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Abstract: The 70 kDa heat shock proteins (HSP70s) are a group of highly conserved and inducible
heat shock proteins. One of the main functions of HSP70s is to act as molecular chaperones that are
involved in a large variety of cellular protein folding and remodeling processes. HSP70s are found to
be over-expressed and may serve as prognostic markers in many types of cancers. HSP70s are also
involved in most of the molecular processes of cancer hallmarks as well as the growth and survival
of cancer cells. In fact, many effects of HSP70s on cancer cells are not only related to their chaperone
activities but rather to their roles in regulating cancer cell signaling. Therefore, a number of drugs
directly or indirectly targeting HSP70s, and their co-chaperones have been developed aiming to treat
cancer. In this review, we summarized HSP70-related cancer signaling pathways and corresponding
key proteins regulated by the family of HSP70s. In addition, we also summarized various treatment
approaches and progress of anti-tumor therapy based on targeting HSP70 family proteins.

Keywords: HSP70; cancer; signaling pathway; treatment

1. Introduction

The history of the first discovery of heat shock proteins (HSPs) can be dated to 1962
in Ferruccio Ritossa’s lab. They found a “puffing pattern”, which indicated elevated gene
transcription of some unknown proteins after a colleague accidentally raised the incubation
temperature of Drosophila [1]. In the next two decades, several studies further demon-
strated that the main function of these “unknown proteins” is to protect cells from various
non-lethal heat shock or other stimuli [2–6]. Based on these results, this phenomenon was
described as the “Heat Shock Response”, and the translated unknown proteins were termed
“heat shock proteins” [7]. A group of 70 kDa proteins were initially classified as the HSP70
family according to their molecular weight. However, with the development of sequencing
technology, some genes with similar sequence structure were also included in the HSP70
family, which brings to a total of 13 homologues of the HSP70 family in homo sapiens
currently [8]. The main function of HSP70 consists of two parts. First, the house-keeping
activities contain de novo protein folding, protein translocation across membranes, disas-
sembly of protein complexes, and regulation of protein activities. Second, the stress-related
activities maintain protein stability under stressful situations, including the prevention
of protein aggregation, disaggregation, refolding, and degradation [9]. Molecular mecha-
nisms and working principles of the HSP70 network were reviewed in detail in Ref [9,10].
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Notably, dysregulation of the HSP70 network results in important consequences in multiple
aspects of cancer development and progression [11,12]. Multiple studies have already
revealed that expression of HSP70 at a higher level was detected in many cancer types and
associated with poor prognosis, recurrence, and treatment resistance [13–17]. Therefore,
research on the role of HSP70 in tumors, such as its binding site, substrate proteins, and
related pathways, is in continuous progress, and relevant research on potential therapies
is also underway. In this review, we first summarized common cancer related signaling
pathways regulated by the HSP70 family proteins such as the RTKs-RAS-RAF-MEK-ERK
pathway, the PI3K/AKT/mTOR pathway, and key proteins of other signaling pathways, in
a direct or indirect manner. In addition, we also summarized HSP70-based monotherapy,
combination therapy, HSP70 as an adjuvant in cancer vaccine therapies, and related clinical
trials.

2. HSP70 Family: Family Members, Common Structure, and Basic Function

The human HSP70 family has 13 homologues [18]. We searched their official name,
aliases, cell location, and other basic information from HUGO Gene Nomenclature Com-
mittee (HGNC), National Center for Biotechnology Information (NCBI), and The Human
Protein Atlas database. Related information was summarized in Supplementary Table S1.

The HSP70 family is a group of highly conserved molecules in both prokaryotes and
eukaryotes [19,20]. A typical HSP70 domain structure consists of the following components
and annotates in Figure 1. The nucleotide-binding domain (NBD), located in the N-terminal
of HSP70, is composed of four subdomains (IA, IB, IIA, IIB) and is arranged into two
lobes separated by a deep cleft in the middle [9,18]. The main function of the NBD
domain is to bind and hydrolyze ATP to control the lobe movements [21,22]. A highly
conserved hydrophobic linker, which is essential for the NBD conformational changing
when ATP binds to NBD, connects NBD with the C-terminal substrate-binding domain
(SBD) [19–21,23]. The SBD can be further divided into two functional parts, a N-terminal
β-sheet subdomain (SBDβ) and a C-terminal α-helical subdomain (SBDα). SBDβ is built
up by an eight-stranded β-sandwich constituted of a substrate binding groove, and SBDα

is built up by α-helixes which act as a flexible lid [24]. The function of SBD is closely related
to the state of ATP/ADP binding to NBD. When ATP binds to NBD, the interdomain
linker and SBDα/β work together on NBD conformational changing, making the NBD
unsuitable for ATP hydrolysis [25]. After substate binding to the hydrophobic pocket
of SBDβ, the SBDα/β are released from NBD, resulting in the recovery of NBD ATPase
activity [25,26]. The SBDα lid is then closed to prevent substrate dissociation [24,27]. When
NBD switches to the ADP binding state, the SBD binds to substrates with a high affinity
and slow association and dissociation rates [9]. The release of substrates is also based on
the conformational changes of HSP70 when recombined with ATP [9]. Furthermore, a
disordered tail, located behind the SBD, contains an EEVD (Glu-Glu-Val-Asp) motif that
interacts with specific cofactors to fulfil HSP70 functions [28–30]. The HSP70 chaperones
are required to work with other co-chaperones to carry out its full function cycle [9,10]. The
two most important co-chaperones are HSP40, also known as J-domain proteins (JDPs), and
nucleotide exchange factors (NEFs) [31,32]. In general, JDPs deliver substrates to HSP70
and stimulate the ATPase domain, whereas NEFs induce substrate release and rebinding of
ATP.
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Figure 1. Schematic diagram of HSP70 structure domain. A typical HSP70 domain structure consists
of NBD, linker, SBD, and a disordered tail. NBD binds and hydrolyzes ATP to control the lobe
movements. Linker is essential for the NBD conformational changing. SBD has two functional parts
and works together on substrate binding. The disordered tail interacts with specific cofactors to fulfil
HSP70 functions. Nucleotide-binding domain (NBD). Substrate-binding domain (SBD).

3. HSP70 Regulates Multiple Cancer Related Signaling Pathways

HSP70 participates in wide range of cancer development and progression through dys-
regulating multiple cancer-related signaling pathways. In this review, we summarized the
function of HSP70 in frequently altered oncogenic signaling pathways in cancer (Figure 2).
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Figure 2. Schematic diagram of cancer related signaling pathways regulated by HSP70s. HSP70
family members regulate important phenotypes such as tumor cell survival and proliferation by
regulating a variety of key proteins in cancer-related signaling pathways.

