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Abstract: Trypanosomiases are a group of tropical diseases that have devastating health and socio-
economic effects worldwide. In humans, these diseases are caused by the pathogenic kinetoplastids
Trypanosoma brucei, causing African trypanosomiasis or sleeping sickness, and Trypanosoma cruzi, caus-
ing American trypanosomiasis or Chagas disease. Currently, these diseases lack effective treatment.
This is attributed to the high toxicity and limited trypanocidal activity of registered drugs, as well
as resistance development and difficulties in their administration. All this has prompted the search
for new compounds that can serve as the basis for the development of treatment of these diseases.
Antimicrobial peptides (AMPs) are small peptides synthesized by both prokaryotes and (unicellular
and multicellular) eukaryotes, where they fulfill functions related to competition strategy with other
organisms and immune defense. These AMPs can bind and induce perturbation in cell membranes,
leading to permeation of molecules, alteration of morphology, disruption of cellular homeostasis,
and activation of cell death. These peptides have activity against various pathogenic microorganisms,
including parasitic protists. Therefore, they are being considered for new therapeutic strategies to
treat some parasitic diseases. In this review, we analyze AMPs as therapeutic alternatives for the
treatment of trypanosomiases, emphasizing their possible application as possible candidates for the
development of future natural anti-trypanosome drugs.

Keywords: trypanosomiases; human sleeping sickness; Chagas disease; antimicrobial peptides;
anti-Trypanosoma activity; alternative therapy

1. Introduction

Kinetoplastids are a group of globally distributed flagellated protists which include
both free-living and parasitic species responsible for serious diseases in animals and hu-
mans. These protists are distinguished by the presence of a large DNA network-containing
region, known as “kinetoplast”, in their single large mitochondrion [1]. Many of the organ-
isms that make up this group have other common characteristics such as (I) the presence of
a single flagellum that originates near the kinetoplast of the mitochondrion and emanates
from a pocket in the cell membrane (except for the intracellular form of Trypanosoma cruzi);
(II) the presence of essential organelles called glycosomes, which are modified peroxisomes
in which the first seven steps of glycolysis and several other metabolic processes are carried
out; (III) a complex life cycle that involves multiple morphological stages with dramatic
changes in their protein expression, metabolism, and membrane composition; (IV) the
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species-specific production of molecules that are critical for their survival and immune eva-
sion of host; and (V) the presence of 6000 orthologous genes in common between different
species that cause different diseases [2–4].

Within this group of organisms are included species that cause human diseases such
as African trypanosomiasis (HAT or sleeping sickness), which is caused by two infective
subspecies of Trypanosoma brucei, and Chagas disease (CD), which is caused by T. cruzi,
both are considered Neglected Diseases by the World Health Organization (WHO) [4–6].
These kinetoplastid diseases affect millions of people in low- and middle-income countries,
located mainly in tropical and subtropical regions, causing around 30,000 deaths per year
and inducing disabling morbidities in millions more [2,5,7]. The use of drugs for the
treatment of these diseases has important limitations since, in addition to many available
drugs date from the early and middle of the 20th century, they have limited efficacy in
advanced stages of the disease, are non-specific, and/or are highly toxic [4,7]. Additionally,
in the case of CD, T. cruzi can adopt quiescent and phenotypically drug-resistant forms.
For its part, T. brucei can reside in the skin and other organs and remain undetected for
a long time, even in the absence of detectable parasitemia. All this could contribute to
refraction to drug treatment and, in turn, would imply the need for the development of
new drugs and therapeutic alternatives for the treatment of these diseases [8–11]. Indeed,
several therapeutic alternatives have been proposed for the treatment of these kinetoplastid
diseases [12–15], including the use of antimicrobial peptides (AMPs) [16–18].

2. What Are Antimicrobial Peptides (AMPs)?

AMPs are a class of small peptides synthesized by pro- and eukaryotic organisms,
used as a strategy for competition and defense during invasion by foreign organisms.
They are encoded by specific genes and expressed constitutively or in response to specific
environmental stimuli [19]. In some insects, AMPs are key for vector–microorganism
interaction and are effective against both quiescent and actively proliferating pathogenic
organisms [20–22].

These peptides are synthesized through three pathways, which include classical riboso-
mal synthesis, non-ribosomal synthesis, and proteolytic digestion of proteins. Ribosomally
synthesized AMPs (RS-AMPs) are those encoded by genes and produced by ribosomal
translation of specific mRNAs into the biologically active amino acids sequences. These
AMPs are widely distributed in nature, produced by various organisms (such vertebrates,
insects, plants, and bacteria) [23,24]. Among the RS-AMPs are the mammalian defensins
and amphibian dermaceptins [23]. Non-ribosomally synthesized AMPs (NR-AMPs) are
produced by enzymes known as non-ribosomal peptide synthases (NRPSs), which incorpo-
rate non-proteinogenic amino acids into the sequence and are found mainly in filamentous
fungi and bacteria [24,25]. So far, hundreds of AMPs synthesized in a NRPS-dependent
manner have been described, among which are gramicidin S and isopenicillin [26]. Other
AMPs are produced via the proteolytic digestion pathway (peptides also known as cryp-
tides) by proteases-mediated cleavage of precursor proteins or larger proteins with other
functions, to yield matured bioactive factors [24,27]. During these processes, various frag-
mented peptides are also produced that can vary in their biological activity [27]. Buforin II
is one of the most studied cryptid peptides [28].

Although natural AMPs are molecules with considerable diversity in their structural
properties, origins, and mechanisms of action, they have certain characteristics in common.
Generally, they are short molecules (≈10–100 amino acids) of a cationic nature at neutral
pH (generally ranging from +2 to +11), which facilitates their interaction with charged
cell membranes through electrostatic interaction [29,30]. Additionally, most AMPs have a
considerable proportion of hydrophobic residues (close to 50%) and an amphipathic struc-
ture [30,31]. This latter property is responsible for their structural flexibility and solubility
in aqueous environments. [30]. The overall positive net charge and amphipathicity are the
two characteristics that contribute to the high affinity of AMPs for membranes [32]. Struc-
turally, AMPs are commonly classified into four groups based on their secondary structure,
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which include linear α-helical peptides, β-sheet peptides (usually stabilized with one or
more disulfide bonds), linear extension or loop (devoid of α- or β-elements) structure, and
mixed (α-helical/β-sheet) peptides [29,30,32] (Figure 1). However, some peptides with
cyclic structures and unusual complete topologies have also been documented [32]. Most
studied among the groups of AMPs are the peptides with an α-helix structure [33].
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Figure 1. Structural classification common of naturally antimicrobial peptides (AMPs). Representa-
tive examples of common structural classes of AMPs. (A). α-Helical: structure of human cathelicidin
LL-37 (PDB ID:2k60). (B). β-Sheet: polyphemusin I (PDB ID:1RKK). (C). Extended or loop: indolicidin
(PDB ID:1G89). (D). Mixed (contain both α-helical and β-sheet elements): Defensin A (PDB ID: 1ICA).
Created with BioRender.com (accessed on 20 February 2023).

