topology network. Then, we constructed the gene correlations matrix,
adjacency matrix, topological overlap matrix (TOM), and the corresponding dissimilarity
(1-TOM) in turn. A hierarchical cluster tree was built according to the dissimilarity of the
genes (distance = ”Euclidean distance”), and the dynamic tree-cut algorithm approach was
applied using the “cutreeDynamic” function to determine the module of gene co-expression
with values minBlockSize = 50, and MergeCutHeight = 0.15. The module eigengene (ME)
represented the expression profiles of each module, and the correlation between MEs and
clinical traits of interest was calculated. Finally, module membership (MM) and gene
significance (GS) were used to measure the correlation between a single gene and ME or
clinical traits, respectively.

2.4. Functional Enrichment Analysis

To explore the underlying biological functions of the OSA-specific DEmRNAs, the
“clusterprofiler” [45] package (version 4.0.5) in the R software was used to perform Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. With
a threshold value of adj p-value < 0.05 (BH), the enriched GO terms, which included the
biological processes (BPs), cellular components (CCs), and molecular functions (MFs), were
visualized with the cnet plot, and the enriched KEGG pathways were visualized by using
“pathview” [46] package (version 1.32.0).

2.5. Feature Selection, Modeling and Validation

The least absolute shrinkage and selection operator (LASSO) is a commonly used
machine learning prediction method incorporating feature selection. By punishing the
number of variables in the regression model, the coefficient of non-important variables can
be reduced to 0 and then excluded. Random forest (RF) is an integrated machine learning
method that has good robustness to noise data. It uses multiple decision trees for the
joint prediction that can effectively improve the accuracy of the model. These machine
learning methods were implemented with the R packages “glmnet” [47] (version 4.1-2)
and “randomForest” [48] (version 4.6-14). We randomly divided the merged samples into
a training set (80%) and validation set (20%), and the features with non-zero coefficients
by the LASSO algorithm were maintained to generate the RF predictive signature. We
validated the predictive performance of the signature using a 5-fold cross-validation. The R
package “pROC” [49] (version 1.18.0) was used to plot the Receiver Operating Characteristic
(ROC) curve and calculate AUC, which was used to evaluate the predictive accuracy. We
also performed external validation in GSE75097 datasets.
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2.6. Construction of the lncRNA-miRNA-mRNA Regulatory Networks

The lncRNA–miRNA–mRNA network was constructed based on the ceRNA theory
following three steps. (1) The mRNA–miRNA interaction pairs: mRNAs that interact
with DEmiRNAs were predicted by the miRTarBase database [16] (http://mirtarbase.mbc.
nctu.edu.tw, accessed on 24 December 2022, version 9.0), and subsequently intersected
with OSA-specific DEmRNAs. Then, the overlapped mRNAs and corresponding miR-
NAs interaction pairs with negative correlations were kept. (2) The lncRNA–miRNA
interaction pairs: interaction information of miRNA and lncRNA was extracted from the
starBase database [50] (https://starbase.sysu.edu.cn/, accessed on 24 December 2022,
version 2.0) and lncBase database [51] (http://www.microrna.gr/LncBase, accessed on
24 December 2022, version 2.0). To ensure the robustness of the interactions between miR-
NAs and lncRNAs, we took the intersection between these two databases. (3) A lncRNA–
miRNA–mRNA regulatory network was built using a combination of mRNA–miRNA pairs
and miRNA–lncRNA pairs with a continuous targeting relationship, and the network was
mapped and visualized utilizing the Cytoscape software (version 3.8.2, National Institute of
General Medical Sciences (NIGMS), Bethesda, Maryland, USA). Hub factors were pointed
out using cytoHubba [52] (version 0.1), a plugin of the Cytoscape. We calculated the degree
for each node in the ceRNA network through the degree topological algorithm. Hub factors
were defined as the top 15 genes with the highest degrees, and their interaction networks
were regarded as the hub ceRNA networks.

2.7. Correlation Analysis between Hub mRNAs and Immune Characteristics

Single sample gene set enrichment analysis (ssGSEA) relies on a backend deconvolu-
tion method that correlates particular cell types with a set of signature genes. The absolute
enrichment degree of a certain immunocyte is reflected by calculating the enrichment
fraction of each gene set in each sample. We obtained the immune cell infiltration gene
set from the previous literature, and the “GSVA” package [53] (version 1.40.0) was used
for ssGSEA analysis. Correlation between key genes and immune infiltrating cells was
determined by Spearman correlation analysis and visualized with the “ggcor” package [54]
(version 0.9.8.1).