3.1. RTKs-RAS-RAF-MEK-ERK Pathway

Receptor tyrosine kinases (RTKs) are important receptor proteins on the tumor cell
membrane that initiate activation of cancer signaling pathways. Much evidence implicates
the role of HSP70 in regulating a variety of RTKs. Epidermal growth factor receptor (EGFR)
could be activated by extracellular HSPBP1 and HSPA1A/B in a synergistically way [33].
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Secreted HSPA5 also activated EGFR signaling and conferred the resistance of hepatocellu-
lar carcinoma (HCC) cells to sorafeinib [34]. Mechanically, it promoted phosphorylation
and activation of insulin-like growth factor I receptor (IGF-IR) to facilitate cell proliferation
and migration [35]. HSPA1A/B assisted folding of oncogenic nucleophosmin–anaplastic
lymphoma kinase (NPM-ALK) in anaplastic large-cell lymphomas (ALCLs) and maintained
its malignant phenotype [36,37]. Moreover, it played an essential role in Her2-induced
mammary tumorigenesis in which HSP72-depleted cells caused cellular senescence and
failed to induce neoplastic transformation [38]. Additionally, HSP70 can exert its influence
on the RAS pathway by regulating KRAS. HSPA5 haploinsufficiency suppressed both
KRAS(G12D)-driven pancreatic and lung tumorigenesis [39]. Furthermore, knockdown of
HSPA5 via siRNA reduced the oncogenic KRAS protein level in various KRAS mutated
cancers [40–42]. HSP70 inhibited the downstream signaling molecules of RAF [43]. Bag1
was bound to and activated Raf-1, subsequently activating the downstream extracellular
signal-related kinases (ERKs) [43]. However, HSP70 may compete for binding to Bag1,
which indirectly leads to the inhibition of RAF activation [43]. The downstream signaling
molecules of MEK were inhibited by HSPA9, which facilitated protein phosphatase 1α
(PP1α)-mediated MEK1/2 dephosphorylation by promoting the interaction of MEK1/2
with PP1α in an ATP-sensitive manner [44]. Though lots of evidence showed that the HSP70
family, especially HSPA5, indirectly promoted the expression of ERK, whether HSP70 has a
direct effect on ERK still remains unclear and needs to be further explored [45–52]. Never-
theless, the majority of studies suggest that HSP70 plays an activating role in regulating
the RTKs-RAS-RAF-MEK-ERK signaling pathway.

3.2. PI3K/AKT/mTOR Pathway

The PI3K/AKT/mTOR pathway is activated in a wide type of cancers, leading to
tumor proliferation and therapeutic resistance [53]. HSP70 induces PI3K activation in
many cancer types [45,54–57]. Overexpression of HSPA5 promoted PIP3 formation and
PI3K activation through forming a complex with PI3K [58]. Using an inhibitor or mono-
clonal antibody of HSPA5 can inhibit the PI3K pathway and suppress tumor growth and
metastasis [57,59]. Besides, knock-out HSPA5 in PTEN-null background suppressed the
activation of PI3K downstream protein AKT in a variety of disease models [60–62]. HSPA9
also facilitated PI3K/AKT signaling, thus promoting cancer progression [61,63].

HSP70 generally tends to promote AKT [57,61,63]; however, in some circumstances it
may interfere with AKT. The arginylated form of HSPA5 binds with fully ubiquitated AKT
(K284 to K214) and induces AKT degradation via the autophagy-lysosome pathway [64].
The PI3K signaling pathway regulated by HSP70 can be transmitted to mTOR in most
circumstances [59,65]. However, Ryu et al. showed that HSP70 comes into contact with
Rheb and inhibits the mTORC1 signaling pathway [66]. However, the evidence of how
HSP70 inhibits the mTORC1 signaling pathway is lacking. Therefore, we concluded that
HSP70 tends to promote the PI3K/AKT/mTOR signaling pathway in general.

3.3. Effect of HSP70 on Key Proteins of Other Signaling Pathways

P53
The effect of HSP70 on p53 function was initially controversial. Some studies claimed

that HSP70 was preferred to maintain the stability of p53-wild type (WT) at higher temper-
atures and support its DNA-binding [67–69]. Furthermore, the mutant p53 protein half-life
can be increased by HSP70- and MDM2-dependent protein co-aggregates [70]. On the
contrary, others found that HSP70 could sequester p53 in the cytoplasm and negatively
regulated its stability [71,72]. These contradictory results make the role of HSP70 confusing
with regard to regulating the function of p53 protein. Until recently, two independent teams
both demonstrated that HSP70 inactivated p53 at physiological temperatures by unfolding
p53. Boysen and colleagues found that HSP70, together with J-domain protein Hdj1 and
ATP, increases local unfolding in both WT and mutant p53-DNA binding domain and
dissociates p53 from DNA by binding to its DNA binding loop [73]. This was also proved
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by Dahiya and colleagues that HSP70 inactivates WT-p53 at physiological temperatures
by unfolding it. The above two independent team unanimously pointed out that it was
HSP90 not HSP70 that promotes the folding of the p53 protein in an ATP-dependent man-
ner [74]. Thus, the HSP70 and HSP90 chaperone systems assume complementary functions
to optimally balance conformational plasticity with p53 conformational stability [73,74].
Based on these results, HSP70 itself tends to negatively regulate both WT and the mutant
p53 protein.

β-catenin
Lots of evidence suggested that HSP70 was involved in regulating the β-catenin

signaling pathway. HSPA5 was initially found to play an important role in regulating
the β-catenin signaling axis through interacting with β-catenin [75]. Li and colleagues
further found that HSPA5 enhanced β-catenin signaling and consequently promoted its
downstream c-Myc-mediated glutamine metabolism in colorectal cancer cells [76]. Mean-
while, HSPA9 could maintain the stemness of breast cancer stem cells via activating the
Wnt/GSK3β/β-catenin signaling pathway [77]. Furthermore, overexpression of HSPA1A
could also facilitate the activation of the Wnt/β-catenin signaling pathway, resulting in the
enhancement of osteogenic differentiation of bone marrow mesenchymal stem cells [78].

SMAD and NF-κB
The role of HSP70 in regulating SMAD proteins and the nuclear factor kappa B (NF-κB)

function remains controversial. HSPA8 was reported to activate TGF-β-induced Smad
signaling through functional interaction with Smad2/3 [79]. Overexpression of HSPA5 up-
regulated the expression and secretion of TGF-β1, which further promotes the cell-matrix
adhesion and epithelial-mesenchymal transition (EMT) through activating the downstream
Smad2/3 signaling module [80]. Moreover, a blockade of Cripto interacting with the
cell surface HSPA5 suppressed oncogenic Cripto signaling via Smad2/3 pathways [45].
However, other researchers also showed that HSP70 exerted an anti-activity function in
SMAD proteins. HSP70 decreased receptor-dependent phosphorylation of Smad2 and
blocked TGF-β-induced EMT [81]. The inhibitory effect of HSP70 was also exhibited by the
activation of Smad3 induced by high level of glucose [82]. HSPA1A/B inhibited Smad3
activation and nuclear translocation in renal EMT [83]. In terms of the NF-κB pathway,
membrane-bound HSP70 was found to induce transcription NF-κB whereas HSP70 in the
cytoplasm may repress NF-κB expression [84]. This was also proved by Sheppard et al.,
who found that HSP70 in the cytoplasm blocked NF-κB activation by inhibiting IKK [85].

4. Targeting HSP70 in Cancer Therapy

Given that HSP70 exerts an important function in multiple aspects of cancer develop-
ment and progression, major endeavors have been focused on the development of therapies
targeting HSP70 in cancer over the last 30 years. Roughly, they can be divided into two
directions: one is to identify inhibitors targeting HSP70 based on its cancer-promoting role
and the other is to develop cancer vaccines in which HSP70 serves as an adjuvant based on
its immunostimulatory effect. Though no HSP70 inhibitors or -based vaccines have been
approved by the FDA to date, corresponding preclinical studies and clinical trials are still
ongoing, and many new research directions, such as exploring the combination therapeutic
mode of HSP70 inhibitors with chemotherapy, radiotherapy, or targeted therapy, are also
being attempted.

4.1. HSP70 as an Inhibitory Target in Cancer Therapies
4.1.1. HSP70 Inhibitors in Monotherapy Mode

We catalogued the currently published HSP70 inhibitors according to their binding
sites on HSP70 and summarized their chemical structures, effects on HSP70 activity, and
applications in cancer therapeutics, including cancer types, effects on cancers, and corre-
sponding mechanisms, in Table 1.
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Table 1. Preclinical studies of HSP70 inhibitors in cancer therapies.