These peptides are characterized by having a broad-spectrum antimicrobial activity,
which is attributed to mechanisms of action such as (A) cell membrane damage (promot-
ing pore formation and development of a peptide “carpet” on the membrane surface),
(B) interacting with internal targets (DNA or RNA, or interfering with protein synthe-
sis or folding, or enzyme activity), and (C) modulation of the host innate immune re-
sponses [19,34–36] (Figure 2). Additionally, these AMPs have been shown to possess high
specificity, limited toxicity, and a low probability of inducing resistance [35]. In this sense,
AMPs have been proposed as an attractive therapeutic alternative for treatment of parasitic
diseases [35–37].
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(B). Interaction with internal targets. (C). Modulation of the host innate immune response. Created
with BioRender.com. (accessed on 20 February 2023).

The advantages of AMPs over other peptides provide the opportunity to develop them
for therapeutic strategies. Compared to AMPs this may be more difficult to achieve with other
peptides. For example, synthesis of synthetic peptides (SPep) requires, in some cases, very
complex strategies and specialized and sophisticated equipment [38–40]. Additionally, the SPep
may have heterogeneity within the chain associated with statistical copolymerization, which
leads to an amino acid composition gradient. This makes identification of any structure–function
correlations difficult [41]. Another advantage of AMPs is that their action does not depend
on external factors (such as pH), whereas that of some Spep depends on microenvironmen-
tal conditions [38]. Also, AMPs have often low cytotoxicity, whereas for SPep, it has been
documented that excessive positive charge density can lead to severe cell and tissue-based
toxicity [42]. The use of AMPs with anticancer activity (“anticancer peptides” or ACPs) is
considered a therapeutic strategy of great potential. Compared to specific-target drugs, these
ACPs can act towards different intracellular targets in addition to presenting a mechanism of
action at the membrane level, which would imply increasing the success of the therapy and
a low propensity to resistance development. Additionally, few side effects are also a feature
attributed to future ACPs-based therapies [31].

In this review, we will analyze AMPs as a possible therapeutic alternative for the
treatment of trypanosomiasis, particularly emphasizing diseases caused by the parasites T.
brucei and T. cruzi.
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3. Why Is Trypanosomiasis Important?

Trypanosomiases form a set of diseases that affect millions of people and animals
globally, especially in poor rural populations of the Americas, Asia, and sub-Saharan
Africa [43–45]. These diseases are included in the group of Neglected Tropical Diseases
(NTD), which attribute to a significant health, economic, and social impact in endemic
regions [6,46,47].

Human African trypanosomiasis (HAT) or sleeping sickness is caused by two sub-
species of Trypanosoma brucei that are pathogenic for humans and transmitted by tsetse flies,
Trypanosoma brucei gambiense (T. b. gambiense) in western and central Africa, and Trypanosoma
brucei rhodesiense (T. b. rhodesiense) in eastern Africa, with T. b. gambiense being responsible
for more than 95% of all HAT cases [6,48]. In the early stages of HAT, symptoms are usually
diverse and non-specific; however, in advanced stages of the disease, the severe symptoms
are associated with central neurological impairment, and also involve weight loss, anemia,
hepatosplenomegaly, arthralgia, and inflammatory processes [6,49–51]. This devastat-
ing disease threatens millions of people in sub-Saharan Africa, since it is estimated that
54 million live in areas with risk of infection [52]. It can even become the main cause
of death in these communities, surpassing HIV/AIDS [6]. The economic losses to HAT
exceed millions of dollars. Studies based on disability-adjusted-life years (DALYs) sug-
gest that HAT causes approximately 1.6 million DALYs, which is why it is considered
the second among all diseases in Africa for mortality and fourth for associated disabili-
ties [53]. Also, it has been suggested that an elimination program could cost approximately
US$ 1.2 billion [54].

American trypanosomiasis, also known as Chagas disease (CD), is transmitted by
triatomine insects and caused by T. cruzi [55]. The clinical course of this disease is char-
acterized by an acute phase, which may be asymptomatic or with nonspecific symptoms,
followed by a chronic phase, in which there may also be a complete absence of signs and
symptoms of the disease. However, in this chronic phase, 30–40% of patients develop multi-
organ complications, mainly cardiomyopathy or megaviscera (megaesophagus, megacolon,
or both), peripheral neuropathy, dermatological manifestations, and early death [55,56].
This anthropozoonosis has a globalized distribution; however, it is endemic to 21 countries
in the Americas, affecting approximately 7–8 million people, most in rural areas, causing
50,000 deaths per year [57–60]. In the Americas alone, 30,000 new cases are reported each
year, of which 8600 newborns are infected during pregnancy [61]. The annual global burden
is US$ 627.5 million per year, mainly related to healthcare costs, of which 10% pertains
to non-endemic countries [62,63]. In Latin America, the economic losses attributed to
this disease are 752,000 working days because of premature deaths and US$ 1.2 billion in
productivity [55,64].

4. Current Treatment of Trypanosomiases

Although standard therapies are available for treatment of trypanosomiases, these are
mainly based on synthetic drugs mostly developed more than 40–50 years ago, several of
them highly toxic, and their use depends on the stage of the disease and/or trypanosome
species causing the infection [58,65].

Treatments for HAT involve five synthetic drugs, pentamidine, suramin sulfate, melar-
soprol, nifurtimox/eflornithine combination (NECT), and fexinidazole. The mechanism of
action of these drugs is mainly based on causing DNA damage and the inhibition of en-
zymes involved in various cellular processes of the parasite (DNA replication, glutathione
metabolism, trypanothione biosynthesis, NADH/NAD+ balance maintenance, mitochon-
drial mRNA editing, and glycolysis) [65,66]. Most of these drugs are specific for treating
infections caused by either T. b. rhodesiense or T. b. gambiense, except for suramin sulfate,
used to treat infections caused by both parasites [65]. The efficacy of these drugs depends
on the stage of the disease. Pentamidine and suramin are used during the initial stage of
HAT (hemolymphatic), whereas melarsoprol, eflornithine, and NECT are used during the
advanced stage of the disease, when parasites have migrated to the central nervous system.
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All these drugs require prolonged use, intravenous infusion, and are highly costly, often
resulting in non-compliance and abandonment of treatment [65]. Also, the administration
of these drugs generally has associated side effects that in some cases can be fatal and
appear in the first days of treatment [65,67,68]. Another disadvantage is the development of
resistance to these drugs that is mainly associated with the loss of function of the parasite’s
transporters that mediate their internalization [65,69].

