Effects of GHR Deficiency and Juvenile Hypoglycemia on Immune Cells of a Porcine Model for Laron Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Model and Sample Preparation
2.2. Differential Lymphocyte Count
2.3. Identification of Immune Cell Subsets by Flow Cytometry
2.4. Polyclonal Stimulation of PBMC
2.5. Magnetic Activated Cell Sorting of CD4− and CD4+ PBMC
2.6. Sample Digestion
2.7. Differential Proteome Analysis by LC MS/MS
2.8. Bioinformatic Analysis
2.9. Real-Time Cell Metabolic Analysis by Seahorse XFe Analyzer
2.10. Determination of IFN-α Concentrations
2.11. Statistical Analysis
3. Results
3.1. Knockout of Growth Hormone Receptor Did Not Affect Lymphocyte Population Percentage
3.2. CD4+CD8α− Subpopulation Ratio Differed Significantly between WT and GHR-KO Pigs
3.3. PBMC of WT and GHR-KO Pigs Show Similar Capacity for Polyclonal Stimulation
3.4. CD4+ PBMC and CD4− PBMC of WT and GHR-KO Pigs Show Divergent Proteomic Profiles
3.5. CD4+ PBMC of WT and GHR-KO Pigs Show Divergent Proteomic Profiles Pointing to Deviant Amino Acid Metabolism in GHR-KO Pigs
3.6. CD4− PBMC from WT and GHR-KO Pigs Show Divergent Proteomic Profiles, Indicating Deviant Fatty Acid Metabolism in GHR-KO Pigs
3.7. Similar Basal, ATP-Linked and Maximal Respiration of PBMC of WT and GHR-KO Pigs
3.8. Similar Glycolysis of PBMC of WT and GHR-KO Pigs
3.9. Differentially Abundant Protein in CD4+ PBMC of WT and GHR-KO Pigs Is Associated with Protein Glycosylation
3.10. Differential Abundance of Protein FAH in CD4+ PBMC of WT and GHR-KO Pigs Is Related to Amino Acid Metabolism
3.11. Differentially Abundant Protein in CD4− PBMC of WT and GHR-KO Pigs Is Related with Interferon Signaling
3.12. Differentially Abundant Proteins in CD4− PBMC of WT and GHR-KO Pigs Were Associated with Cell Adhesion
3.13. IFN-α Concentration in Serum of GHR-KO Pigs Was Significantly Higher
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Werner, H.; Sarfstein, R.; Nagaraj, K.; Laron, Z. Laron Syndrome Research Paves the Way for New Insights in Oncological Investigation. Cells 2020, 9, 2446. [Google Scholar] [CrossRef] [PubMed]
- Werner, H.; Lapkina-Gendler, L.; Achlaug, L.; Nagaraj, K.; Somri, L.; Yaron-Saminsky, D.; Pasmanik-Chor, M.; Sarfstein, R.; Laron, Z.; Yakar, S. Genome-Wide Profiling of Laron Syndrome Patients Identifies Novel Cancer Protection Pathways. Cells 2019, 8, 596. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guevara-Aguirre, J.; Bautista, C.; Torres, C.; Peña, G.; Guevara, C.; Palacios, C.; Guevara, A.; Gavilanes, A.W.D. Insights from the clinical phenotype of subjects with Laron syndrome in Ecuador. Rev. Endocr. Metab. Disord. 2020, 22, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Kopchick, J.J.; Puri, V.; Sharma, V.M. Effect of growth hormone on insulin signaling. Mol. Cell. Endocrinol. 2020, 518, 111038. [Google Scholar] [CrossRef] [PubMed]
- Godowski, P.J.; Leung, D.W.; Meacham, L.R.; Galgani, J.P.; Hellmiss, R.; Keret, R.; Rotwein, P.S.; Parks, J.S.; Laron, Z.; I Wood, W. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc. Natl. Acad. Sci. USA 1989, 86, 8083–8087. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Werner, H. Toward gene therapy of Laron syndrome. Gene Ther. 2022, 29, 319–321. [Google Scholar] [CrossRef]
- Hattori, N. Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system. Growth Horm. IGF Res. 2009, 19, 187–197. [Google Scholar] [CrossRef]
- Manfredi, R.; Tumietto, F.; Azzaroli, L.; Zucchini, A.; Chiodo, F. Growth Hormone (GH) and the Immune System: Impaired Phagocytic Function in Children with Idiopathic GH Deficiency is Corrected by Treatment with Biosynthetic GH. J. Pediatr. Endocrinol. Metab. 1994, 7, 245–251. [Google Scholar] [CrossRef]