Binding
Sites Order Inhibitor Name Chemical Structures Effects on HSP70

Activity Cancer Types Effects on Cancers Mechanisms Refs

NBD 1 VER-155008
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in vivo

Triggers an antitumor
immune response [102]
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Induces tumor cell 

apoptosis in vitro 

Induces the degradation of 

HER2, Raf1, and Akt 
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[103] 

  

Inhibits ATPase activity of
HSP70 (HSPA1A/B, A9)
through interacting with a
site outside the ATP
binding domain

Breast cancer Induces tumor cell
apoptosis in vitro

Induces the degradation
of HER2, Raf1, and Akt
kinases

[103]
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vitro 
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reduces tau levels 

[107–110] 
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(MKT-077 

derivative) 

 

Inhibits HSP70-NEFs 

complex 

Breast cancer, cervical 

cancer, melanoma 

Inhibits tumor growth 

in xenograft models 

Affects the activity of 

several transcription factors 

NF-κB, FoxM1, and Hif1α, 

translation regulator HuR, 

and cell cycle regulators  

p21 and survivin    

[111,112] 

  

Inhibits ATPase activity of
HSP70 through
disrupting HSP70-Bim
PPI

TKI-resistant chronic
myeloid leukemia

Inhibits tumor cell
proliferation and induces
apoptosis in vitro; inhibits
tumor growth in vivo

Down-regulates the level
of key oncoclient proteins
including AKT, Raf-1,
eIF4E, and RPS16

[104,105]

9 S1g-6

Inhibits ATPase activity of
HSP70 through
disrupting HSP70-Bim
PPI

Chronic myeloid
leukemia

Induces tumor cell
apoptosis in vitro

Decreases the expression
and phosphorylation
levels of AKT and Raf-1

[106]

10 MKT-077
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[111,112] 

  

Inhibits HSP70 (HSPA8,
A9)-NEFs complex

Breast cancer, ovarian
cancer, endometrial
cancer, colon cancer,
non-small cell lung
cancer, cervical cancer,
osteosarcoma, and
melanoma

Inhibits tumor cell
proliferation and induces
senescence in vitro

Releases wild-type p53
from HSP70-p53 complex;
reduces tau levels

[107–110]
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complex 

Breast cancer, cervical 

cancer, melanoma 

Inhibits tumor growth 

in xenograft models 

Affects the activity of 

several transcription factors 

NF-κB, FoxM1, and Hif1α, 

translation regulator HuR, 

and cell cycle regulators  

p21 and survivin    

[111,112] 

  

Inhibits HSP70-NEFs
complex

Breast cancer, cervical
cancer, melanoma

Inhibits tumor growth in
xenograft models

Affects the activity of
several transcription
factors NF-κB, FoxM1,
and Hif1α, translation
regulator HuR, and cell
cycle regulators p21 and
survivin

[111,112]

12
YM-08
(MKT-077
derivative)
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JG-98 

(MKT-077 

derivative) 
 

Inhibits HSP70 

(HSPA1A, A5, A8, A9)-

NEFs complex 

B-RafV600E melanoma, 

breast cancer, cervical 

cancer, skin cancer, 
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Inhibits tumor cell 

proliferation and 

induce apoptosis in 

vitro; inhibits tumor 

growth in xenograft 

models 
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and Raf1 

[114–116] 
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JG2-38 

(MKT-077 

derivative) 

 

 

 

Inhibits HSP70 

(HSPA1A)-NEFs 

complex 

Breast cancer, prostate 

cancer 

Inhibits tumor cell 

proliferation in vitro 
 [117] 

 15 

JG-231 

(MKT-077 

derivative) 

 

 

 

Inhibits HSP70 (HSPA9)-

NEFs complex 

B-RafV600E melanoma, 

breast cancer 

Inhibits tumor growth 

in xenograft models 

Increases mitochondrial 

permeability through 

deregulating MEK-ERK 

activity 

[114,118] 

 16 HS-72 

 

 

 

Inhibits HSP70 

(HSPA1A/B)-NEFs 

complex 

Breast cancer, prostate 

cancer 

Inhibits tumor growth 

in vitro and in vivo 
 [119] 

Inhibits HSP70 (HSPA8,
A9)-NEFs complex

Breast cancer, cervical
cancer

Has a low cytotoxicity to
tumor cell viability
in vitro

BBB penetrant; reduces
tau levels [113]

13
JG-98
(MKT-077
derivative)
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complex 

Breast cancer, prostate 

cancer 

Inhibits tumor growth 

in vitro and in vivo 
 [119] 

Inhibits HSP70 (HSPA1A,
A5, A8, A9)-NEFs
complex

B-RafV600E melanoma,
breast cancer, cervical
cancer, skin cancer,
ovarian cancer, bone
marrow cancer

Inhibits tumor cell
proliferation and induce
apoptosis in vitro; inhibits
tumor growth in
xenograft models

Destabilizes FoxM1 and
relieved suppression of
downstream effectors, p21
and p27; destabilizes Akt1
and Raf1

[114–116]

14
JG2-38
(MKT-077
derivative)
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Breast cancer, prostate
cancer

Inhibits tumor growth
in vitro and in vivo [119]
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 [129] 

  

Inhibits HSP70-client
interaction

B-cell lymphoma,
melanoma

inhibits tumor cell
proliferation and
autophagy in vitro;
induces cell cycle arrest
and genomic instability in
cancer cells; inhibits
tumor growth in
xenograft models

[129]

21 PET-16
(PES derivative)
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 [133] 
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Increases sensitivity of 

tumor cells to 

apoptosis in vitro; 

inhibits tumor growth 

in vivo 

Improves cytotoxic activity 

of CD8+ tumor-infiltrating T 

cells 

[134,135] 

  

Inhibits HSP70-client
interaction

Multiple myeloma,
melanoma

Inhibits tumor cell
proliferation and induces
apoptosis in vitro

[128,130]
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of oxidized GAPDH and
increases sensitivity of
cells to hypoxic stress

[143]
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Rhodacyani

ne-based 

compound 1 

 

Inhibits the chaperone 

activity of HSP70 

Triple negative breast 

cancer 

Inhibits tumor growth 

in vitro and in vivo 
Down-regulates β-catenin [153,154] 

Disrupts
HSP70-Caspase-3
complex

Colon cancer,
lymphoma

Increases sensitivity of
tumor cells to apoptosis
in vitro

[144]

32 Triptolide

Biomolecules 2023, 13, x FOR PEER REVIEW 14 of 36 
 

 31 BT-44 

 

 

 

Disrupts HSP70-

Caspase-3 complex 
Colon cancer, lymphoma 

Increases sensitivity of 

tumor cells to 

apoptosis in vitro 

 [144] 

 32 Triptolide 

 

Reduces the expression 

level of HSP70 

Pancreatic cancer, colon 

cancer, neuroblastoma, 

osteosarcoma, malignant 

mesothelioma, non-small 

cell lung cancer 

Inhibits tumor cell 

proliferation in vitro; 

induces apoptosis and 

cell cycle arrest in vitro; 

inhibits tumor growth 

and decreases local-

regional tumor spread 

in vivo 

Down-regulates E2F 

activity by modulating 

events downstream of DNA 

binding; downregulates the 

levels of pro-survival 

proteins such as cMYC and 

survivin and targets NF-κB 

pathway 

[145–151] 

 33 

Minnelide 

(Triptolide 

derivative) 

 

Reduces the expression 

level of HSP70 

Colon cancer, 

osteosarcoma, malignant 

mesothelioma, non-small 

cell lung cancer 

Inhibits the tumor 

growth in the xenograft 

and metastasis model 

Downregulates the levels of 

pro-survival proteins such 

as cMYC and survivin and 

targets NF-κB pathway 

[146,147,14

9–152] 

 34 Quercetin 

 

Reduces the expression 

level of HSP70 
Prostate cancer 

Inhibits tumor cell 

proliferation and 

induces apoptosis in 

vitro 

 [92] 

 35 

Rhodacyani

ne-based 

compound 1 

 

Inhibits the chaperone 

activity of HSP70 

Triple negative breast 

cancer 

Inhibits tumor growth 

in vitro and in vivo 
Down-regulates β-catenin [153,154] 

Reduces the expression
level of HSP70

Pancreatic cancer,
colon cancer,
neuroblastoma,
osteosarcoma,
malignant
mesothelioma,
non-small cell lung
cancer

Inhibits tumor cell
proliferation in vitro;
induces apoptosis and cell
cycle arrest in vitro;
inhibits tumor growth
and decreases
local-regional tumor
spread in vivo

Down-regulates E2F
activity by modulating
events downstream of
DNA binding;
downregulates the levels
of pro-survival proteins
such as cMYC and
survivin and targets
NF-κB pathway

[145–151]



Biomolecules 2023, 13, 601 12 of 30

Table 1. Cont.

