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Abstract: Alzheimer’s disease (AD) is a typical progressive neurodegenerative disorder, and with
multiple possible pathogenesis. Among them, coumarin derivatives could be used as potential drugs
as monoamine oxidase-B (MAO-B) inhibitors. Our lab has designed and synthesized coumarin
derivatives based on MAO-B. In this study, we used nuclear magnetic resonance (NMR)-based
metabolomics to accelerate the pharmacodynamic evaluation of candidate drugs for coumarin deriva-
tive research and development. We detailed alterations in the metabolic profiles of nerve cells with
various coumarin derivatives. In total, we identified 58 metabolites and calculated their relative con-
centrations in U251 cells. In the meantime, the outcomes of multivariate statistical analysis showed
that when twelve coumarin compounds were treated with U251cells, the metabolic phenotypes were
distinct. In the treatment of different coumarin derivatives, there several metabolic pathways changed,
including aminoacyl-tRNA biosynthesis, D-glutamine and D-glutamate metabolism, glycine, serine
and threonine metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, alanine,
aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glu-
tathione metabolism and valine, leucine and isoleucine biosynthesis. Our work documented how our
coumarin derivatives affected the metabolic phenotype of nerve cells in vitro. We believe that these
NMR-based metabolomics might accelerate the process of drug research in vitro and in vivo.

Keywords: NMR; metabolomics; metabolic pathway; Alzheimer’s disease; coumarin derivative

1. Introduction

Metabolism is the central role of systems biology, and is also amplified relative to
changes in the DNA, RNA and enzyme activities [1]. Since the metabolic network is in-
terconnected, its proper operation requires a number of regulators to maintain regulatory
stability. These cellular regulators include transcription factors [2], isomers of metabo-
lites [3], signal transduction molecules [4] and immune factor [5]. Thus, there is a definite
need for a tool for medication development to monitor changes in metabolism.

For accelerating drug discovery, increased techniques are being used for high-throughput
screening. These techniques mainly contain silico tests [6] and biochemical [7], genetic [8]
and pharmacological tests [9]. However, most tests monitor a single signal which relates to
a single indicator. On the other hand, as high through technology matures, multi-index
notation could be observed synchronously. Genomics, transcriptomics, proteomics and
metabolomics were used in drug research and development [10–13]. These omics technolo-
gies could provide multiple data more clearly linked to the drug targets. Nuclear magnetic
resonance (NMR)-based metabolomics could be an appropriate tool for analyzing the
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changes in metabolic phenotypes. Tiziani et al. used NMR-based metabolomics in cell cul-
ture medium for screening a series of kinase inhibitors and found the relationship between
pharmacodynamics and metabolism [14]. In our earlier investigations, the toxicity mecha-
nism of chemicals in in vitro cells was assessed using NMR-based metabolomics [15,16].

Alzheimer’s disease (AD) is a typical progressive neurodegenerative disorder account-
ing for up to 75% of all dementia cases [17]. There are multiple possible pathogeneses,
including β-amyloid (Aβ) deposits [18], hyper-phosphorylated π-protein aggregation [19],
oxidative stress and low levels of acetylcholine (Ach) [20]. In the last few years, monoamine
oxidases (MAOs) have been paid more attention for their potential use in treating AD;
they are important enzymes in monoamine neurotransmitter metabolism [21,22]. MAO-A
could degrade the biogenic amine serotonin and regulate neurotransmitter metabolism [23].
Research has shown that the expression of MAO-B increased with age, and activity of
MAO-B could increase neuronal damage [24]. Several research teams have investigated the
synthesis, biological assessment, and computational aspects of cholinesterase and MAO
inhibitors [25–28]. Potential MAO-B inhibitors could also be screened from natural prod-
ucts of roots of Platycodon grandiflorus (Jacq.) A.DC. [29]. Holger Stark et al. found that
neuroprotectant ASS234 could inhibit the neurotransmitter-catabolizing enzymes (ChEs
and MAOs) alongside H3R affinity for neurodegenerative diseases, including AD and
Parkinson’s disease [30]. Albreht et al. explained the mechanism of irreversible MAO
inhibitors by using the covalent cyanine structure linking the multi-target propargylamine
inhibitor ASS234 and the flavin adenine dinucleotide in MAO-A [31]. Coumarin derivatives
could also be used as potential inhibitors [32,33]. Nicola et al. derived a predictive three-
dimensional structure of the target molecules (3D-QSAR) model employed for guiding
the rational design of 10 new potent and selective MAO B inhibitors [34]. Analogously,
we synthesized a series of coumarin derivatives as potential therapeutic AD drugs, which
have effects as multifunctional brain permeable iron chelators and MAO-B inhibitors. In
this work, we used NMR-based metabolomics for the pharmacodynamic appraising of the
potentially active compounds. Then, we described the changes in metabolic profiles of
nerve cells with different coumarin derivatives by using NMR-based metabolomics. This
work would be extremely valuable for accelerating the pharmacodynamic assessment of
potential compounds for the research and development of drugs.