2.8. Validation the Expression of the ceRNA In Vitro
2.8.1. Cell Culture

HEK293T cells were purchased from the cell bank of the Shanghai Institute for Biologi-
cal Sciences (CAS) and cultured in DMEM/high glucose medium with 10% FBS (Invitrogen,
CA, USA), 100 U/mL penicillin, and 100 mg/mL streptomycin (Life Science, Washington,
DC, USA). Cell lines were incubated in standard conditions (37 ◦C, 5% CO2) and tested
negative for mycoplasma contamination.

2.8.2. Chronic Intermittent Hypoxia Protocols

The intermittent hypoxia unit could switch the oxygen concentration in the cabin
according to the settings by using an electronic gas flow meter and a computer-controlled
valve. All units were kept at 37 ◦C in a conventional cell incubator with their gas supply
tubes. In short, cells were divided into two groups: CIH and control. Then, cells were
exposed to CIH conditions (the concentration of O2 lowered from 21% to 0% in 15 min, 5%
CO2/95% N2 for 10 min, reoxygenation in 4 min, 21% O2/5% CO2/75% N2 for 1 min, and
two anoxic cycles per hour) or normoxia conditions (21% O2/5% CO2/75% N2) for 48 h.

2.8.3. RNA Extraction and qRT-PCR

Total RNA was extracted from 293T cells with Trizol Reagent (Invitrogen) according to
the manufacturer’s instructions, and was reversely transcribed with RT reagent Kit gDNA
Eraser (Takara, Kusatsu-shi, Japan). TB Green®Premix Ex TaqTM II (Takara) was applied
to detect cDNA expression levels with β-ACTIN as the internal reference. In addition,
total miRNA was isolated using the EasyPure®miRNA Kit (TransGen, Beijing, China)

http://mirtarbase.mbc.nctu.edu.tw
http://mirtarbase.mbc.nctu.edu.tw
https://starbase.sysu.edu.cn/
http://www.microrna.gr/LncBase
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following the manufacturer’s protocol. The miRNA expression analysis was performed
using TransScript® Green miRNA Two-Step qRT-PCR SuperMix (TransGen) with U6 as the
internal reference. Real-time PCR was performed on the LightCycler System 2.0 (Roche,
Mannheim, Germany) at a temperature of 95 ◦C for 30 s, followed by 40 cycles with a
temperature of 95 ◦C for 5 s, and 60 ◦C for 30 s. The primers are shown in Supplementary
Table S1. All experiments were repeated three times and the relative gene expression was
calculated by the 2-∆∆Ct method.

2.9. Statistical Analysis

Data are expressed as the mean ± SEM. Differentially expressed nodes in the hub
ceRNAs between normal and CIH groups were compared using the Student’s t-test. Graph-
Pad Prism software (version 9.0.0, Dotmatics, Boston, MA, USA) was used to generate
graphics. All statistical analyses were performed using R software (version 4.0.2., Free
Software Foundation, Boston, USA), and all analyses were conducted using two-tailed
testing, with p < 0.05 being considered statistically significant.

3. Results
3.1. Differential Expression Analysis between Controls and OSA Patients

The flowchart of this article is shown in Figure 1. Using adj p-value < 0.05 and
|log2FC| > 0.58 as the threshold, we identified 86 DEmRNAs between the controls and OSA
patients, of which 59 mRNAs were upregulated and 27 were downregulated. The volcano
plot and heatmap of the DEGs are shown in Figure 2A,C. Next, with adj p-value < 0.05 and
|log2FC| > 2 as the screening threshold, we obtained 109 significantly expressed miRNAs
between the controls and OSA patients, which consisted of 63 upregulated miRNAs and
46 downregulated miRNAs. The volcano plot and heatmap were carried out to illustrate
the results of differential expression analysis (Figure 2B,D).
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Figure 2. Volcano plots and heatmap plots of DEmRNAs and DEmiRNAs. (A) Volcano plot of
DEmRNAs (126 controls vs. 119 OSA patients). The threshold set as the adj p-value < 0.05 and
|log2FC| > 0.58. (B) Volcano plot of DEmiRNAs (4 controls vs. 4 OSA patients). The threshold set
as the adj p-value < 0.05 and |log2FC| > 2. Green nodes indicate differences in OSA differentially
downregulated, red nodes indicate mRNAs differentially upregulated in OSA. (C) Heatmap of the
top 35 DEmRNAs with lowest adj p-value. (D) Heatmap of the top 35 DEmiRNAs with lowest adj
p-value. Red means high expression, and blue means low expression. Each column represents a
sample, and each row represents a gene.
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3.2. Identification of the Key Modules in OSA