Binding
Sites Order Inhibitor Name Chemical Structures Effects on HSP70

Activity Cancer Types Effects on Cancers Mechanisms Refs

33
Minnelide
(Triptolide
derivative)

Biomolecules 2023, 13, x FOR PEER REVIEW 14 of 36 
 

 31 BT-44 

 

 

 

Disrupts HSP70-

Caspase-3 complex 
Colon cancer, lymphoma 

Increases sensitivity of 

tumor cells to 

apoptosis in vitro 

 [144] 

 32 Triptolide 

 

Reduces the expression 

level of HSP70 

Pancreatic cancer, colon 

cancer, neuroblastoma, 

osteosarcoma, malignant 

mesothelioma, non-small 

cell lung cancer 

Inhibits tumor cell 

proliferation in vitro; 

induces apoptosis and 

cell cycle arrest in vitro; 

inhibits tumor growth 

and decreases local-

regional tumor spread 

in vivo 

Down-regulates E2F 

activity by modulating 

events downstream of DNA 

binding; downregulates the 

levels of pro-survival 

proteins such as cMYC and 

survivin and targets NF-κB 

pathway 

[145–151] 

 33 

Minnelide 

(Triptolide 

derivative) 

 

Reduces the expression 

level of HSP70 

Colon cancer, 

osteosarcoma, malignant 

mesothelioma, non-small 

cell lung cancer 

Inhibits the tumor 

growth in the xenograft 

and metastasis model 

Downregulates the levels of 

pro-survival proteins such 

as cMYC and survivin and 

targets NF-κB pathway 

[146,147,14

9–152] 

 34 Quercetin 

 

Reduces the expression 

level of HSP70 
Prostate cancer 

Inhibits tumor cell 

proliferation and 

induces apoptosis in 

vitro 

 [92] 

 35 

Rhodacyani

ne-based 

compound 1 

 

Inhibits the chaperone 

activity of HSP70 

Triple negative breast 

cancer 

Inhibits tumor growth 

in vitro and in vivo 
Down-regulates β-catenin [153,154] 

Reduces the expression
level of HSP70

Colon cancer,
osteosarcoma,
malignant
mesothelioma,
non-small cell lung
cancer

Inhibits the tumor growth
in the xenograft and
metastasis model

Downregulates the levels
of pro-survival proteins
such as cMYC and
survivin and targets
NF-κB pathway

[146,147,
149–152]

34 Quercetin

Biomolecules 2023, 13, x FOR PEER REVIEW 14 of 36 
 

 31 BT-44 

 

 

 

Disrupts HSP70-

Caspase-3 complex 
Colon cancer, lymphoma 

Increases sensitivity of 

tumor cells to 

apoptosis in vitro 

 [144] 

 32 Triptolide 

 

Reduces the expression 

level of HSP70 

Pancreatic cancer, colon 

cancer, neuroblastoma, 

osteosarcoma, malignant 

mesothelioma, non-small 

cell lung cancer 

Inhibits tumor cell 

proliferation in vitro; 

induces apoptosis and 

cell cycle arrest in vitro; 

inhibits tumor growth 

and decreases local-

regional tumor spread 

in vivo 

Down-regulates E2F 

activity by modulating 

events downstream of DNA 

binding; downregulates the 

levels of pro-survival 

proteins such as cMYC and 

survivin and targets NF-κB 

pathway 

[145–151] 

 33 

Minnelide 

(Triptolide 

derivative) 

 

Reduces the expression 

level of HSP70 

Colon cancer, 

osteosarcoma, malignant 

mesothelioma, non-small 

cell lung cancer 

Inhibits the tumor 

growth in the xenograft 

and metastasis model 

Downregulates the levels of 

pro-survival proteins such 

as cMYC and survivin and 

targets NF-κB pathway 

[146,147,14

9–152] 

 34 Quercetin 

 

Reduces the expression 

level of HSP70 
Prostate cancer 

Inhibits tumor cell 

proliferation and 

induces apoptosis in 

vitro 

 [92] 

 35 

Rhodacyani

ne-based 

compound 1 

 

Inhibits the chaperone 

activity of HSP70 

Triple negative breast 

cancer 

Inhibits tumor growth 

in vitro and in vivo 
Down-regulates β-catenin [153,154] 

Reduces the expression
level of HSP70 Prostate cancer

Inhibits tumor cell
proliferation and induces
apoptosis in vitro

[92]

35
Rhodacyanine-
based
compound 1

Biomolecules 2023, 13, x FOR PEER REVIEW 14 of 36 
 

 31 BT-44 

 

 

 

Disrupts HSP70-

Caspase-3 complex 
Colon cancer, lymphoma 

Increases sensitivity of 

tumor cells to 

apoptosis in vitro 

 [144] 

 32 Triptolide 

 

Reduces the expression 

level of HSP70 

Pancreatic cancer, colon 

cancer, neuroblastoma, 

osteosarcoma, malignant 

mesothelioma, non-small 

cell lung cancer 

Inhibits tumor cell 

proliferation in vitro; 

induces apoptosis and 

cell cycle arrest in vitro; 

inhibits tumor growth 

and decreases local-

regional tumor spread 

in vivo 

Down-regulates E2F 

activity by modulating 

events downstream of DNA 

binding; downregulates the 

levels of pro-survival 

proteins such as cMYC and 

survivin and targets NF-κB 

pathway 

[145–151] 

 33 

Minnelide 

(Triptolide 

derivative) 

 

Reduces the expression 

level of HSP70 

Colon cancer, 

osteosarcoma, malignant 

mesothelioma, non-small 

cell lung cancer 

Inhibits the tumor 

growth in the xenograft 

and metastasis model 

Downregulates the levels of 

pro-survival proteins such 

as cMYC and survivin and 

targets NF-κB pathway 

[146,147,14

9–152] 

 34 Quercetin 

 

Reduces the expression 

level of HSP70 
Prostate cancer 

Inhibits tumor cell 

proliferation and 

induces apoptosis in 

vitro 

 [92] 

 35 

Rhodacyani

ne-based 

compound 1 

 

Inhibits the chaperone 

activity of HSP70 

Triple negative breast 

cancer 

Inhibits tumor growth 

in vitro and in vivo 
Down-regulates β-catenin [153,154] 

Inhibits the chaperone
activity of HSP70

Triple negative breast
cancer

Inhibits tumor growth
in vitro and in vivo Down-regulates β-catenin [153,154]

36
Rhodacyanine-
based
compound 6

Biomolecules 2023, 13, x FOR PEER REVIEW 15 of 36 
 

 36 

Rhodacyani

ne-based 

compound 6 

 

Inhibits the chaperone 

activity of HSP70 

Triple negative breast 

cancer 

Inhibits tumor growth 

in vitro and in vivo 
Down-regulates β-catenin [153,154] Inhibits the chaperone

activity of HSP70
Triple negative breast
cancer

Inhibits tumor growth
in vitro and in vivo Down-regulates β-catenin [153,154]