- Rapaport, R.; Oleske, J.; Ahdieh, H.; Skuza, K.; Holland, B.K.; Passannante, M.R.; Denny, T. Effects of human growth hormone on immune functions: In vitro studies on cells of normal and growth hormone-deficient children. Life Sci. 1987, 41, 2319–2324. [Google Scholar] [CrossRef]
- Borghetti, P.; De Angelis, E.; Saleri, R.; Cavalli, V.; Cacchioli, A.; Corradi, A.; Mocchegiani, E.; Martelli, P. Peripheral T lymphocyte changes in neonatal piglets: Relationship with growth hormone (GH), prolactin (PRL) and cortisol changes. Veter.-Immunol. Immunopathol. 2006, 110, 17–25. [Google Scholar] [CrossRef]
- Kiess, W.; Malozowski, S.; Gelato, M.; Butenand, O.; Doerr, H.; Crisp, B.; Eisl, E.; Maluish, A.; Belohradsky, B. Lymphocyte subset distribution and natural killer activity in growth hormone deficiency before and during short-term treatment with growth hormone releasing hormone. Clin. Immunol. Immunopathol. 1988, 48, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Bozzola, M.; Valtorta, A.; Moretta, A.; Montagna, D.; Maccario, R.; Burgio, G.R. Modulating effect of growth hormone (GH) on PHA-induced lymphocyte proliferation. Thymus 1988, 12, 157–165. [Google Scholar] [PubMed]
- Postel-Vinay, M.-C.; Coelho, V.D.M.; Gagnerault, M.-C.; Dardenne, M. Growth Hormone Stimulates the Proliferation of Activated Mouse T Lymphocytes1. Endocrinology 1997, 138, 1816–1820. [Google Scholar] [CrossRef]
- Kiess, W.; Holtmann, H.; Butenandt, O.; Eife, R. Modulation of lymphoproliferation by human growth hormone. Eur. J. Pediatr. 1983, 140, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Rapaport, R.; Oleske, J.; Ahdieh, H.; Solomon, S.; Delfaus, C.; Denny, T. Suppression of immune function in growth hormone-deficient children during treatment with human growth hormone. J. Pediatr. 1986, 109, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Caruso-Nicoletti, M.; Mancuso, G.; Sciotto, A.; Spadaro, G.; Guercello, V.; Farinella, Z.; Lupo, L.; Schiliro, G. Does Endogenous Growth Hormone Influence Immune Function? Immunological Studies in Laron’s Dwarfism. J. Pediatr. Endocrinol. Metab. 1991, 4, 33–40. [Google Scholar] [CrossRef]
- Zarkesh-Esfahani, S.H.; Kolstad, O.; Metcalfe, R.A.; Watson, P.F.; Von Laue, S.; Walters, S.; Revhaug, A.; Weetman, A.P.; Ross, R.J.M. High-Dose Growth Hormone Does Not Affect Proinflammatory Cytokine (Tumor Necrosis Factor-α, Interleukin-6, and Interferon-γ) Release from Activated Peripheral Blood Mononuclear Cells or after Minimal to Moderate Surgical Stress*. J. Clin. Endocrinol. Metab. 2000, 85, 3383–3390. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abbassi, V.; A Bellanti, J. Humoral and Cell-Mediated Immunity in Growth Hormone-Deficient Children: Effect of Therapy with Human Growth Hormone. Pediatr. Res. 1985, 19, 299–301. [Google Scholar] [CrossRef][Green Version]
- Stewart, M.H.; Gutierrez-Martinez, P.; Beerman, I.; Garrison, B.; Gallagher, E.J.; LeRoith, D.; Rossi, D.J. Growth hormone receptor signaling is dispensable for HSC function and aging. Blood 2014, 124, 3076–3080. [Google Scholar] [CrossRef][Green Version]
- Pabst, R. The pig as a model for immunology research. Cell Tissue Res. 2020, 380, 287–304. [Google Scholar] [CrossRef]
- Qian, Y.; Berryman, D.E.; Basu, R.; List, E.O.; Okada, S.; Young, J.A.; Jensen, E.A.; Bell, S.R.C.; Kulkarni, P.; Duran-Ortiz, S.; et al. Mice with gene alterations in the GH and IGF family. Pituitary 2021, 25, 1–51. [Google Scholar] [CrossRef] [PubMed]