The dendrogram was used to cluster samples in the merged mRNA dataset and detect
the outlier samples (Figure 3A). In summary, a total of 44 OSA patients and 15 normal
controls were included in the WGCNA analysis. We chose the soft-thresholding power
β = 10 with scale-free R2 > 0.85 to establish a scale-free co-expression network (Figure 3B).
Thirteen co-expression modules were identified through the hierarchical clustering method,
and each module had over fifty genes in it (Figure 3C). Then, the correlation between mod-
ules and OSA was evaluated. The results showed that the brown (r = 0.53, p = 2 × 10−5),
green–yellow (r = 0.48, p = 1 × 10−4), magenta (r = 0.53, p = 2 × 10−5), black (r = 0.35,
p = 0.006), and yellow (r = 0.52, p = 3 × 10−5 ) modules were positively correlated with
OSA, and the green module (r = −0.35, p = 0.006) was negatively correlated with OSA
(Figure 3D). Among them, the brown module (r = 0.53, p =2 × 10−5) and magenta module
(r = 0.53, p = 2 × 10−5), which included 568 genes and 526 genes, respectively, appeared to
have the strongest link to OSA. Therefore, the brown and magenta modules were selected
for further analysis. Correlations between module memberships and the gene significance
for OSA are illustrated in the scatter diagram.
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and heatmap of the clinical trait. (B) Soft threshold powers analysis. The red line corresponds to 0.85.
(C) Clustering dendrogram of the gene modules. Different colors represent different gene modules,
and gray modules are made up of genes that do not belong to any of the modules. (D) The relationship
between clinical traits and gene modules. Each cells contains the correlation coefficient (upper
number) and the corresponding p-value (lower number). (E) The scatterplot of gene significance and
module memberships in the magenta module (left) and the brown module (right).
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3.3. Functional Enrichment Analysis for OSA-Specific mRNAs

We intersected 86 DEmRNAs with genes in the selected brown and magenta modules,
and, as a result, 30 OSA-specific DEmRNAs were obtained (Figure 4A). Subsequently, these
overlapped genes were subjected to perform GO and KEGG analyses to investigate their
potential biological functions. The results showed that GOBPs relating to antigen pro-
cessing and presentation, lipoprotein metabolic process, and glycosylphosphatidylinositol
(GPI) biosynthesis were significantly enriched (Figure 4B), indicating that immune and
lipoprotein metabolic dysregulation is involved in the development of OSA. MF annotation
revealed that the GOMFs were related to several enzyme activities (Figure 4C). Additionally,
KEGG analysis suggested that the GPI-anchor biosynthesis pathway plays an important
role in OSA.
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indicated as significantly higher (red), unchanged (gray), or lower (green). The differences of
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and normal controls.

3.4. Construction of the mRNA Signature and Validation

To explore whether OSA-specific mRNAs with the potential predictive value in pre-
dicting OSA, the machine learning methods were used to construct the predictive signature.
LASSO was performed on the OSA-specific DEmRNAs for feature selection and dimension
reduction, allowing irrelevant genes to be eliminated (Figure 5A,B). It was found that
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five DEmRNAs were crucial for OSA, including PTPN22, FAM200B, DYNLL1, FRZB, and
TOMM22. Then, the RF signature was built based on these five genes with 1000 trees
(Figure 5C). The %IncMSE and IncNodePurity indexes were calculated to measure the
importance of variables. The results showed that PTPN22 was the most important variable
in the model (Figure 5D). The ROC curve illustrated that the mRNA signature possessed
a good performance in classifying OSA patients and was healthy in both the training set
(AUC = 0.909) and validation set (AUC = 0.792) (Figure 5E,F).