Biomolecules 2023, 13, 601 13 of 30

NBD-Binding Inhibitors

NBD-binding inhibitors were identified or developed to interfere with the function
of HSP70 through inhibiting ATPase activity of HSP70 or affecting the binding of nu-
cleotide exchange factors (NEFs) or J domain protein (JDP) to HSP70. VER-155008, the
most typical example of ATP-competitive HSP70 inhibitors, is a derivative of ATP. Through
interacting with the ATP binding site, HSP70 inhibits ATPase activity of all isoforms of
HSP70 [127,128,132–134]. Though this lacking isoform specificity, VER-155008 was iden-
tified to exert strong anti-tumor activity in a variety of cancers through affecting a wide
range of cancer-related signaling pathways [59,88–94]. VER-155008 inhibited proliferation,
suppressed invasion and migration, and induced apoptosis of pheochromocytoma cells
through down-regulating phosphorylation of the PI3K/AKT/mTOR and MEK/ERK sig-
naling pathways [59]. In castration-resistant prostate cancer (CRPC) cells, VER-155008
suppressed the expression of full-length androgen receptor (AR) and AR splice variant 7
(ARv7) through Y-box binding protein 1 (YB-1) inhibition, which makes it an attractive
anti-tumor agent for treating CRPC [91,92]. Another well-studied ATP-competitive HSP70
inhibitor Apoptozole displayed toxicity against a broad spectrum of cancer cells, such as
oral squamous cell carcinoma, breast cancer, and liver cancer cells. Furthermore, Apop-
tozole suppressed tumor growth in xenograft models of lung adenocarcinoma, cervical
cancer, and colorectal carcinoma [95–97]. Mechanistic studies implicated that Apoptozole-
mediated tumor suppression was achieved by blocking interaction of HSP70 with APAF-1,
which induced caspase-dependent apoptosis [96]. Park et al. reported that Apoptozole
was also involved in promoting lysosome-mediated apoptosis and impairing autophagy in
cancer cells [97]. Moreover, (-)-Epigallocatechin-3-gallate (EGCG), HSP70-36, Epoxysiderol,
and Synthetic peptide P17 have also been found to exert anti-cancer effects in several stud-
ies [98–102]. Interestingly, EGCG and Epoxysiderol showed a selective binding affinity to
HSP70, and they bind to HSPA5 and HSP70A1A, respectively [98,99,101]. Therefore, both
of them might have the potential of being advanced in the clinical settings as anti-cancer
drugs.

In addition to competitively binding to the ATP binding site, some other inhibitors
can directly affect ATPase activity of HSP70 through interacting with a site outside of the
ATP/ADP binding domain. YK5, a small molecule inhibitor which binds to an allosteric
pocket HSP70, is one of the representatives. By specifically interacting with HSP70 isoforms,
including HSPA1A/B and HSPA9, YK5 was identified to exhibit anti-tumor activity [103].
Rodina et al. found that YK5 induced the degradation of HER2, Raf1, and Akt kinases
and promoted apoptosis in breast cancer cell lines [103]. However, the in vivo anti-tumor
effect of YK5 still remains to be verified, and relevant research should be carried out as
soon as possible. Recently, the interaction between HSP70 and Bim, a BH3-only member
of the Bcl-2 family proteins, has been recognized as an effective target for cancer thera-
pies [155]. Based on the established BH3 mimetics, two novel HSP70 inhibitors, S1g-2 and
S1g-6, were developed to selectively disrupt HSP70–Bim protein–protein interaction (PPI)
and inhibit the Bim-mediated activation of ATPase of HSP70 [104,106]. S1g-2 and S1g-6
significantly inhibited the growth of chronic myeloid leukemia in vitro and in vivo, and
more importantly, S1g-2 exhibited an ever-growing ability to induce apoptosis and increase
BCR-ABL independent TKI resistance in chronic myeloid leukemia cells [104–106]. Thus,
S1g-2 and S1g-6 might belong to a completely new class of HSP70 inhibitor with promising
anti-tumor activities in chronic myeloid leukemia.

MKT-077 is a cationic rhodacyanine dye analogue that targets an allosteric site which
affects the binding of NEFs to HSPA8 and HSPA9 [110]. Research revealed that MKT-077
suppressed tumor growth through releasing wild-type p53 from the HSP70–p53 complex to
rescue its transcriptional activity and clearing hyperphosphorylated tau in cells [107–109].
YM-01 and YM-08 belong to a new series of close derivatives of MKT-077. By disrupting
the HSP70–BAG3 interaction, YM-01 modulated the activity of the transcription factors
NF-κB, FoxM1, and Hif1α, the translation regulator HuR, and the cell cycle regulators
p21 and survivin [111]. YM-08 can penetrate the blood–brain barrier, making it a po-
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tent inhibitor suitable for use in the central nervous system (CNS) malignancies or brain
metastatic tumors. Unfortunately, compared with YM-01, which inhibited tumor growth
of xenograft models of breast and melanoma, YM-08 had a reduced anti-tau activity and
cytotoxicity in cancer cells [112,113]. Therefore, JG series of compounds related to YM-08
emerged [114–118]. Among them, JG-98 is the most extensively studied and therapeuti-
cally promising compound of the JG series in cancer treatments. Wu et al. reported that
JG-98 showed greater potency than previous MKT-077 derivatives in terms of cytotoxicity
against melanoma cells [114]. Moreover, JG-98 exhibits anti-tumor activity in breast and
cervical cancer xenograft models through destabilizing FoxM1 and relieving suppression
of downstream effectors, p21 and p27 [116].

MAL3-101 and its analog DMT3132 are small molecule inhibitors that affect allosteric
communication associated with HSP70-JDP interaction [122,123]. Though both of them
showed potent toxicity against cancers, DMT3132 exhibited stronger anti-proliferation
activity than DMAL3-101 in breast cancer cells [95,121,123]. More importantly, when
treated with MAL3-101, cancer cells became resistant to it by inducing autophagy through
ATF4 signaling as well as endoplasmic reticulum-associated degradation (ERAD) [156,157].
Therefore, the potential combination therapy that synergizes with autophagy inhibitors is a
new research direction in MAL3-101-based anti-cancer treatments.

SBD-Binding Inhibitors

The key roles of HSP70s in cancer-related molecular mechanisms are found to be
mediated by PPIs between HSP70 and multiple proteins. SBD-binding inhibitors are specif-
ically developed to disrupt these PPIs. The small molecule 2-phenylethyenesulfonamide
(PES), also referred to as pifthrin-µ, is a selective inhibitor of stress-inducible HSP70 that
not only promoted tumor cell death but also showed markedly less toxicity towards
non-transformed cells [127,128]. It is cytotoxic against a variety of solid tumors, such as
breast cancer, osteosarcoma, and pancreatic cancer, in addition to acute myeloid leukemia
and acute lymphoblastic leukemia, regardless of p53 status or an elevated Bcl-xL protein
level, and is caspase independent [102,124,126,127]. Additionally, PES can disrupt the
HSP70/HSP90 chaperone system, resulting in the sequestration of several HSP90 client
proteins into inactive, insoluble compartments [125]. In order to further enhance the medic-
inal properties of PES, Balaburski et al. developed a derivative of PES, 2-(3-chlorophenyl)
ethynesulfonamide (PES-Cl), which showed comparable ability to bind to HSP70 but
higher anti-tumor activity compared to PES. Through inhibiting autophagy and induc-
ing programmed cell death, PES-Cl significantly prolonged the survival of Eµ-myc mice
bearing pre-B cell lymphoma [129]. Another derivative of PES, Triphenyl (phenylethynyl)
phosphonium (PET-16), and a derivative of PET-16, AP-4-139B, also exhibited strong
anti-proliferation activity in cancer cells [128,130,131]. More importantly, AP-4-139B was
identified to function effectively as a cancer vaccine. It released damage-associated molecu-
lar patterns (DAMPs) through disruption of mitochondrial function and increased immune
cell recruitment into tumors [131]. Related structure–activity–relationship studies revealed
that PET-16 specifically binds to the SBD of ADP-bound HSP70, and AP-4-139B binds to
the same allosteric pocket as PET-16 [128,131]. All these data indicated that PES and its
derivatives might be superior anti-cancer compounds.