2. Materials and Methods
2.1. Chemical Reagents and Cell Culture

NaH2PO4·2H2O and K2HPO4·3H2O (analytical grade) were purchased from J&K Sci-
entific Ltd. (Shanghai, China). D2O (purity 99.9%) and sodium 3-(trimethylsilyl) propionate-
2,2,3,3-d4 (TMSP) were bought from Cambridge Isotope Laboratories, Inc. (Tewksbury,
MA, USA). The twelve coumarin derivatives were synthesized and purified in our lab. The
detailed synthesis steps have been published previously [35], and the details are listed in
the Supporting Information, Table S1. These twelve coumarin derivatives were dissolved
in dimethyl sulfoxide (DMSO), which was obtained from Sigma-Aldrich (St. Louis, MO,
USA). The water used in the experiments was purified using a Milli-Q system (Merck
KGaA, Darmstadt, Germany). The astrocytoma cell line U251 was purchased from the
China Center for Typical Culture Collection (CCTCC). Then, the cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM, HyCloneTM Cytiva, Logan, UT, USA) with
two antibiotics (penicillin, 100 units/mL; streptomycin, 100 µg/mL) and 10% fetal bovine
serum (FBS, HyCloneTM Cytiva, Logan, UT, USA) in an incubator (5% CO2; 37 ◦C).

2.2. MTS Cell Proliferation Assay

The MTS kit (MTS assay, Promega, Madison, WI, USA) was used to assess the cell
viability for calculating the half-maximal inhibitory concentration (IC50) of these coumarin
derivatives. The U251 cell was cultured in 96-well plates (about 5 × 103/well). Then, the
cells were incubated with 200 µL supernatant and treated with various concentrations of
coumarin derivatives (20, 40, 60, 80, 100, 120 µM). After 24 h of incubation, cell samples were
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then co-cultured with MTS kit (20 µL/well) and culture medium (DMEM, 100 µL/well)
for 4 h. Next, colored MTS products were detected in the Microplate Reader (Spark®,
Tecan Inc., Männedorf, Switzerland) by using the absorbance of each well at 490 nm. A
detailed cell proliferation assay was operated as previously described [36]. Then, we chose
the tenth of IC50 of each coumarin derivative for the following experiments.

2.3. Cell Intracellular Extracts’ Preparation and NMR Measurements

Before metabolite extraction, about 1 × 107 cells were seeded in 10 cm diameter culture
dishes and incubated for 24 h at 37 ◦C and 5% CO2. The cells were then harvested and
quenched with a direct cell quenching method by using the frozen methanol [37]. The cell in-
tracellular metabolites were extracted by using mixed solution system (CHCl3/CH3OH/H2O),
and the detailed steps were described as in a previous article [15,36]. The mixed solution
system was layered after centrifugation, and intracellular aqueous metabolites were in the
upper (CH3OH/H2O). The nitrogen blowing concentrator was applied to remove the upper
solvents. Then, the aqueous metabolites were re-dissolved in 500 µL phosphate buffer
(150 mM K2HPO4/NaH2PO4, 0.5 mM TMSP, 10% D2O, 1‰ NaN3). After centrifugation,
the supernatant was transferred to 5 mm NMR tube. All samples were analyzed in the
BRUKER AVANCE III HD 600 MHz spectrometer (BRUKER BioSpin, Germany). The one-
dimensional 1H spectra were operated in the TXI probe at 298 K. Using the NOESYPR1D
[RD-90◦-t1-90◦-τm-90◦-acq] pulse sequence, the water suppression irradiation was led to
the supersaturation stage with 3 s relaxation delay and 120 ms mixing time. The detailed
acquisition parameters were described in our previous works [15,36].