- Mestas, J.; Hughes, C.C.W. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bresson, J.-L.; Jeay, S.; Gagnerault, M.-C.; Kayser, C.; Beressi, N.; Wu, Z.; Kinet, S.; Dardenne, M.; Postel-Vinay, M.-C. Growth Hormone (GH) and Prolactin Receptors in Human Peripheral Blood Mononuclear Cells: Relation with Age and GH-Binding Protein*. Endocrinology 1999, 140, 3203–3209. [Google Scholar] [CrossRef] [PubMed]
- Doeing, D.C.; Borowicz, J.L.; Crockett, E.T. Gender dimorphism in differential peripheral blood leukocyte counts in mice using cardiac, tail, foot, and saphenous vein puncture methods. BMC Clin. Pathol. 2003, 3, 3. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huang, Z.-S.; Lo, S.-C.; Tsay, W.; Hsu, K.-L.; Chiang, F.-T. Revision in Reference Ranges of Peripheral Total Leukocyte Count and Differential Leukocyte Percentages Based on a Normal Serum C-Reactive Protein Level. J. Formos. Med. Assoc. 2007, 106, 608–616. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Luke, D. The differential leucocyte count in the normal pig. J. Comp. Pathol. Ther. 1953, 63, 346–354. [Google Scholar] [CrossRef]
- Karalyan, Z.; Zakaryan, H.; Arzumanyan, H.; Sargsyan, K.; Voskanyan, H.; Hakobyan, L.; Abroyan, L.; Avetisyan, A.; Karalova, E. Pathology of porcine peripheral white blood cells during infection with African swine fever virus. BMC Veter.-Res. 2012, 8, 18. [Google Scholar] [CrossRef][Green Version]
- Lunney, J.K.; Van Goor, A.; Walker, K.E.; Hailstock, T.; Franklin, J.; Dai, C. Importance of the pig as a human biomedical model. Sci. Transl. Med. 2021, 13. [Google Scholar] [CrossRef]
- Hinrichs, A.; Kessler, B.; Kurome, M.; Blutke, A.; Kemter, E.; Bernau, M.; Scholz, A.M.; Rathkolb, B.; Renner, S.; Bultmann, S.; et al. Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver. Mol. Metab. 2018, 11, 113–128. [Google Scholar] [CrossRef]
- Giese, I.-M.; Schilloks, M.-C.; Degroote, R.L.; Weigand, M.; Renner, S.; Wolf, E.; Hauck, S.M.; Deeg, C.A. Chronic Hyperglycemia Drives Functional Impairment of Lymphocytes in Diabetic INSC94Y Transgenic Pigs. Front. Immunol. 2021, 11, 607473. [Google Scholar] [CrossRef]
- Villarreal-Calderón, J.R.; Cuéllar, R.X.; Gonzalez, M.R.R.; Rubio-Infante, N.; Castillo, E.C.; Elizondo-Montemayor, L.; García-Rivas, G. Interplay between the Adaptive Immune System and Insulin Resistance in Weight Loss Induced by Bariatric Surgery. Oxidative Med. Cell. Longev. 2019, 2019, 13940739. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sbierski-Kind, J.; Goldeck, D.; Buchmann, N.; Spranger, J.; Volk, H.-D.; Steinhagen-Thiessen, E.; Pawelec, G.; Demuth, I.; Spira, D. T cell phenotypes associated with insulin resistance: Results from the Berlin Aging Study II. Immun. Ageing 2020, 17, 40. [Google Scholar] [CrossRef] [PubMed]
- Dawson, H.D.; Lunney, J.K. Porcine cluster of differentiation (CD) markers 2018 update. Res. Veter.-Sci. 2018, 118, 199–246. [Google Scholar] [CrossRef]
- Grosche, A.; Hauser, A.; Lepper, M.F.; Mayo, R.; von Toerne, C.; Merl-Pham, J.; Hauck, S.M. The Proteome of Native Adult Müller Glial Cells From Murine Retina. Mol. Cell. Proteom. 2016, 15, 462–480. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Kaade, E.; Muntel, J.; Bruderer, R.; Reiter, L.; Thelen, M.; Winter, D. Systematic Comparison of Strategies for the Enrichment of Lysosomes by Data Independent Acquisition. J. Proteome Res. 2019, 19, 371–381. [Google Scholar] [CrossRef]
- Callister, S.J.; Barry, R.C.; Adkins, J.N.; Johnson, E.T.; Qian, W.-J.; Webb-Robertson, B.-J.M.; Smith, R.D.; Lipton, M.S. Normalization Approaches for Removing Systematic Biases Associated with Mass Spectrometry and Label-Free Proteomics. J. Proteome Res. 2006, 5, 277–286. [Google Scholar] [CrossRef][Green Version]