Recently, the US Food and Drug Administration (FDA) and the European Medicines
Agency (EMA) authorized the marketing of fexinidazole (FNZ) [70,71], an oral nitroim-
idazole drug, for the treatment of both stage 1 and 2 T. b. gambiense HAT, however, it is
little effective in patients with severe stage 2 HAT. Fexinidazole is a prodrug whose activity
depends on electronic reductions, facilitated by a type-I NADH-specific nitroreductase
(TbNTR1), which leads to the formation of reactive metabolites that can induce damage to
the kinetoplast DNA (kDNA) and to the trypanosome nuclear genome and its proteins, as
well as inhibition of DNA synthesis [65,72]. The decrease in the activity of this enzyme or
the changes in its tbntr1 gene, lead to resistance to fexinidazole and cross-resistance to other
nitroheterocycles, including nifurtimox [73]. Although the side effects caused by FNZ are
milder compared to those of the other drugs [74], its use is only recommended in patients
who do not have other available treatment options. In infants, it is only recommended to
be used at 6 years of age and older and weighing at least 20 kg [71,74,75], which means a
limitation for the treatment of congenital HAT.

Regarding Chagas disease, currently only two drugs, benznidazole (BZN) and ni-
furtimox (NF) are licensed for the treatment of this disease. The mechanism of action of
both drugs involves intracellular activation of a mitochondrial NADH-dependent type-I
nitroreductase (TcNTR), which gives rise to intermediates (free radicals and/or electrophilic
metabolites) that bind to intracellular macromolecules and inhibit several vital biological
processes of the parasite (DNA synthesis, DNA and RNA metabolism, protein synthesis,
and energy metabolism) [55,58]. The efficiency of NF and BZN depends on the stage of
the disease. These drugs tend to be less effective in the chronic phase, where the cure
figure hardly reaches 20–30% [76,77]. Although both compounds are administered orally
in two or three doses, treatment is discontinued in 9–75% of patients due to severe side
effects [58,78]. Additionally, the use of these drugs is not recommended during pregnancy
and lactation, and in the case of NF, it is only approved for newborns over 2.5 kg [79,80],
meaning a limitation for the prevention of vertical transmission of the parasite and timely
treatment of congenital CD. The occurrence of resistance in strains, mediated by various
mechanisms (e.g., loss/mutations/polymorphism of TcNTR) [81,82] are other limitations of
the clinical use of BNZ and NF. Notably, these drugs cannot prevent or reverse the damage
caused, especially in the heart, by inflammation in response to T. cruzi infection, even in
conditions where a decrease in parasitic load has been observed [83,84].

FNZ and its derivatives have also been proposed as a therapeutic alternative in adults
with chronic CD, since it has been shown that low FNZ doses can be safe and effective
in treatment regimens of <10 days [85,86]. However, neutropenia, alterations in platelet
counts and elevations in hepatic enzymes can be observed in patients, in a dose-dependent
manner [86].

Most of the drugs currently available for the treatment of trypanosomiases have an
ancient origin and high toxicity. Others, despite being specific and efficient for the early and
advanced stages of infection, depend on an enzyme or membrane transporter of the parasite
for their activation. The latter generally implies a probability of resistance development
over time. For all these reasons, there is a need to develop or search compounds that will
overcome these limitations observed in anti-trypanosome drugs available on the market.
Although this search may seem very demanding, these “ideal drug candidates” could be
found in various natural sources. This will be discussed in more depth in the next section.
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5. Other Therapeutic Alternatives against Trypanosomiasis

All studies related to available drugs for the treatment of trypanosomiasis have high-
lighted the need to design new therapeutic strategies, either by optimization of existing
drugs (in combination with other compounds) or by the formulation of new compounds.
Salvage chemotherapy or repositioning of established pharmacotherapeutic agents, with
known activity and side-effect profiles, have been considered as candidates for the treat-
ment of trypanosomiases [58,65,66,77]. Several of these repositioned drugs are commonly
used as dietary supplements and to treat other diseases (bacterial and fungal infections,
hypertension, depression, osteoporosis) [77,87–92]. Many studies with such drugs are in
the preclinical phase for trypanosomiasis (using methodologies based on in vitro or animal
studies), clinical trials, and described in case reports. Also, synthetic, semi-synthetic [93–97],
and natural compounds have been proposed as alternatives for the treatment of these try-
panosomiases [98–101]. Among these natural compounds with anti-trypanosome activity,
AMPs are included [16,102,103].

AMPs exert their antiparasitic effect against these parasites mainly through their
association with, and subsequent rupture of the plasma membrane. However, they can also
induce killing of the parasites through alteration of calcium homeostasis, and mitochondrial
function, and induce activation of various cell-death pathways [102]. Additionally, anti-
inflammatory properties have been attributed to these AMPs [104] with, in some cases, little
or no toxicity against mammalian cells [105,106], and they exert their activity in very low
concentrations [16]. All these attributes lead to postulating AMPs as attractive strategies
for the treatment of trypanosomiases.

6. AMPs with Antiparasitic Activity

Several studies have shown the antiparasitic effect of some AMPs [35,107,108], includ-
ing activity against parasites that cause important tropical diseases [109] (Figure 1). Many
of these AMPs have been isolated from various vertebrate and invertebrate hosts of these
parasites [107,110,111].

For apicomplexan parasites, most studies with AMPs have focused on Plasmodium
spp. and Toxoplasma gondii [112]. These peptides have an inhibitory effect on the growth,
life-cycle development, infectivity, and transmission of these parasites [113–116].