Biomolecules 2023, 13, x FOR PEER REVIEW 10 of 21 
 

 
Figure 5. Construction of the predictive model for OSA. (A) LASSO coefficient profiles of OSA-
specific genes. (B) 10-fold cross-validation for tuning parameter selection in the LASSO regression. 
(C) Correlations between the related errors and the number of decision trees. (D) The scatter plot of 
the RF variables based on the percentage of increase of mean square error (%IncMSE) (left) and the 
percentage of increase in node purity (%IncNodePurity) (right), respectively. (E, F) The prediction 
efficacy of RF model was evaluated by the ROC curve and AUC value based on the training set (E) 
and validation set (F). 

3.5. Construct CeRNA Regulatory Networks 
To identify mRNA–miRNA–lncRNA (ceRNA) networks in OSA, we used several 

online databases. A total of 6176 mRNAs predicted for 109 DEmiRNAs were acquired by 
using the miRTarBase database. Among them, 11 mRNAs and their interactions were se-
lected based on the intersection with the 30 common DEmRNAs mentioned above. Fur-
thermore, according to the theory of ceRNA, the candidate mRNA–miRNA interaction 
pairs in the ceRNA network should be negatively correlated. Therefore, we filtered the 
interaction network based on the expression profiles. From these, only 15 mRNA–miRNA 
pairs, including 6 DEmRNAs (upregulated) and 9 DEmiRNAs (downregulated), were left. 
These 9 DEmiRNAs were selected for further analysis, and the miRNA–lncRNA interac-
tion pairs were obtained by the overlapped results of the prediction from starBase and 

Figure 5. Construction of the predictive model for OSA. (A) LASSO coefficient profiles of OSA-
specific genes. (B) 10-fold cross-validation for tuning parameter selection in the LASSO regression.
(C) Correlations between the related errors and the number of decision trees. (D) The scatter plot of
the RF variables based on the percentage of increase of mean square error (%IncMSE) (left) and the
percentage of increase in node purity (%IncNodePurity) (right), respectively. (E, F) The prediction
efficacy of RF model was evaluated by the ROC curve and AUC value based on the training set (E)
and validation set (F).
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3.5. Construct CeRNA Regulatory Networks

To identify mRNA–miRNA–lncRNA (ceRNA) networks in OSA, we used several
online databases. A total of 6176 mRNAs predicted for 109 DEmiRNAs were acquired
by using the miRTarBase database. Among them, 11 mRNAs and their interactions were
selected based on the intersection with the 30 common DEmRNAs mentioned above.
Furthermore, according to the theory of ceRNA, the candidate mRNA–miRNA interaction
pairs in the ceRNA network should be negatively correlated. Therefore, we filtered the
interaction network based on the expression profiles. From these, only 15 mRNA–miRNA
pairs, including 6 DEmRNAs (upregulated) and 9 DEmiRNAs (downregulated), were left.
These 9 DEmiRNAs were selected for further analysis, and the miRNA–lncRNA interaction
pairs were obtained by the overlapped results of the prediction from starBase and lncBase
databases (starBase database: 9 miRNA, 496 lncRNA, and 651 interaction pairs; lncBase
database: 9 miRNAs, 109 lncRNAs and 165 interaction pairs), including 9 DEmiRNAs and
29 lncRNAs. Finally, the lncRNA-mediated ceRNA networks consisting of 6 DEmRNA
nodes, 9 DEmiRNA nodes, 29 lncRNA nodes, and 100 interaction pairs were constructed
(Figure 6A). We also visualized the chromosomal position of the nodes in the ceRNA
regulatory network (Figure S2).
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3.6. Identification of Hub CeRNA Networks

To trace hub ceRNA networks, we used cytoHubba, a plugin of Cytoscape software,
to calculate degree values for each node. The top 15 identified hub factors included three
mRNAs (OTUD4, RRN3, and ZNF117), seven miRNAs (hsa-miR-142-5p, hsa-miR-455-3p,
hsa-miR-32-5p, hsa-miR-31-5p, hsa-miR-455-5p, hsa-miR-218-5p, and hsa-miR-3609) and
five lncRNAs (KCNQ1OT1, NEAT1, XIST, OIP5-AS1, and ZNF561-AS1). Hub factors
and their interactions are demonstrated in Figure 6B. The networks consist of 15 nodes
and 30 edges, and different colors represent the degree of the hub factors. We further
explored the expression level of the hub factors. As we can see, OTUD4, RRN3, and
ZNF117 were upregulated in the OSA patients (Figure 7A–C), while hub miRNAs were all
downregulated (Figure 7D–J). Since lncRNAs are based on predicted results, information
relevant to expression was not available.
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1 
 

 

Figure 7. Expression analysis of the hub ceRNA networks. (A–J) The expression pattern of the nodes
in the key ceRNA networks in OSA patients and normal controls. Mann–Whitney U test. * p < 0.05;
** p < 0.01; *** p < 0.001.