Shortly after the discovery of PES, Hassan et al. indicated an HSP70-inhibiting role
of the natural product novolactone, which interacts with an allosteric site in the SBD that
affects the mobility of the lid and binding of JDPs in HSPA1A/B, HSPA5, and HSPA8 [132].
Although there has been no clear evidence that novolactone has anti-tumor activity, it can
destabilize HER2 and EGFR in lung cancer cells [132]. Using a fluorescence polarization-
based high-throughput screen, Ambrose et al. discovered the anti-infection agent hex-
achlorophene as an inhibitor of HSPA5. By leading to an unfolded protein response (UPR),
hexachlorophene induced apoptosis and inhibited autophagy in colon cancer cell lines [133].
In addition, ADD70, a derivative of mitochondrial flavoprotein apoptosis inducing factor
(AIF), and Acridizinium derivative 1, which disrupts HSP70 relocalization after heat shock,
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are two small molecule inhibitors that also bind to the SBD of HSP70. Subsequent studies
revealed that they induced apoptosis in a broad range of tumor cells [134–136].

C-Terminal EEVD-Binding Inhibitors

A study published in 1995 showed that the extreme C-terminal four amino acids of
HSP70 play an important role in modulating its ATPase activity, substrate binding, and
interaction with HDJ-1 [158]. Subsequently, 15-Deoxyspergualin (DSG), which was proved
to exert immunosuppressive function in numerous autoimmune diseases, binds specifically
to this EEVD regulatory domain of HSPA8 [137]. This interaction between DSG and EEVD
does not affect peptide binding and, on the contrary, may enhance the chaperone activity
of HSP70 induced by ATP [137,140]. Similar to other NBD- or SBD-binding inhibitors,
DSG was found to play an anti-cancer role in that it inhibits protein synthesis and induces
apoptosis in lymphoma cells [138,139]. Still, more studies should be conducted to further
corroborate this effect.

Other Inhibitors

With the development of cancer therapies targeting HSP70s, there are still quite a
few promising anti-cancer inhibitors that directly or indirectly target HSP70 and have
not clearly demonstrated the exact binding site on HSP70 or the effect on HSP70 activity.
HA15, a compound of a series of thiazole benzenesulfonamides, was capable of inhibiting
the ATPase activity of HSPA5 which is found in the endoplasmic reticulum (ER) and is
a central regulator of the UPR [141]. HA-15 triggered apoptosis and induced autophagy
in melanoma cells and prevented the growth of melanoma cells including those resistant
to BRAF inhibitors in a mouse xenograft model [141]. Similarly, a natural product of
the ritterazine-cephalostatin family, ritterostatin GN1N, showed selectivity for HSPA5
and exhibited a strong anti-cancer efficiency in melanoma [142]. N-amino-ethylamino
derivative of colchicine (AEAC) was proved to have minimal cytotoxicity in glioma cells in
normal conditions [159]. While under conditions of hypoxia, the antitumor effect of AEAC
in glioblastoma was enhanced through disrupting PPI between HSP70 and GAPDH to
promote the aggregation of oxidized GAPDH. Additionally, cells with high expression of
GAPDH were more sensitive to AEAC than those with normal expression of GAPDH [143].
By disrupting the HSP70-caspase 3 complex, a derivative of benzodioxol (BT44) increased
sensitivity of colon cancer and lymphoma cells to apoptosis [144].

Extracting compounds from natural plants is one of the commonly used methods to
develop anti-cancer drugs. Triptolide, originally isolated from the Chinese herb Triptery-
gium wilfordii, and minnelide, a water-soluble pro-drug derivative of Triptolide, are both
effective against multiple cancers, such as pancreatic cancer, colon cancer, neuroblastoma,
osteosarcoma, malignant mesothelioma, and non-small cell lung cancer [145–152]. Mecha-
nistically, this effect was probably mediated by the inhibition of HSP70 that triptolide and
minnelide induced the binding of microRNA miR-142-3p to 3′UTR of HSP70 [149]. There-
fore, triptolide and minnelide serve as a proof-of principle for indirectly targeting HSP70
as an anti-cancer therapy. When carefully examining these two drugs, triptolide has a
higher specificity targeting tumor than minnelide because it was non-toxic to normal tissue
cells. Unfortunately, triptolide is poorly soluble in water, limiting its clinical use [145,147].
Another natural compound flavonol quercetin was also identified to inhibit HSP70 expres-
sion and exhibited anti-proliferation activity in prostate cancer cells [92]. Based on the
screening of a novel series of rhodacyanine-based HSP70 inhibitors, Tsai et al. revealed
that compound 1 and compound 6 exhibited a high capacity for inhibiting the activity
of HSP70’s chaperone and anti-proliferation activities against breast cancer cells [154]. A
subsequent study conducted by them further revealed that treating xenograft models of
triple negative breast cancer with compound 1 or compound 6 was also effective, and this
was mediated by the down-regulation of β-catenin [153]. Nevertheless, it is important to
focus on the binding mechanism of these compounds with HSP70 in future studies.
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4.1.2. HSP70 Inhibitors in Combination Therapy Mode

Although HSP70 inhibitors showed promising anti-tumor efficiency, the emergence
of drug resistance limited their long-term benefit. Research revealed that endoplasmic
reticulum-associated degradation (ERAD) and autophagy were activated in MAL3-101-
resistant breast cancer, liver cancer, and rhabdomyosarcoma cells, and treatment with
autophagy inhibitors restored their sensitivities to MAL3-101 [156,157]. Based on this,
synergizing with other drugs seems to be a promising approach to enhance the anti-
tumor effect of HSP70 inhibitors. S1g-6, an HSP70 inhibitor, plus Bcl-2/Mcl-1/Bcl-xl triple
inhibitor S1 or FDA approved Bcl-2 inhibitor ABT-199 showed synergistic effect with S1g-6
in inducing tumor regression by inducing apoptosis in leukemia cells [160]. JG-98 plus
HSP40 inhibitor C86 demonstrated the combinatorial activity in a CRPC xenograft model
where HSP40 was found to be present in a multi-protein complex with full-length AR, ARv7,
and HSP70 [161]. Additionally, combining HSP70 inhibitors, such as Apoptozole, VER-
155008, PES, quercetin, or ADD70, with HSP90 inhibitors have also shown great therapeutic
potential in numerous cancers, including muscle invasive bladder cancer, anaplastic thyroid
carcinoma, melanoma, colorectal cancer, and acute myeloid leukemia [134,162–167]. The
recommendation for this combination therapy modality was based on the results that the
level of HSP70 was upregulated by HSP90 inhibitors and that dual inhibition of HSP70 and
HSP90 could simultaneously disrupt the key signaling pathways in cancers [163,165,166].