Plasmodium is the parasite on which most studies with AMPs have been carried
out [112]. In this protist, many natural AMPs act primarily by disrupting the integrity of
cell membranes [117–122]. However, some others can interfere with other important cellular
processes of the parasite. In Plasmodium berghei, some fungal AMPs have an inhibitory effect
on histone deacetylase (HDA), thus inducing histone hypermethylation and subsequent
alteration of gene expression in the parasite [123]. Other AMPs derived from Gram-positive
bacteria, such as epoxomicin and derivatives of the natural cyclic oligopeptide thiostrepton,
have an inhibitory effect on protein synthesis and turnover, due to their binding to and
inhibition of catalytic activity of proteasome β subunits (20S) [124,125]. Additionally,
thiostrepton can inhibit mRNA translation in the apicoplast through its binding to the
plasmodial organellar rRNA promoting structural alterations that prevent its function
during protein synthesis [125,126]. Importantly, antimalarial activities have been attributed
to some AMPs with semi-synthetic and synthetic origin. Synthetic AMPs inhibit the
plasmodial cysteine protease falcipain and aspartic proteases plasmepsin I and plasmepsin
II, involved in hemoglobin hydrolysis and hemozoin formation, thus interfering with
parasite metabolism and growth [127–129]. Notably, some synthetic peptides have also
shown an effect on some enzymes such as topoisomerase I, affecting the parasite’s DNA
metabolism [130]. Several of these AMPs not only have antiplasmodial activity against
different developmental stages of some Plasmodium species (P. falciparum, P. berghei, and
P. yoelii nigeriensis) in vitro conditions [121,124,131], but are also effective at high parasitemia
in an animal model [122].
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In the case of T. gondii, the yeast killer toxin (KT) can induce apoptotic-like cell
death [132]. Other AMPs such as apicidin, a fungal peptide, demonstrated in vitro activity
against apicomplexan parasites, including T. gondii, through the inhibition of HDA [123].
This defensin can reduce the viability of the parasite and, consequently, host cell infec-
tion [133]. Because of their high specificity, some AMPs have inhibitory effects on apicom-
plexans parasites at pico- and nanomolar concentrations [112,120,124,127,134,135].

In helminths, studies have focused primarily on Schistosoma and Brugia. In these
parasites, AMPs have effects on motility, development, egg deposition, and the integu-
mentary surface [136–140]. In Brugia pahangi, synthetic cecropins A/B, AMPs from insect
hemolymph, attenuate microfilariae mobility and larval development in adult female
Aedes aegypti [136]. In Schistosoma, dermaseptin, a peptide isolated from frogs, can syn-
ergistically interact with other natural compounds and contribute to parasite killing and
infection control. In combination with piplartine, an amide alkaloid of Piper longum L. (long
piper), dermaseptin not only exerts activity against the Schistosoma mansoni (S. mansoni)
stages (schistosomula and adult) and affects the reproductive fitness of adult worms, but
also induces structural alterations of the tegument and extensive destruction of the tuber-
cles [137,138]. Although the anthelmintic mechanism of AMPs has not been elucidated, it
has been proposed that disruption of cell structure by pore formation by direct interaction
with the lipid bilayer seems to be the most likely [136,138,141,142]. It should be noted that
the integument is essential for the survival of the helminth parasites, since it is involved
in nutrient absorption and in the interaction with the host [143–146]. In both Brugia and
Schistosoma, divalent metal transporter 1 (DMT1) molecules are present in the integument
and are essential for the absorption of iron, an essential ion for the development and repro-
duction of these parasites [144,146,147]. In this sense, directing AMPs against the tegument
of these parasites could be a good anthelmintic strategy.

Unlike in apicomplexan parasites, the AMPs tested so far on helminths exert their
antiparasitic action at micromolar concentrations [136–138]. Some AMPs with antimicrobial
properties have been discovered in helminths [142,148,149]. In S. mansoni, an AMP called
schistocins has been obtained from the protein SmKI-1, a key protein for the survival
of this nematode, which has activity against Schistosoma itself [142]. Likewise, putative
neuropeptides derived from this parasite alter the behavior of the cercariae stage, therefore
their use has been proposed as strategy for the control of the infection [140].

In trypanosomes such as Trypanosoma evansi and Trypanosoma equiperdum, causing
surra and dourine in animals, some AMPs have been shown to exert an trypanocidal effect;
hence, they have been proposed for use in new treatment strategies of trypanosomiasis in
animals [150,151]. Furthermore, AMPs isolated from triatomine hemolymph have been
shown to have trypanolytic activity against different strains of Trypanosoma rangeli, an
infectious but non-pathogenic human parasite [152]. In these trypanosomes, AMPs exert
their action through different mechanisms, including plasma membrane permeabilization,
mitochondrial alteration, and parasite lysis [150–152].

In the following sections, we will analyze AMPs as antiparasitic agents against the
trypanosomes T. brucei and T. cruzi, etiologic agents of trypanosomiases in humans.

7. Antimicrobial Peptides against Kinetoplastids Causing Neglected Tropical Diseases

Various AMPs with trypanocidal activity against T. brucei and. T. cruzi have been iden-
tified, some of which have been found in host organisms for these parasites (Supplementary
Table S1).

7.1. AMPs against T. brucei

Many of the AMPs that are active against T. brucei are produced by a wide variety of
organisms, including mammals and the insect vector [16,153]. These can carry out their
action extracellularly, by plasma membrane disturbance, or intracellularly, by altering the
function of some intracellular compartments [16,16,153,154] (Figure 3).
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Figure 3. Mechanisms of action of antimicrobial peptides (AMPs) against T. brucei. (A). AMPs
derived from the vertebrate host and insect vector. Peptides isolated from both vectors and
hosts exert their trypanocidal effect through membrane perturbation and induction of cell lysis.
(B). Mechanism of action of neuropeptides (NPs). The killing of trypanosomes by NPs requires the
NPs to be endocytosed through the flagellar pocket and transported from the endosomes to the acidi-
fied lysosome, where they break the lysosomal bilayer membrane and accumulate in the cytoplasm.
Once in the cytoplasm, their interference in various cellular processes contributes to morphological
alterations and disturbance of organelles (glycosomes and mitochondrion), which ultimately lead
to depletion of ATP and failure of the energy metabolism. (C). AMPs isolated from natural sources
(bacteria, fungi, and insects). (C.1,C.2). AMPs derived from fungi. The lipopeptide amphomycin,
inhibits the biosynthesis of the glycolipid precursor of glycosylphosphatidylinositol (GPI) by which
the variant surface glycoproteins (VSGs) are anchored to the plasma membrane of these parasites (C.1).
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Leucinostatins (A and B) and alamethicin act as ionophores and pore formers in the membranes,
causing alteration of cellular homeostasis, ultimately leading to the death of the parasite. (C.3).
AMPs isolated from bacteria. Bacteriocin AS-48 targets intracellular compartments without plasma
membrane permeabilization. AS-48 may interact at the surface with VSGs and then promotes its
internalization through a clathrin-mediated endocytic process. In the cytoplasm, it induces structural
alterations and autophagy-like cell death. (C.4). AMPs derived from bee venom. Melittin induces
an increased influx of Ca2+ through the plasma membrane or increased release from acidocalci-
somes. Excess Ca2+ accumulated intracellularly is stored in the mitochondrion, causing a reduced
mitochondrial membrane potential, disorganization of kinetoplast DNA, autophagy, and cell death.
(D). Synthetic AMPs. (D.1). SHPs intercalate and insert deeply into the plasma membrane, resulting
in changes in the distribution of membrane components, increased membrane stiffness, loss of cell
motility, and cell death. (D.2). For their part, the CPPs cross the membrane, accumulate in the
cytoplasm and interfere with various cellular processes (such as inhibition of metabolic enzymes and
RNA/DNA synthesis). Created with BioRender.com (accessed on 23 November 2022).