3.7. Validation of Expression Levels of Hub CeRNA Networks In Vitro

To verify the results of our bioinformatics analysis, we performed qRT-PCR. Cells
treated with chronic intermittent hypoxia (CIH), which mimics the hypoxic condition
during OSA, are the commonly used in vitro model for OSA (Figure 8A). As expected,
compared with the control, significantly upregulated OTUD4, RRN3, and ZNF117 were
observed in the CIH group (Figure 8B), while all the miRNAs in the ceRNA networks’
expression levels were significantly lower (Figure 8C). As for the lncRNAs, we found that
KCNQ1OT1, XIST, and OPI5-AS1 were significantly upregulated, and only the ZNF561-AS1
was downregulated in the CIH group (Figure 8D), while lncRNA NEAT1 did not reach
the significance level. According to the ceRNA theory, we removed ZNF561-AS1, NEAT1,
and their interaction pairs. Finally, we proposed twelve ceRNA regulatory pathways in
OSA, including four ZNF117-mediated (ZNF117-hsa-miR-455-3p-XIST, ZNF117-hsa-miR-
455-3p-KCNQ1OT1, ZNF117- hsa-miR-455-5p-OIP5-AS1, and ZNF117-hsa-miR-455-5p-
KCNQ1OT1), four RRN3-mediated (RRN3-hsa-miR-3609-KCNQ1OT1, RRN3-hsa-miR-32-
5p-XIST, RRN3-hsa-miR-32-5p-OIP5-AS1, and RRN3-hsa-miR-32-5p-KCNQ1OT1), and four
OTUD4-mediated (OTUD4-hsa-miR-455-3p-XIST, OTUD4-hsa-miR-455-3p-KCNQ1OT1,
OTUD4-hsa-miR-31-5p-XIST, and OTUD4-hsa-miR-31-5p-KCNQ1OT1) ceRNA networks,
respectively (Figure 8E). Their potential interaction sites are presented in Figure S3.
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3.8. CeRNA Networks Related to Inflammation and Immune Characteristics of OSA

We further interrogated the potential molecular mechanisms of the ceRNA networks.
Intriguingly, upregulation of all three lncRNAs in the ceRNA networks was closely cor-
related with cell apoptosis and the inflammatory response [55–58], as they had been
reported to increase the expression level of NF-κB (Figure 9), indicating NF-κB pathway
activation in OSA. GO analysis in this study suggested that OSA was closely correlated
with altered immune function. Therefore, we performed correlation analysis for hub mR-
NAs with infiltrating immunocytes (Figure 10A). Of note, we found that hub mRNAs
ZNF117 (r = 0.69, p = 1.4 × 10−9), RRN3(r = 0.67, p = 4.5 × 10−9), and OTUD4 (r = 0.6,
p = 4.5 × 10−7) were most positively correlated with the abundance of effector memory
CD4 T cells (Figure 10B–D). In addition, the level of immune infiltration of effector memory
CD4 T cells in OSA was elevated (Figure 10E). In addition, OTUD4 (r = 0.56, p = 3 × 10−6)
was significantly correlated with CD56bright natural killer cell infiltration (Figure 10F). The
number of CD56bright natural killer cells was also higher in OSA patients (Figure 10G). The
result of correlation analysis demonstrated that an increased number of memory CD4 T
cells and CD56bright natural killer cells infiltrated in OSA, which was closely influenced by
the expression of mRNAs in the hub ceRNAs.
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Figure 10. Relationship between hub mRNAs and the immune characteristics of OSA. (A) The
complex correlation heatmap demonstrated correlations between hub mRNAs and the immunocytes
as well as relationships between immunocytes. (B–D) Scatterplots of the correlations between RRN3
(B), OTUD4 (C), ZNF117 (D), and effector memory CD4 T cells. (E) The infiltration level of effector
memory CD4 T cells in OSA patients and normal controls. (F) Scatterplots of the correlations between
OTUD4 and CD56bright natural killer cells. (G) The infiltration level of CD56bright natural killer cells
in OSA patients and normal controls. Mann–Whitney U test. * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001.
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4. Discussion