A combination of HSP70 inhibitors plus chemotherapy or targeted therapy has also
been widely explored in several studies. Platinum-based chemotherapy is the first-line
standard treatment in many cancers. McKeon et al. discovered that compared with a single
drug, PES plus oxaliplatin significantly improved anti-proliferation activity in colorectal
cancer whereas PES plus cisplatin moderately improved the anti-cancer effect in prostate
cancer [168]. Synergy of PES plus cisplatin was also reported in cervical cancer [169,170].
In breast cancer, EGCG increased etoposide-induced apoptosis in cells and suppressed the
colony formation of cells treated with etoposide, indicative of the potential feasibility of
the combination of these two drugs in treating breast cancer [99]. The administration of
AEAC in combination with doxorubicin exerted a considerable therapeutic effect in glioma
xenograft models [159]. In combined targeted therapy, sorafenib, a first-line targeted drug
for advanced hepatocellular carcinoma, was reported to show a great anti-tumor effect
when combined with HSP70 inhibitor triptolide [171]. PET-16 was found to reduce levels of
mutant BRAF in melanoma as it synergized with the BRAF inhibitor PLX4032 by enhancing
the durability of response to BRAF inhibition in vivo [172]. Additionally, a combination
of HSP70 inhibitors and proteasome inhibitors suppressed tumor growth with a greater
efficiency than single-agent treatments in melanoma and multiple myeloma [121,173,174].

Several studies revealed that malignant cells expressed higher levels of HSP70 than
normal cells, and high expression of HSP70 induced resistance to radiotherapy through
different mechanisms [175,176]. Thus, HSP70 inhibitors, such as triptolide which enhanced
cellular radiosensitivity by inhibiting HSPA5 to trigger apoptosis and induce G2/M cell
cycle arrest in nasopharyngeal carcinoma, can be used as radiosensitizers in radiation
therapy [177]. Of note, the level of HSP70 was also upregulated in cancer cells treated
with heat or light, leading to the low therapeutic efficiency in tumors [178,179]. Synergistic
photothermal therapy (PTT), photodynamic therapy (PDT), or radiofrequency ablation
(RFA) with HSP70 inhibitors, a combination treatment which has already shown improved
efficiency than PTT, PDT, or RFA used alone in liver cancer, breast cancer, cervical cancer,
and pancreatic cancer, offers an immediate translational potential in the management of
numerous cancers [179–183].



Biomolecules 2023, 13, 601 17 of 30

4.2. HSP70 as an Adjuvant in Cancer Vaccine Therapies

Since Blachere and colleagues discovered that the HSP70–peptide complex leads to
an antigen-specific CD8+ T cell response in 1997, a new research avenue has been opened
for the use of HSP70 as an adjuvant in cancer vaccine therapies [122,123]. Numerous
studies demonstrated the feasibility and effectiveness of HSP70 vaccines in combination
with other substances, such as tumor-associated antigens (TAAs), tumor-specific antigens
(TSAs), or proved the efficacy of tumor vaccines, as dendritic cell (DC), DNA, protein, or
tumor cell lysate vaccines in anti-cancer therapies (Table 2). Some HSP70-based vaccines
were designed to enhance the antigen-presenting capacity of DCs to T cells based on the
results that HSP70 promoted DCs maturation, upregulation of co-stimulatory molecule,
and cytokine secretion via interacting with DCs [184]. These vaccines that have been
preliminarily proven effective in animal experiments include a tumor-derived autophagome
(Dribble) vaccine conjugated with mycobacterial HSP70407–426 (M2) peptide, soluble
form of B, and T lymphocyte attenuator (sBTLA) in combination with HSP70 vaccine
where recombinant adeno-associated viral (AAV) vectors served as the gene delivery,
DCs pulsed with recombinant fusion protein of CEA576–669 and HSP70-like protein 1
(HSP70L1), and DCs pulsed with tumor cell lysate which was pulsed with M2 peptide and
OK-432 [185–189].



Biomolecules 2023, 13, 601 18 of 30

Table 2. Preclinical studies of HSP70-based vaccines in cancer therapies.

Order Vaccines Vaccine Types Cancer Types Administration Methods Immunotherapy Effects Immune Mechanisms Refs

1

E7-HSP70
(optimizedE7/mHSP70,
modifiedE7/mtHSP70,
optimizedE7/hHSP70,
sigmE7/mtHSP70,
modifiedE7/HSP70)

DNA vaccine, protein
vaccine

Cervical cancer, lung
metastatic melanoma

Subcutaneous injection,
intramuscular injection

Prophylactic and therapeutic
antitumor effects

Cellular immune
response [190–197]

2

MAGE-HSP70
(MAGE1-MAGE3-MAGEn/HSP70,
TL-MAGE1-HSP70/SEA,
MAGE1/HSP70,
MAGE1-HSP70/SEA)

Nanoemulsion-
encapsulated protein
vaccine, recombinant
protein vaccine

Hepatocellular
carcinoma, melanoma,

Intraperitoneal injection, oral,
subcutaneous injection

Prophylactic and therapeutic
antitumor effects

Humoral and cellular
immune responses [198–201]

3 hDKK1-hHSP70 DNA vaccine Multiple myeloma Intramuscular injection Prophylactic and therapeutic
antitumor effects

Humoral and cellular
immune responses [202]

4 AFP-HSP70 DNA vaccine, protein
vaccine

Hepatocellular
carcinoma Intramuscular injection Therapeutic antitumor effect Cellular immune

response [203,204]

5 PSCA-HSP70 Protein vaccine, DNA
vacine Prostate cancer Subcutaneous injection,

intramuscular injection Therapeutic antitumor effect Humoral and cellular
immune responses [205,206]

6 Mela-HSP70 Protein vaccine Melanoma Subcutaneous injection Prophylactic antitumor effect Cellular immune
response [207]

7 OVA257–264-HSP70 DNA vaccine Lymphoma Intradermal injection Prophylactic antitumor effect Cellular immune
response [208]

8 A20Id-mycHSP70 Protein vaccine Lymphoma Intraperitoneal injection Prophylactic antitumor effect Humoral and cellular
immune responses [209]

9 LV-TRP2-HSP70 Lentiviral vector vaccine Melanoma, breast
cancer, glioblastoma Subcutaneous injection Therapeutic antitumor effect Cellular immune

response [210]

10 DRibble vaccine+mtHSP70407–426
(M2) Conjugated vaccine Lung cancer Subcutaneous injection Therapeutic antitumor effect Cellular immune

response [185]

11 HUVEC vaccine+mtHSP70407–426
(M2) Conjugated vaccine Hepatocellular

carcinoma Subcutaneous injection Prophylactic and therapeutic
antitumor effects

Humoral and cellular
immune responses [211]

12

BTLA vaccine+HSP70 vaccine
(AAV-sBTLA vaccine+HSP70
vaccine, psBTLA vaccine+HSP70
vaccine)

Recombinant adenovirus
vector vaccine+protein
vaccine, DNA
vaccine+protein vaccine

Lung metastatic
melanoma, cervical
cancer

Tail vein injection,
intramuscular injection

Prophylactic and therapeutic
antitumor effects

Cellular immune
response [186,187]

13 DT-TCL-mtHSP70407–426 (M2) Tumor cell lysate vaccine Breast cancer Subcutaneous injection Prophylactic antitumor effect Humoral and cellular
immune responses [212]

14 DCs pulsed with
CEA576–669-HSP70L1 DC vaccine Colon cancer Intraperitoneal injection Therapeutic antitumor effect Cellular immune

response [188]