Among the AMPs from insects, some peptides found in species of the tsetse fly Glossina
are highlighted in Figure 3A. These AMPs include attacina, defensins, diptericin, and
cecropin, involved not only in the antimicrobial response against African trypanosomes
but also in immunomodulatory functions [16,153,155]. All these AMPs, derived from
hemolymph, fat body, and proventriculus, are associated with the response to infection by
trypanosomes [156]. These peptides have an effect in the micromolar concentration range
against the mammalian bloodstream form (BSF) and insect-stage procyclic form (PCF)
of T. brucei [16,153,154], through permeabilization of the parasite’s plasma membrane,
via interaction and formation of pores [153,156,157] (Figure 3A). In addition, the AMP
stomoxyn from another fly species, Stomoxys calcitrans, a not-cyclical vector of trypanosomes
and sympatric with tsetse flies, exhibits trypanolytic activity to BSF T. b. rhodesiense [158].

Vertebrate host-derived peptides are the most studied AMPs with anti-trypanosome
activity [16,155,159]. The defensins and the cathelicidins are mammalian AMPs that have
been shown to exert a trypanolytic effect by membrane permeabilization and disruption
of internal structures [16,159] (Figure 3A). Under in vitro conditions, human β-defensins,
exhibits very weak killing of the PCF and BSF forms of T. brucei, only obtaining a re-
duction in survival (18–33%) when the parasites were incubated with this peptide [159].
Other defensins of mammal such as cryptdin-4, a murine α-defensin, also exhibits similar
weak killing of the PCF of T. brucei, when the parasites were incubated with this pep-
tide [159]. However, some cathelicidins, such as LL-37, were more effective in killing
both the PCF and BSF of the parasite because 100% reduction in survival of parasites was
found when incubated with these AMPs [155]. Similarly, other some cathelicidins, such as
SMAP-29 and protegrin-1, were effective in killing both the PCF and BSF of the parasite
because 39%–95% reduction in survival of parasites was found when incubated with these
AMPs. Additionally, the administration of these cathelicidins to T. brucei–infected mice
decreased parasitemia and prolonged survival of the animals [159]. Both peptides, de-
fensins and cathelicidins, exert their trypanolytic activity in the micromolar concentration
range [16,155,159,160]. The cationic nature of these AMPs may allow them to more eas-
ily interact with the negatively charged cell surface of trypanosomatids, mainly due to
the presence of sialic acids associated with glycoproteins, glycolipids, and of phosphate
groups [161]. Alternatively, the susceptibility of T. brucei membranes to AMPs could also
be related to the abundance of glycosylphosphatidylinositol (GPI) protein anchors on their
surface [159].

Other cathelicidins from sheep (OaBAC-5-mini) and bovine (BMAP-27, indolicidin,
BAC-CN) have a trypanolytic effect on both the PCF and BSF of T. brucei [155,160].

Other studies have evaluated the trypanocidal ability of neuropeptides (NPs) [154],
soluble mediators produced by the human neuroendocrine and immune system, which
participate in functions related to regulating physiological homeostasis, neuroprotection,
immunomodulation, and antimicrobial properties [162–164]. These NPs exert their parasitic
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effect through a mechanism different from that described for other AMPs [159]. Some neu-
ropeptides, such as vasoactive intestinal peptide (VIP), alpha-melanocyte-stimulating hor-
mone (α-MSH), urocortin (UCN), adrenomedullin (AM), ghrelin (GHR), and corticotropin-
releasing hormone (CRH), can kill the BSF of the animal- but not human-infective sub-
species T. brucei brucei (T. b. brucei) by targeting intracellular compartments and inducing
autophagy-like cell death [154] (Figure 3B). These NPs are endocytosed through the flag-
ellar pocket and enter the normal trafficking pathway of the parasite. Subsequently, they
disrupt lysosome integrity and accumulate intracellularly, finally causing disruption of
intracellular compartments and killing the trypanosome. Some NPs induce morphologi-
cal alterations such as cell size, formation of vacuolar-like structures, detachment of the
flagellum, and consequent reduced motility. Additionally, they can induce a block in
cytokinesis, leading to the presence of aberrant parasites with two mitochondria or kine-
toplasts (Figure 3B). Also, some NPs such as VIP alter intracellular trafficking, reduce the
mitochondrial membrane potential and decrease the ATP level. In BSF parasites, which are
dependent on glycosomal metabolism for energy, VIP causes disturbance of glycosomes
with partial relocalization of some glycolytic enzymes, phosphoglycerate kinase (PGK), and
aldolase (ALD), to the cytosol. All these events together lead to energy metabolism failure
that initiates the autophagy-like cell death. Finally, rupture of the plasma membrane and
cell disintegration occurs (Figure 3B) [154,165]. Although these NPs induce the death of
trypanosomes through a cascade of events, it should be noted that the mechanism by which
they exert their effect depends on their cationic nature, which allows them to recognize and
interact with the anionic residues exposed on the plasma membrane. All these NPs have
inhibitory effects in the micromolar range [154].