It is estimated that a large number (> 80%) of adults with moderate-to-severe OSA
remain undiagnosed [59]. Due to its serious complications, OSA drastically affects patient
health and quality of life, as well as raises all-cause mortality. OSA diagnosis is still largely
dependent on the clinical symptoms and nocturnal PSG, which leads to a low diagnostic
rate of OSA. In the case of late diagnosis, first-line treatment for OSA such as nasal CPAP
has limited effects on reversing neurocognitive damage [60]– [61,62]. Therefore, there is a
need for novel screening methods that are inexpensive and capable of detecting OSA to
reduce the burden on patients. However, it is a challenge since there is limited knowledge
about the occurrence and development of OSA. Recently, the role of the genome and
transcriptome in determining disease diagnosis and pathogenesis has become increasingly
clear. NcRNAs have been shown to be involved in the occurrence and development of
many diseases including OSA. Few studies, however, have examined whether ceRNA
networks are related to OSA. Consequently, it is worthy of further study.

In this study, firstly, we systematically investigated the expression patterns of OSA
patients. A total of 86 DEmRNAs and 109 DEmiRNAs were identified in normal controls
and OSA patients. Meanwhile, we subjected an mRNA expression profile to WGCNA
analysis, which can explore the key gene modules that are mostly related to the disease.
Two modules with 1094 genes were most significantly associated with OSA. To make results
more reliable, the OSA-specific mRNAs were defined as the intersecting mRNAs of these
two approaches. Finally, 30 OSA-specific DEmRNAs were collected to further analysis.

To further evaluate the potential functions of the OSA-specific DEmRNAs, we per-
formed the GO and KEGG analysis. The results showed that the “lipoprotein metabolic
process” was significantly enriched. This is consistent with the previous points of view
that OSA patients have dyslipidemia. Low-density lipoprotein cholesterol (LDL-C)/high-
density lipoprotein cholesterol (HDL-C) increases in proportion to the severity of OSA, and
may contribute partly to an increased risk for cardiovascular events in OSA patients [6].
In addition, CIH may be to blame for this aberrant lipid metabolism [12]. In addition,
the “antigen processing and presentation” category was also enriched, corresponding to
the previous results in the literature that “immunity and inflammation” were some of the
largest biological processes upregulated in OSA [32]. The antigen presenting cells (APCs)
turned out to be dendritic cells and macrophages, which play an important role in the
immune response including innate and adaptive immunity. In fact, the polarization of
macrophages and CD8+ T cells changed in CIH mouse models [63,64]. Moreover, Enrique
Hernández-Jiménez found that hypoxic severity in OSA patients was linked to the polar-
ization of monocytes and compromised activity of natural killer cells [65]. Min Sun and
his colleagues showed that the monocyte-to-HDL-cholesterol ratio could be a marker of
the presence and severity of obstructive sleep apnea in hypertensive patients [66]. More
studies are needed to draw the map of the complex correlations between OSA and APCs in
the future.

Next, five selected genes, including PTPN22, FAM200B, DYNLL1, FRZB, and TOMM22,
were used to construct a signature through machine learning methods, which have good
diagnostic accuracy in both cross-validation and external verification. Among them, a
previous study showed that FRZB, which is involved in the signaling pathway, was down-
regulated in the placentae from women with obesity and obstructive sleep apnea [67].
However, there are no reports on the relationship between the other diagnostic genes and
OSA. We hope that our research can provide directions for future experimental research
revealing the potential mechanisms underlying OSA.