2.4. Identification of Metabolites and Statistical Analysis

The Chenomx NMR Suit (Version 7.1, Chenomx Inc., Edmonton, AB, Canada) was
applied for identifying the metabolites from the NMR spectra of samples. Then, we used
the HMDB database (URL: http://www.hmdb.ca/; access on 17 August 2022) to verify
the metabolite NMR spectrum. These targeted metabolites were quantified from complex
1H NMR spectra by using an Automated Quantification Algorithm (AQuA) [38]. The
principal component analysis (PCA) [39] and hierarchical clustering analysis (HCA) [40]
were performed to show clusters among all samples. Then, orthogonal partial least squares-
discrimination analysis (OPLS-DA) was applied for distinguishing the metabolic phe-
notypes between the treatment groups and control group [39], and the corresponding
response permutation testing (RPT) was used for verifying the robustness of OPLS-DA
models [41]. In the OPLS-DA models, the variable importance in the projection (VIP) [42]
and the correlation coefficients (r) for the variables that are related to the first predictive
component (tp1) [43] were used for the differential selection of metabolites. In addition,
the probability p values by CV-ANOVA and fold changes were also calculated between
treatment groups and the control group for assessing the statistical significance of differ-
ential metabolites. These four parameters were used in the enhanced volcano plots for
visualizing the differential metabolites [41,44].

2.5. Disturbed Metabolic Pathway Analysis

Based on the different metabolites, metabolic pathway analysis was used to identify
significantly disturbed pathways associated with the treatment groups. These works were
performed on the Pathway Analysis module from the web-sever of MetaboAnalyst 4.0
(URL: www.metaboanalyst.ca/; access on 17 August 2022) [45].

3. Results
3.1. Effect of Coumarin Derivatives on Cell Viability

In the current research, the results of the MTS Assay showed that the range of IC50
of these twelve coumarin derivatives was 50–100 µM (Figure S1 and Table S1). These
data indicated that these twelve compounds had low toxicity. For studying the effect of
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coumarin derivatives on cell metabolism with non-cytotoxicity, we chose the tenth of IC50
of each coumarin derivative for the subsequent studies.

3.2. Metabolic Profiles Analysis of U251 Cells in Twelve Coumarin Derivatives

Using the BMRB database (URL: http://www.bmrb.wisc.edu/, access on 17 August
2022), HMDB database (URL: https://hmdb.ca/; access on 17 August 2022) and Chenomx
NMR Suite for assigning the metabolites from the NMR spectra, we identified 58 metabo-
lites for quantitative calculation in MATLAB (Version 2015b, MathWorks, Inc., Natick, MA,
USA) with AQuA (Figure 1 and Table S2). Then, multivariate statistical analysis was used
to analyze the quantitative data of the metabolites. In the PCA scores plots, metabolic
profiles of cell lines in the treatment with different coumarin derivatives were different
(Figures S2 and S3). Meanwhile, the result of HCA also displayed that the metabolic phe-
notypes were different (Figure S4). Then, the supervised multivariate statistical analysis
was also applied to distinguish the metabolic profiles. The PLS-DA scores plots and cor-
responding RPTs indicated that the metabolic profiles of cell lines in the treatment with
coumarin derivatives could be distinguishable from the control group (Figures S5 and S6).
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Figure 1. NMR spectrum of metabolites used on AQuA of the global spectrum. Fifty-eight metabolites
used in this AQuA were confirmed by using HMDB and BMRB data.