AMPs with activity against T. brucei have also been isolated from other natural
sources (Figure 3C) [166–169]. The antibiotic peptides, amphomycin, leucinostatins, and
alamethicin, isolated from fungal species have a trypanocidal effect against T. brucei
species [166,167,170] (Figure 3C.1). The lipopeptide amphomycin, isolated from Strep-
tomyces canus was active against BSFs of both subspecies T. b. gambiense and T. b. rhodesiense,
leading to a definitive cure of the infection in mice when it was administered on four
successive days [166]. This antibiotic inhibits the biosynthesis of the glycolipid precursor
of GPI by which the variant surface glycoproteins (VSGs) are anchored in the membrane of
these parasites [166,170]. In this sense, it would be valid to think that this peptide could
influence the antigenic variation of the parasite, a key process for immune evasion [171].
For their part, the antibiotic peptides, leucinostatins (A and B) and alamethicin, isolated
from Paecilomyces spp., exhibit also potent anti-trypanosomal activity against BSFs of T.
b. brucei and T. b. rhodesiense, with even up to 200 times higher activity than suramin and
with little cytotoxicity in human cell lines. These peptides act as ionophores and pore
formers in the membranes, causing disruption of cellular homeostasis, ultimately leading
to the death of the parasite [167,172] (Figure 3C.2). Specifically, by acting as a divalent
ionophores, leucinostatins A and alamethicin mediate Ca2+ entry into the cells [173,174].
The increased influx of Ca2+ then can induce alterations in the different cellular signaling
pathways where this ion acts as a second messenger, which are essential in the physiology
of T. brucei [167,175]. Additionally, the internal environment of some intracellular compart-
ments where Ca2+ is stored, such as acidocalcisomes, mitochondrion, and endoplasmic
reticulum [175], would be perturbed. It could be hypothesized that all this would cause
prolonged elevated levels of intracellular Ca2+ that lead to cell death.

For their part, AMPs isolated from bacteria have also been tested against the different
T. brucei subspecies [168,169]. Bacteriocin AS-48 has the ability to kill BSFs of T. b. gambiense,
T. b. rhodesiense, and T. b. brucei, through targeting intracellular compartments without
plasma membrane permeabilization. AS-48 may interact with VSGs on the surface and
promote clathrin-mediated endocytosis of VSG-bound AS-48. In the cytoplasm, AS-48
induces structural alterations, such as the formation of multilamellar vesicles, myelin-like
structures, alteration of the nuclear envelope, and autophagy-like cell death. This AMP
has an anti-trypanosomal activity at concentrations in the low nanomolar range and is
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innocuous to mammalian cells [169] (Figure 3C.3). Some of these peptides isolated from
entomopathogenic bacteria have activity against T. b. rhodesiense; however, their possible
mechanism of action is still unknown [168].

Amphiphilic peptides such as melittin, the main component of apitoxin (the bee
venom), can induce alteration of Ca2+ homeostasis in protistan pathogens, including
T. b. brucei [176,177]. This peptide promotes an increased influx of Ca2+ through the plasma
membrane or release from acidocalcisomes. The excess Ca2+ accumulated intracellularly is
then stored in the mitochondrion, reducing the mitochondrial membrane potential, disorga-
nizing kinetoplast DNA, and promoting autophagy and cell death [176,178] (Figure 1C.4).
It is noteworthy that in kinetoplastids such as Leishmania, the presence of Ca2+ in other
structures such as glycosomes has been reported [179]. Whether this is true accumula-
tion remains to be confirmed. Ca2+ storage in glycosomes has not been documented for
trypanosomes. Melittin could likely disturb Ca2+ distribution in these parasites and conse-
quently affect their metabolism (Figure 3C.4). Therefore, melittin has been proposed as a
therapeutic agent against these parasites.

The trypanocidal effect of some synthetic peptides has also been evaluated [180–182].
Specific small hydrophobic peptides (SHPs) trypanolytic for the BSF of T. b. brucei have
been reported. The toxic activity of such peptides is conferred by their hydrophobicity and
charge distribution, with their ability to intercalate and insert deeply in the membrane,
which results in changes in the distribution of membrane components and subsequently,
increased rigidity of the plasma membrane, loss of cell motility, and cell death [181,182].
Importantly, BSFs of T. vivax and T. congolense, the Trypanosoma species responsible for most
cases of trypanosomiasis in domestic animals, are susceptible to killing by some peptides,
such as SHP-1, at concentrations similar to those for BSF T. b. brucei (Figure 3D). This
suggests that the susceptibility to these SHPs is a characteristic common of both human
and veterinary pathogenic African trypanosomes [182] (Figure 3D.1). Other peptides such
as cell-penetrating peptides (CPPs), specifically TP10, a derivative of bovine BMAP-27, can
accumulate within the cytoplasm to carry out their antiparasitic activity against BSFs of T.
b. brucei [180] (Figure 3D.2). In the intracellular environment, TP10 interferes with cellular
processes such as enzymatic activities and nucleic acid synthesis [180,183]. Both synthetic
peptides groups, SHP and CPPs, exert their anti-trypanosome effect in the micromolar
concentration range [180,182].

7.2. AMPs against T. cruzi

The antiparasitic activity of AMPs has also been evaluated on T. cruzi, using some
peptides obtained from a variety of natural sources and others synthetically prepared [17,
22,103,106,178,184,185] (Figure 4).

AMPs obtained from various triatomine species, including some T. cruzi-transmitting
vectors, have been shown to possess activity against this parasite. Some of these are
involved in the defense response against infection and control of parasitemia in the vec-
tor [20,22,186,187] (Figure 4A). From the saliva of Triatoma infestans, the trialysin peptide
was isolated, which has a cytotoxic activity against the infective (metacyclic trypomastigote
(Tryp) and replicative (epimastigote (Epi)) insect stage of the T. cruzi Y strain (a BZN-
resistant strain), through the formation of pores in the membrane [20] (Figure 4A.1). In
Triatoma (Meccus) pallidipennis, defensins 1.3 (Def1.3) have trypanocidal activity against the
parasitic kinetoplastids, including the T. cruzi TBAR/MX/0000/Querétaro strain (Qro), in-
ducing morphological alterations, reduced viability and inhibited growth [22] (Figure 4A.2).
It should be noted that the Qro isolate is a highly virulent parasite that under experimental
conditions causes 100% mortality in mice. This mortality is attributable to the exacerbated
inflammatory process induced and the damage caused by it in cardiac tissue [188].
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Figure 4. Mechanisms of action of antimicrobial peptides (AMPs) against T. cruzi. (A). AMPs derived
from the insect vector. These AMPs carry out their activities by disturbing the plasma membrane
and forming pores in it. (A.1). Trialysin induces cell lysis. (A.2). Def1.3 promotes morphological
alterations, reduced viability, and inhibits growth of the parasites. (A.3). Cecropin A perforates
the plasma membrane, causing cell lysis. (B). AMPs derived from the human host. (B.1). Def-α-1
exerts its trypanocidal effect through membrane pore formation, cytoplasmic vacuolization, and
the induction of nuclear and mitochondrial DNA fragmentation, and detachment and release of
the flagellum, leading to parasite destruction. Preincubation of parasites with this peptide inhibits
their infective ability and causes reduction of the parasitemia. (B.2). The neuropeptide VIP mod-
ulates the inflammatory response to T. cruzi, reducing cardiac damage. (C). AMPs derived from
other natural sources (insects, reptiles, and amphibians). (C.1) Melittin induces structural changes
(including disruption of the plasma membrane, structural changes in the mitochondrion, kinetoplast
disorganization, and structural alterations of the flagellum), alteration of Ca2+ homeostasis, and ac-
tivation of different cell death pathways in the parasite. (C.2). Polybia-CP and MP carry out their
trypanocidal effect through the promotion of ROS, mitochondrial dysfunction and apoptosis-like cell
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death. Additionally, MP can inhibit the glycolytic enzyme GAPDH. (C.3). BatxC and Ctn induce
the formation of pores in the plasma membrane, promoting the formation of ROS, loss of the
mitochondrial membrane potential, and cell death by necrosis. (C.4). Peptides dermaseptins 1/4
and phylloseptins 7/8 have trypanocidal activity through disruption of the plasma membrane and
effect on several intracellular targets (such as protein and nucleic acids synthesis). (D). AMPs
derived from aquatic organisms. Peptides isolated from marine organisms (Tach and fragments from
hemocyanin) have anti-T. cruzi activity by causing structural alterations in the plasma membrane and
the formation of pores, and subsequent activation of cell death by necrosis. (E). Synthetic AMPs. (E.1).
Tempz and Tempz-1 have toxicity against T. cruzi through cytoplasmic alterations in the parasite.
These alterations are related to chromatin condensation, mitochondrial cristae disorder, kinetoplast
disorganization, and an increased number and degeneration of reservosomes. (E.2). For their part,
DC1-3 lytic peptides carry out their trypanocidal activity by perforation of the plasma membrane
and subsequent cell lysis. Some of these peptides decrease the infectivity of the parasite, as well as
the parasitemia and mortality of mice infected with T. cruzi. Created with BioRender.com.