In the following part of our study, the lncRNA-mediated ceRNA networks were estab-
lished according to the ceRNA theory, and qRT-PCR testing made our results more credible.
A total of nineteen novel ceRNA pathways were identified, including four lncRNAs, six
miRNAs, and three mRNAs. Although lncRNAs do not encode for proteins, they partici-
pate in various biological processes. LncRNA XIST was upregulated in the adenoids of OSA
patients, which contributed to the inflammation by decreasing the expression of GRα and
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increasing the production of several inflammatory cytokines [21]. The relationship between
OIP5-AS1 and cancer has been widely studied. It is plausible that it may play distinct roles
(cancer-promoting or anti-cancer), depending on the types of cancers [68–70]. Experiments
showed that upregulation of OIP5-AS1 was closely related to the acceleration of cell apop-
tosis and the inflammatory response [71,72]. NEAT1 is widely expressed in mammalian cell
types, and is overexpressed in several inflammation-related disorders [73,74]. In the acute
kidney injury mouse model, KCNQ1OT1 was highly expressed, and knockdown of the
KCNQ1OT1 promoted cell proliferation and prevented apoptosis and inflammation [75].
NF-κB, a member of the Rel protein family, is present in almost all types of cells. Accumu-
lating evidence has demonstrated its intricacy in regulating genes involved in cell growth
and division, as well as apoptosis, hypoxia, stress, and the immune system. Interestingly, a
large body of literature reports that upregulated expression of the lncRNAs in hub ceRNA
networks causes the same event, i.e., upregulation of the NF-κB, through distinct molecular
mechanisms [55–58]. As is well known, CIH in OSA patients can cause oxidative stress,
systemic inflammation, and NF-κB-dependent inflammatory pathway activation [33,76],
which is the potential pathogenesis of complications such as diabetes mellitus and cardio-
vascular disorders [77,78]. Based on these findings, we, therefore, speculated that the hub
ceRNA networks may participate in the occurrence and development of OSA by regulating
the activity of the NF-κB pathway and the inflammatory response. Further verification via
experimentation and clinical studies is needed to support this hypothesis.

Inflammation and immunity are closely linked, and immune dysregulation in patients
with OSA has been a matter of concern for decades. We explored whether the hub ceRNAs
were associated with the alternation of the immunocyte infiltration in OSA. Of note, we
found that OTUD4, RRN3, and ZNF117 in the ceRNAs were closely correlated with the
infiltration memory CD4 T cells (r > 0.6, p < 0.05). In addition, OTUD4 was positively
associated with the CD56bright natural killer cells, suggesting they may play an important
role in the development of immune dysregulation in OSA. Previous studies have shown that
there is a significantly elevated infiltration of CD4+ T cells and NK cells, irrespective of age,
in patients with OSA [79–81]. Elias A Said et al. suggested that the frequency CD4 T cells
but not NK cells in OSA are associated with an increased expression of the nuclear protein
Ki67 [82]. Distinct subtypes of immunocytes carry out different functions, and, though
there have been numerous studies to unravel the changes of immune responses in OSA,
few studies have examined sub-components of the immune system. Therefore, our study’s
newly discovered lncRNA-mediated ceRNA networks and their links to inflammation and
immunity may provide potential research spots for future studies.

To the best of our knowledge, this is the first time ceRNA networks have been intro-
duced in OSA. However, we still have some limitations in this study. Firstly, although we
carried out internal and external verification on the diagnostic model, the effectiveness of
the diagnostic model must be confirmed in as many datasets as possible in the future. In
this study, obviously, we used all the datasets available for OSA. Secondly, we confirmed
the expression of the hub ceRNAs in the HEK293 cell lines using qRT-PCR, but there is
still a need to confirm the results in multiple tissue-derived cell lines, animal experiments,
or clinical patients. Additionally, more direct experimental support than that presented
is still needed to determine whether the NF-κB pathway is involved in the mechanism of
the ceRNA networks leading to OSA, and whether sub-immunocytes are changed in the
OSA patients.

5. Conclusions

In this study, we evaluated the mRNA and miRNA expression patterns in OSA and
explored the potential molecular mechanisms using bioinformatics. Furthermore, we estab-
lished a signature using machine learning methods, which showed a good diagnostic per-
formance for OSA. More importantly, we firstly constructed ten lncRNA–miRNA–mRNA
regulatory networks and verified them in vitro. These may be involved in unrecognized
mechanisms of inflammation and immunoregulation for OSA. Our findings provide fresh
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insights into the genetic and pathogenic mechanisms, laying the foundations for developing
new diagnostic and therapeutic methods for OSA patients.
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The predicted miRNA binding sites of the ceRNA networks were identified by the miRanda database;
Table S1: qRT-PCR primer list.
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