3.3. Determination of Differential Metabolites in the Treatment with Different Coumarin Derivatives

For analyzing the differential metabolites, the four dimensional enhanced volcano
plots were used for data visualization [46]. The VIP values and correlation coefficients (r)
in the OPLS-DA models were calculated in the SMICA-P14+. The scores plots of OPLS-DA
models also showed that the metabolic profiles of cell lines in the treatment of differ-
ent coumarin derivatives were differentiable (Figure S7). In the enhanced volcano plot
(Figures 2 and 3), the differential metabolites were determined using the following four
criteria: VIP value > 1; correlation coefficient (r) > 0.497; p value < 0.05; and the absolute
log2 (fold change) > 0.25. The differential metabolites are located at the upper-left and
upper-right areas of the volcano plot, with larger circle shapes and gradual warm colors.
According to Figure 2A, the metabolites of glycine, guanidinoacetate and lysine were
increased and the metabolites of aspartate, taurine and galactitol were decreased in the
U251 cells co-incubated with CD1. In the U252 cells co-incubated with CD2 (Figure 2B),
three metabolites were increased including glutamine, glutamate and galactitol, and three
metabolites were decreased, including taurine, inosine and lysine. When the U251 cells
were incubated in CD3, there were four metabolites increased, including phenylalanine,
glutamine, glutamate and NAD+; there were three metabolites decreased, including tau-
rine, aspartate and lysine (Figure 2C). Then, the differential metabolites were changed
when the cells in the culture medium had added CD4; five metabolites were increased
(galactitol, NAD+, glutamine, glutamate and glutathione), and two metabolites were de-
creased (taurine and lysine) (Figure 2D). When the cells in the culture medium had added
CD5 (Figure 2E), three metabolites were increased (ADP, glutamine and glutathione) and
two metabolites were decreased (taurine and lactate). In the culture medium with CD6
(Figure 2F), there were two increased metabolites (glycine and lactate) and three decreased

http://www.bmrb.wisc.edu/
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metabolites (aspartate, taurine and glutathione). Similarly, we analyzed the differential
metabolites in the U251 cells co-incubated with the subsequent six coumarin derivatives
(Figure 3). Detailed statistical information for each group of differential metabolites is
provided in Table S3.
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Control group; (B) CD2 group vs. Control group; (C) CD3 group vs. Control group; (D) CD4 group
vs. Control group; (E) CD5 group vs. Control group; (F) CD6 group vs. Control group. Volcano plots
show log2 (fold change) on the x-axis and −log10 (p value) on the y-axis. Each point represents a
metabolite. The circles’ size and color are determined based on the variable importance projection
(VIP) and absolute correlation coefficient values (|r|), respectively. For each comparison, the larger
the VIP value the larger the size of the circle, and the warmer color corresponds to higher |r|. The
gradient blue means |r| is less than 0.497; the gradual bright yellow means |r| is greater than
0.497 and is less than 0.623; the gradient red means |r| is greater than 0.623.
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Figure 3. Enhanced volcano plots showing significantly different metabolites. (A) CD7 group vs.
Control group; (B) CD8 group vs. Control group; (C) CD9 group vs. Control group; (D) CD10 group
vs. Control group; (E) CD11 group vs. Control group; (F) CD12 group vs. Control group. Volcano
plots show log2 (fold change) on the x-axis and −log10 (p value) on the y-axis. Each point represents
a metabolite. The circles’ size and color are determined based on the variable importance projection
(VIP) and absolute correlation coefficient values (|r|), respectively. For each comparison, the larger
the VIP value the larger the size of the circle, and the warmer color corresponds to higher |r|; the
gradient blue means |r| is less than 0.497; the gradual bright yellow means |r| is greater than
0.497 and is less than 0.623; the gradient red means |r| is greater than 0.623.
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3.4. Significantly Disturbed Metabolic Pathways in the Treatment with Different Coumarin Derivatives