Trypanolytic factors with activity against T. cruzi from different discrete taxonomic
units (DTU): TcII, TcV, TcVI Tcba, and Tcmarinkellei have also been identified in the
hemolymph of the triatomines Rhodnius prolixus and Rhodnius robustus. The lytic activity
of these factors is independent of the developmental stage and sex of the vector, and the
blood source [152]. Although the chemical structures and mechanism of action of these
lytic factors are unknown, it has been shown that these factors or their precursors were
proteins or AMPs [189].

Notably, a recombinant Rhodococcus rhodnii has been engineered that expresses cecropin
A. R. rhodnii is an obligate symbiotic bacterium of some T. cruzi vectors where it is required in
the hindgut lumen for the insect’s survival. Cecropin A is an AMP which has activity against
several strains of T. cruzi, including strains Y and DM28, through membrane perforation
and subsequent lysis, due to loss of osmotic equilibrium of the cell [186,190]. When this
peptide is expressed by R. rhodnii, in the intestine of the triatomine vector, it induces the lysis
of Epi and metacyclic trypomastigotes in the hindgut, and consequently clearance of the
infection in the vector [186,190] (Figure 4A.3). This paratransgenic strategy could represent
a novel alternative for control of vectorial transmission of T. cruzi, especially relevant
because of the increasing resistance of vectors to insecticides [191–193]. All these AMPs
isolated from insect vectors and their symbionts such as R. rhodnii exert their trypanocidal
effect at micromolar concentrations; however, some of them, such as trialysin, are cytotoxic
to host cells [20,22,186,187,190].

Although there are few reports about human AMPs with trypanolytic effect, some pep-
tides such as defensin (Def) have an antiparasitic effect against T. cruzi [194,195]. In vitro
studies evidenced that the defensin α-1 (Def- α-1) has a trypanocidal activity against Tryp
and Epi forms of T. cruzi clone MMC 20A, through membrane pore formation, cytoplas-
mic vacuolization, and the induction of nuclear and mitochondrial DNA fragmentation,
leading to parasite destruction. Additionally, preincubation of Tryp with peptide (Def-
α-1), inhibited the infective ability of the parasites exposed to epithelial cells, consequently
reducing the infection of the host cells [195]. Alternatively, Def- α-1 reduces infection
because of its binding to the flagellar membrane and axoneme, leading to breakage of the
flagellar membrane, and detachment and release of the flagellum from the parasite [196]
(Figure 4B.1). Notably, Def- α-1 are overexpressed in human cells in response to early
T. cruzi infection as a mechanism to modulate parasite load, by induction of apoptotic
death of trypomastigotes, and an effective host innate immune response to control T. cruzi
infection [197]. It is important to highlight that defensins are key peptides in the innate
immune responses due to their antimicrobial, chemotactic, and regulatory activities. This
may raise the suggestion that the use of molecules mimicking some critical peptides of the
innate immune response early during a T. cruzi infection could be a therapeutic strategy for
the treatment of Chagas disease.
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Interestingly, in studies evaluating the effect of VIP on systemic and cardiac immune
responses during experimental acute infection in mice, it was shown that this NP can re-
duce the inflammatory response to the T. cruzi VL-10 strain, limiting cardiac damage [104]
(Figure 4B.2). VIP is a potent anti-inflammatory factor, both in innate and adaptive immu-
nity, which carries out its biological functions through the binding of G protein-coupled
receptors, VPAC1 and VPAC2, and subsequent activation of the cAMP/PKA pathway,
involved in the regulation of the inflammatory response by immune cells [198,199]. Low
levels of this NP are associated with Chagas disease cardiomyopathy [199]. This im-
munomodulatory capacity and possible trypanocidal activity of VIP are characteristics
that could influence its use in the treatment of CD, especially in advanced stages where a
chronic self-destructive immune response is observed [200].

Other studies have reported the trypanocidal effect of AMPs produced by various
other organisms [103,106,178,185,201]. Some AMPs have been isolated from the venom
extract of insects and reptiles [201–204] (Figure 4C). Similar to what was observed for
T. brucei, melittin is lethal for different developmental stages of the T. cruzi CL Brener
clone. Exposure to these AMPs induces structural changes, including disruption of the
plasma membrane, structural changes in the mitochondrion, kinetoplast disorganization,
structural alterations of the flagellum, and activation of different cell death pathways in the
parasite (Figure 4C.1). The activation of these pathways depends on the developmental
stage of the parasite. Although necrotic cell death was induced in each of the different
forms of T. cruzi, autophagy- and apoptosis-like cell death appeared to be the main death
mechanism in epimastigotes and trypomastigotes, respectively. This peptide melittin
exerts its perturbation initially through vesicle formation and disruption of the plasma
membrane, to later activate the different cell death signaling pathways [202] (Figure 4C.1).
Although the mechanism by which melittin activates several cell death pathways in T. cruzi
is unknown, it is probable that the peptide stimulates proteins involved in the respective
routes to cell death. Melittin is known to have the ability to stimulate G-proteins [205],
which are implicated in numerous cellular signaling processes, including apoptosis and
regulation of autophagy [206,207]. In the T. cruzi Y strain, melittin has been shown to cause
alterations in Ca2+ homeostasis, mediated by the activation of phospholipase A2 [177],
while in the T. cruzi macrophage tropic Tehuantepe strain it exerts its effect mainly through
the inhibition of parasite motility and infectivity [194]. In all these strains, melittin has an
antiparasitic effect between nano- and micromolar concentrations [177,194,202] and can act
synergistically or additively with other AMPs to eradicate T. cruzi in vitro conditions [186].