15
DCs pulsed with tumor cell lysate
pulsed with mtHSP70407–426 (M2)
and OK-432

DC vaccine Hepatocellular
carcinoma Subcutaneous injection Therapeutic antitumor effect Cellular immune

response [189]

hHSP70, human HSP70; mHSP70, murine HSP70; mtHSP70, mycobacterium tuberculosis HSP70; mycHSP70, mycobacterial HSP70; MAGE, melanoma-associated antigen gene;
TL, tomato lectin; SEA, staphylococcal enterotoxins A; DKK1, Dickkopf-1; AFP, alpha-fetoprotein; PSCA, prostate stem-cell antigen; OVA, ovalbumin; LV, lentiviral vector; TRP2,
tyrosinase-related protein-2; Dribble, tumor-derived autophagome; HUVEC, human umbilical vein endothelial cell; BTLA, B and T lymphocyte attenuator; AAV, adeno-associated virus;
DT, diphtheria toxin; TCL, tumor cell lysates; DC, dendritic cell; CEA, carcinoembryonic antigen; HSP70L1, HSP70-like protein 1.
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In the development of vaccines against HPV-associated tumors, such as cervical can-
cer, human papilloma virus (HPV)-encoded oncoproteins, particularly E7, are ideal target
antigens since they can induce specific anti-tumor responses [213,214]. Fusion of HPV-16
E7 with HSP70 became a strategy to alleviate cellular immune responses to a DNA or
protein vaccine in recent years [190–197]. TAAs and TSAs are also frequently used as
vaccine components in combination with HSP70. Dickkopf-1 (DKK1), an ideal target for
the immunotherapy of multiple myeloma, was conjugated to HSP70 as a DNA vaccine,
and this constructed cancer vaccine was proved to have prophylactic and therapeutic
anti-tumor effects through eliciting strong humoral and cellular immune responses in
multiple myeloma [202]. Other TAAs and TSAs, such as alpha-fetoprotein (AFP), which is
over-expressed in the majority of hepatocellular carcinoma, and prostate stem cell antigen
(PSCA), which is associated with the development of prostate cancer, also showed great
synergistic effect with HSP70 in multiple cancers [203–211]. A tumor cell lysate vaccine that
was conjugated to diphtheria toxin (DT) and two tandem repeats of M2 peptide had pro-
tective anti-tumor immunity in a mouse breast tumor model [212]. Additionally, research
regarding vaccine delivery approaches is ongoing [198–201]. Zhang et al. demonstrated
that the nanoemulsion-encapsulated MAGE1-MAGE3-MAGEn/HSP70 fusion protein vac-
cine elicited stronger immune responses than those without nanoemulsion-encapsulation
in hepatocellular carcinoma, suggesting that this novel nanoemulsion carrier induces po-
tent anti-tumor immunity against the encapsulated antigens [198]. All these studies have
demonstrated promising results, and the optimization of HSP70-based vaccines in terms of
content, form, and delivery is still in progress.

4.3. HSP70-Based Cancer Therapies in Clinical Trials

Targeting HSP70 has been effective in preclinical studies; however, relevant clinical
trials evaluating efficacy and safety of HSP70-based therapies have not yet made much
progress to support their use in the treatment of cancer patients (Table 3). With the failure
of phase I clinical trial of MKT-077 and phase II clinical trial of DSG, the future of clinical
trials of HSP70 inhibitors in cancer therapies seems to be challenging [215]. On the contrary,
several clinical trials of HSP70-based vaccines indicated that this therapeutic strategy
seemed to be more promising as a novel cancer treatment. A HSP70 mRNA-transfected
DC vaccine, a novel vaccination therapy comprising multi-HLA-binding HSP70/glypican-
3 (GPC3) peptides and a novel adjuvant combination of hLAG-3Ig and Poly-ICLC, an
autologous vaccine of leukocyte-derived HSP70-peptide complexes in conjunction with
imatinib mesylate, and natural killer (NK) cells pulsed with the 14 amino acid sequence
(aa(450–463)) TKDNNLLGRFELSG (TKD) of HSP70 and IL-2 were all found to be well
tolerated among patients in phase I clinical trials [216–219]. Nevertheless, the assessment
of targeting HSP70 in cancer therapies remains a major challenge and warrants further
studies.

Table 3. HSP70-based cancer therapies in clinical trials.

Therapy Type NCT
Number

Drug Name or
Vaccine Component Inclusion Criteria Study Type Clinical

Phase
Recruitment
Status Publication

HSP70
inhibitors NCT01927965 Minnelide

Advanced
gastrointestinal
tumors

Non-randomized/
one-arm Phase I Completed

NCT04896073 Minnelide

Advanced
refractory
adenosquamous
carcinoma of the
pancreas

Non-randomized/
one-arm Phase II Recruiting [220]

HSP70-based
vaccines NCT00027144

Autologous
tumor-derived
HSP70 protein
vaccine

Chronic myeloid
leukemia

Non-randomized/
one-arm Phase I Completed

NCT00030303

Autologous
PMNCs-derived
HSP70 protein
vaccine

Chronic myeloid
leukemia

Non-randomized/
one-arm Phase I Completed [219]
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Table 3. Cont.

Therapy
Type

NCT
Number

Drug Name or
Vaccine
Component

Inclusion
Criteria Study Type Clinical

Phase
Recruitment
Status Publication

NCT00005633

Tyrosinase and
gp100 peptides
fused with OVA
BiP peptide and
recombinant
HSP70 protein

Stage III or stage
IV melanoma

Non-
randomized/
one-arm

Phase I Completed

NCT05059821

Autologous
activated
monocytes with
autologous
tumor-derived
HSP70 protein
vaccine

Hepatocellular
carcinoma who
developed
recurrence after
surgical resection
and refractory to
the available
institutional
standard of care
lines of treatment

Non-
randomized/
one-arm

Phase I Recruiting

5. Conclusions and Future Directions

HSP70s are found to be over-expressed in many types of cancers, making it a potential
target for cancer treatment. The main function of HSP70s is to serve as chaperones and
collaborate with other co-chaperones to carry out house-keeping activities and to maintain
protein stability. However, the effects of HSP70s on cancer cells are not quite dependent
on their chaperone activities but rather on their abilities in regulating cancer cell signaling.
Many signaling pathways can be directly regulate by HSP70s or indirectly by HSP70 clients.
HSP70s mainly play a key role in promoting the most of common cancer pathways and
various key proteins of other pathways. This is consistent with the fact that they are highly
expressed in various types of cancers and enhance tumorigenesis. Although a large number
of studies have shown that HSP70s promote these cancer-promoting pathways and related
key proteins, few studies have elucidated whether and how HSP70s directly regulate these
key proteins. Therefore, much more in-depth research on the molecular mechanism of
HSP70s is warranted.

Anti-cancer therapy research targeting HSP70 has been carried out for more than
20 years. Numerous studies focused on HSP70 inhibitors reported great efficacies; however,
there are still many obstacles in the transformation applications. One of the difficulties for
developing HSP70 inhibitors is that HSP70 is ubiquitously expressed in the human body
and has different isoforms. Further understanding the structure of HSP70, especially the
SBD, and designing inhibitors based on this may be an effective way to solve the poor
specificity of HSP70 inhibitors. Research on HSP70-based vaccines in cancer therapy is
ongoing with a great potential. Several relevant phase I clinical trials have generated
interesting preliminary data, making this approach more promising compared with HSP70
inhibitors. In addition to advancing to phase II–III clinical trials of the HSP70-based
vaccines, another pressing issue that needs attention is how to validate the efficacy of these
two therapeutic strategies targeting HSP70 in different types of cancers, given that HSP70
has a dual role in tumor progression. These two opposing roles of HSP70 may co-exist in
the same tumor; therefore, research on the efficacy of targeting HSP70 is best evaluated in
the immunocompetent animal models. Moreover, the expression level of HSP70 in tumor
cells and the immunogenicity of this tumor may help to choose whether to preferentially
verify the efficacy of HSP70 inhibitors or HSP70-based vaccines.

It is important to note that the critical role of HSP70 in cancer progression makes it
alternative target protein for patients who failed in treatment of chemotherapy, targeted
therapy, or immunotherapy. The widespread expression of HSP70 in tumors makes tar-
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geting HSP70 in cancer treatment full of promise. More importantly, the safety of this
therapeutic strategy obtained by the current research is also reliable. In the next stage of
research, further elucidation of HSP70s’ functions in cancers, such as HSP70 binding sites,
substrate proteins, and corresponding signaling pathways will allow us to develop and
test HSP70-based anti-cancer therapies with greater clinical efficacies.
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