Based on the differential metabolites, we identified significantly disturbed metabolic
pathways in the treatment with different coumarin derivatives (Figures 4 and 5). For the
U251 cell in the treatment with CD1, there were three significantly disturbed metabolic path-
ways including aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism,
and taurine and hypotaurine metabolism (Figure 4A). When the co-cultured compound
changed CD2, the disturbed metabolic pathways also changed, including D-glutamine and
D-glutamate metabolism, aminoacyl-tRNA biosynthesis, arginine biosynthesis, alanine,
aspartate and glutamate metabolism, and taurine and hypotaurine metabolism (Figure 4B).
When the U251 cell was co-cultured with CD3, the metabolic pathways of aminoacyl-
tRNA biosynthesis, arginine biosynthesis, alanine, aspartate and glutamate metabolism,
D-glutamine and D-glutamate metabolism and phenylalanine, tyrosine and tryptophan
biosynthesis were disturbed (Figure 4C). The disturbed metabolic pathways between these
two coumarin derivatives were similar. Compared with the previous coumarin deriva-
tives (CD1, CD2 and CD3), the metabolic pathway of glutathione metabolism was an
emerging perturbed metabolic pathway (Figure 4D). There were four metabolic pathways
disturbed for the cell lines in the treatment of CD5, including D-glutamine and D-glutamate
metabolism, arginine biosynthesis, alanine, aspartate and glutamate metabolism, and tau-
rine and hypotaurine metabolism (Figure 4E). When the U251 cell was in the treatment with
CD6, the disturbed metabolic pathways were changed including glutathione metabolism,
aminoacyl-tRNA biosynthesis and taurine and hypotaurine metabolism (Figure 4F). The
disturbed metabolic pathways of subsequent coumarin derivatives that interfere with
cells are basically the same as those described above. Of course, there were also some
derivatives that cause changes in other metabolic pathways. There were five disturbed
metabolic pathways for the U251 cell in the treatment with CD7, including D-glutamine and
D-glutamate metabolism, arginine biosynthesis, glutathione metabolism, alanine, aspartate
and glutamate metabolism, and taurine and hypotaurine metabolism (Figure 5A). The
disturbed metabolic pathways of arginine biosynthesis, alanine, aspartate and glutamate
metabolism and phenylalanine, lysine and tryptophan biosynthesis were changed when
the cells were co-cultured with CD8 (Figure 5B). The metabolic pathways of glycine, serine
and threonine metabolism were changed for the U251 cell in the treatment with CD9 and
CD10 (Figure 5C,D). The metabolic pathways of valine, leucine and isoleucine biosynthesis
were disturbed for the U251 cell in the treatment with CD11 and CD12 (Figure 5E,F). In
conclusion, in these altered metabolic pathways, the metabolic pathway of aminoacyl-tRNA
biosynthesis was the most frequent for the U251 cell in the different coumarin derivatives,
including CD1, CD2, CD3, CD4, CD6, CD9, CD10 and CD12. Then, the metabolic path-
way of D-glutamine and D-glutamate metabolism also had with a high rating, including
CD2, CD3, CD4, CD5, CD7 and CD10. The remaining significantly disturbed metabolic
pathways included glycine, serine and threonine metabolism, taurine and hypotaurine
metabolism, arginine biosynthesis, alanine, aspartate and glutamate metabolism, pheny-
lalanine, tyrosine and tryptophan biosynthesis, glutathione metabolism and valine, leucine
and isoleucine biosynthesis. The results of significantly disturbed metabolic pathways
for each coumarin derivative affecting the cellular U251metabolic pathways are shown
in Table S4. Due to the structural similarity of CDs, there was a partial agreement in the
metabolic pathways that were perturbed in U251 cells.
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4. Discussion

In the past few decades, the study of selective MAO-B inhibitors has been continually
increasing because of their critical role in regulating synaptic function and monoamine
metabolism [47]. However, we were still far from fully understanding the biological
processes related to the role of MAO-B inhibitors in the treatment of AD. Tiziani et al.
used NMR-based metabolomics to screen a kinase inhibitor library [13]. Similar strategies
have been used to personalize treatment [48]. In this study, we collected characteristic
metabolites related to neuronal cells in MAO-B inhibitor conditions by using NMR-based
metabolomics and associated multivariate statistical analysis. We systematically explored
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these MAO-B inhibitors’ effects on the metabolic phenotype of neuronal cells to describe
the relevant biochemical processes.