For its part, polybia-CP and mastoparan (MP), AMPs isolated from the venom of
the wasp Polybia paulista, have an effect against all developmental stages of the T. cruzi Y
strain, through the induction of reactive oxygen species (ROS), mitochondrial dysfunction,
and apoptosis-like cell death [201,208] (Figure 4C.2). Furthermore, in the case of MP, the
peptide can interfere in carbon and energy metabolism by binding and inhibition of T.
cruzi’s glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH), a glycosomal enzyme of
the glycolytic pathway and essential for parasite survival [208]. One of the most important
aspects is that this AMP, at low concentrations, not only has an inhibitory effect on the
proliferation of the intracellular amastigote form, responsible for maintaining T. cruzi
infections and the development of not-proliferating amastigotes [9,11], but also on the
process of invasion of the host cell [209,210].

Other AMPs such as batroxycidin (BatxC) and crotalicidin (Ctn), isolated from Bothrops
atrox and Crotalus durissus terrificus’s venom gland, induced death of all developmental
stages of the T. cruzi Y strain through the formation of pores in the plasma membrane,
promoting the production of ROS, loss of the mitochondrial membrane potential, and
finally, cell death by necrosis [203,204]. Remarkably, some of these AMPs from venom
extract, polybia-CP, BatxC, and Ctn, induce T. cruzi cell death with high selectivity (>100)
when compared with some drugs such as BZN, which has a selectivity index (SI) of only
2.18 in the Y-strain that has acquired resistance against this drug [201,203,204]. Everything
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described so far points to AMPs from venoms as potential candidates for the design of
anti-Chagas drugs.

AMPs obtained from some amphibians have been shown to have an anti-protistan
effect (Figure 4C.4). These peptides obtained from skin secretion from different species of
the frog Phyllomedusa, such as dermaseptins1/4 and phylloseptins 7/8, have trypanocidal
activity against bloodstream trypomastigotes of the T. cruzi Y strain [105,106]. Also, figainin
1 and 2 cationic peptides, isolated from cutaneous secretions by the frog Boana raniceps,
exhibited anti-epimastigote activity [211,212]. All these amphibian AMPs have an anti-T
cruzi effect in the micromolar concentration range and their mechanism of action is through
disruption of the cell membrane and effect on intracellular targets (such as synthesis of
proteins, DNA and RNA) [106,211–213] (Figure 4C.4). Importantly, some of these AMPs,
such as dermaseptin, have no toxicity to mammalian cells, which would suggest that they
could serve as a mold for anti-T. cruzi drug design [105,106].

Anti-T cruzi activity of AMPs isolated from aquatic organisms has also been re-
ported [103,106,185] (Figure 4D). Tachyplesin (Tach), isolated from the crab Tachypleus
tridentatus, killed completely Tryp of the T. cruzi Y strain at micromolar concentrations
with scant cytotoxic effect against mammalian cell lines. Also, Tach has leishmanicidal
activities [185]. Although the exact mechanism of action in T. cruzi is unknown, it has been
documented that this peptide forms transient pores in membranes and translocates across
the membranes upon pore disintegration [214]. It was also shown that fragments from the
hemocyanin of Penaeus monodon have activity against the Epi and Tryp of T. cruzi, through
structural alterations in the plasma membrane, by the formation of pores and subsequent
activation of cell death by necrosis [103] (Figure 4D). Although these marine AMPs exert
their effect at micromolar concentrations, they have low selectivity [103,106,185], which
would imply the need for some modifications to reduce their effect on host cells.

The design of synthetic AMPs has been considered a promising therapeutic strategy
for Chagas disease [17,184] (Figure 4E). Temporizin (Tempz) and temporizin-1 (Tempz-1)
are artificial hybrid peptides containing the N-terminal region of temporin A, a member of
a larger temporin family found in skin secretion from frogs of the Ranidae family, and a C-
terminus consisting of alternating leucine and lysine residues. These peptides have toxicity
against T. cruzi because they promote cytoplasmic alterations in the parasite, associated
with chromatin condensation, mitochondrial cristae disorder, kinetoplast disorganization,
and an increase in the number and degeneration of reservosomes [17]. Other cecropin-like
lytic (DC1-3) peptides, synthesized with virtually no sequence similarity with the natural
compound (cecropin B), can kill all developmental stages of the T. cruzi Y strain under
in vitro conditions. Some of these DC peptides influence the infectivity of the parasite,
as well as the parasitemia and mortality of T. cruzi-infected mice [184] (Figure 4E). It
should be noted that both Tempz/Tempz-1 and DC1-3 peptides exert their antiparasitic
activity against T. cruzi at micromolar concentrations while exhibiting very low toxicity to
mammalian cells [17,184].

8. Conclusions

AMPs are small peptides that have been shown to possess activity against different
strains of T. cruzi and T. brucei, exerting their specific effect through different mechanisms
such as rupture of the plasma membrane, alteration of calcium homeostasis, inhibition
of some metabolic pathways, disturbance of organelles, and activation of various cell
death pathways. Many of them have been shown to carry out their activity against the
different developmental stages of trypanosomes. Some of them may also have activity
against other kinetoplastids such as Leishmania spp. Additionally, most of them have no or
only low toxicity towards mammalian cells and little anti-inflammatory effects. All these
attributes render AMPs promising tools for the design of novel trypanocidal agents. It
seems appropriate to consider them as candidates for further investigation and possible
application as new therapeutic agents for trypanosomiasis and other diseases caused
by kinetoplastids, either as an alternative or administered in complementary strategy to
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conventional treatments. Likewise, they could be used as a template for the design of
analogous molecules with greater trypanocidal potency and/or reduced cytotoxicity on
the host.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13040599/s1, Table S1: Antimicrobial peptides with try-
panocidal activity against T. brucei and T. cruzi. [215–238].
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