According to metabolic pathway analysis, we found that the aminoacyl-tRNA biosyn-
thesis was the most frequent when the U251 cell was in the different MAO-B inhibitors.
Aminoacyl-tRNA biosynthesis is the core metabolic pathway of organisms, and the aminoacyl-
tRNA synthetases (ARSs) are universally expressed enzymes accountable for charging
tRNAs with their cognate amino acids, which is crucial for the first step of protein syn-
thesis [49,50]. There have been many studies showing that ARSs are implicated in some
form of neurological disorders, including AD [51]. This result indicated that our coumarin
derivatives could be used for AD treatment by regulating this metabolic pathway. The
metabolic pathway of D-glutamine and D-glutamate metabolism was also regulated in
the U251 by treatment with different coumarin derivatives. Glutamate is the brain’s main
excitatory neurotransmitter. The metabolic pathway of the D-glutamine and D-glutamate
metabolism could balance the crucial amino acid between neurons and astrocytes [52,53].
Busche et al. found that abnormal glutamate signaling appears in the early stages of AD
pathology [54,55]. In our study, the coumarin derivatives that we synthesized could affect
the metabolic pathway of D-glutamine and D-glutamate metabolism and thus play a role in
the treatment of AD. Meanwhile, our coumarin derivatives could alter glycine, serine and
threonine metabolism. The metabolic pathway of glycine, serine and threonine metabolism
is the core of the one-carbon metabolism. The metabolic pathway of glycine, serine and thre-
onine metabolism has been reported to be involved in hydrogen sulfide (H2S) metabolism,
which was shown to be a neuromodulator in humans [56]. Loïc Dayon et al. observed
significant improvements in the prediction of cognitive impairment by adding one-carbon
metabolites, which were discovered by mass spectrometry-based metabolomics studies
in cerebrospinal fluid and plasma collected from older community-dwelling adults with
cognitive impairment, and corresponding asymptomatic volunteers [57]. The results of
these studies suggested that our coumarin derivatives could regulate cognitive function.
In addition, there were four metabolic pathways participating in one-carbon metabolism,
including arginine biosynthesis, alanine, aspartate and glutamate metabolism, phenylala-
nine, tyrosine and tryptophan biosynthesis and valine, leucine and isoleucine biosynthesis.
At the same time, these four metabolic pathways were also involved in the amino acid
metabolism. Tynkkynen, J et al. discovered that the amino acid metabolism was related to
Alzheimer’s disease by using metabolomics in eight prospective cohorts with 22,623 partic-
ipants [58]. These perturbed metabolic pathways in our study were also involved in the
regulation of the APOE gene [59], which was the strongest genetic risk factor for AD [60,61].

In addition, two metabolic pathways were perturbed for the U251 cell in the treatment
of coumarin derivatives, including taurine and hypo-taurine metabolism and glutathione
metabolism. These two perturbed metabolic pathways were involved with oxidative stress.
Huang et al. found that the perturbed metabolic pathway of taurine and hypo-taurine
metabolism could lead to oxidative stress injury in neurons, and worsening dementia by
using metabolomics [62]. The glutathione metabolism may have partial neuroprotective
effects by reducing mitophagy-related oxidative stress and maintaining mitochondrial
function through its effect on autophagy [63]. These results suggested that these coumarin
derivatives synthesized by us could affect the development of AD through metabolic
pathways involved in oxidative stress.

5. Conclusions

The described pathways are linked to nerve cell function related to aminoacyl-tRNA
biosynthesis, glutamine and glutamate metabolism, one-carbon metabolism and oxidative
stress. Compared with traditional drug screening, the NMR-based metabolomics support
the findings of the metabolic pathways associated with drug action. Our study reported
the effect of our coumarin derivatives on nerve cells in vitro through their effect on the
metabolic phenotype. We believe that these NMR-based metabolomics might accelerate
the process of drug research in vitro and in vivo.
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