- Reiter, L.; Rinner, O.; Picotti, P.; Hüttenhain, R.; Beck, M.; Brusniak, M.-Y.; O Hengartner, M.; Aebersold, R. mProphet: Automated data processing and statistical validation for large-scale SRM experiments. Nat. Methods 2011, 8, 430–435. [Google Scholar] [CrossRef]
- Sinitcyn, P.; Hamzeiy, H.; Soto, F.S.; Itzhak, D.; McCarthy, F.; Wichmann, C.; Steger, M.; Ohmayer, U.; Distler, U.; Kaspar-Schoenefeld, S.; et al. MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat. Biotechnol. 2021, 39, 1563–1573. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Krämer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef]
- van der Windt, G.J.; Chang, C.; Pearce, E.L. Measuring Bioenergetics in T Cells Using a Seahorse Extracellular Flux Analyzer. Curr. Protoc. Immunol. 2016, 113, 3–16. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nam, J.-H.; Cha, B.; Park, J.-Y.; Abekura, F.; Kim, C.-H.; Kim, J.-R. Mitogen-Induced Interferon Gamma Production in Human Whole Blood: The Effect of Heat and Cations. Curr. Pharm. Biotechnol. 2019, 20, 562–572. [Google Scholar] [CrossRef]
- Bekeredjian-Ding, I.; Foermer, S.; Kirschning, C.J.; Parcina, M.; Heeg, K. Poke Weed Mitogen Requires Toll-Like Receptor Ligands for Proliferative Activity in Human and Murine B Lymphocytes. PLoS ONE 2012, 7, e29806. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rodríguez-Gómez, I.M.; Talker, S.C.; Käser, T.; Stadler, M.; Reiter, L.; Ladinig, A.; Milburn, J.V.; Hammer, S.E.; Mair, K.H.; Saalmüller, A.; et al. Expression of T-Bet, Eomesodermin, and GATA-3 Correlates With Distinct Phenotypes and Functional Properties in Porcine γδ T Cells. Front. Immunol. 2019, 10, 396. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, P.; Leng, X.; Duan, J.; Zhu, Y.; Wang, J.; Yan, Z.; Min, S.; Wei, D.; Wang, X. Functional Component Isolated from Phaseolus vulgaris Lectin Exerts In Vitro and In Vivo Anti-Tumor Activity through Potentiation of Apoptosis and Immunomodulation. Molecules 2021, 26, 498. [Google Scholar] [CrossRef]
- Degroote, R.L.; Korbonits, L.; Stetter, F.; Kleinwort, K.J.H.; Schilloks, M.-C.; Amann, B.; Hirmer, S.; Hauck, S.M.; Deeg, C.A. Banana Lectin from Musa paradisiaca Is Mitogenic for Cow and Pig PBMC via IL-2 Pathway and ELF1. Immuno 2021, 1, 264–276. [Google Scholar] [CrossRef]
- Pang, B.; Shin, D.H.; Park, K.S.; Huh, Y.J.; Woo, J.; Zhang, Y.-H.; Kang, T.M.; Lee, K.-Y.; Kim, S.J. Differential pathways for calcium influx activated by concanavalin A and CD3 stimulation in Jurkat T cells. Pflugers Arch. 2011, 463, 309–318. [Google Scholar] [CrossRef]
- Bennett, E.P.; Mandel, U.; Clausen, H.; Gerken, T.A.; Fritz, T.A.; Tabak, L.A. Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family. Glycobiology 2011, 22, 736–756. [Google Scholar] [CrossRef][Green Version]
- White, T.; Bennett, E.P.; Takio, K.; S⊘Rensen, T.; Bonding, N.; Clausen, H. Purification and cDNA Cloning of a Human UDP-N-acetyl-α- D-galactosamine:polypeptide N-Acetylgalactosaminyltransferase. J. Biol. Chem. 1995, 270, 24156–24165. [Google Scholar] [CrossRef][Green Version]
- Awata, H.; Endo, F.; Tanoue, A.; Kitano, A.; Nakano, Y.; Matsuda, I. Structural organization and analysis of the human fumarylacetoacetate hydrolase gene in tyrosinemia type I. Biochim. Et Biophys. Acta (BBA)—Mol. Basis Dis. 1994, 1226, 168–172. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, D.; Lin, R.; Lv, Q.; Wang, W. IFI44 is an immune evasion biomarker for SARS-CoV-2 and Staphylococcus aureus infection in patients with RA. Front. Immunol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- DeDiego, M.L.; Nogales, A.; Martinez-Sobrido, L.; Topham, D.J. Interferon-Induced Protein 44 Interacts with Cellular FK506-Binding Protein 5, Negatively Regulates Host Antiviral Responses, and Supports Virus Replication. Mbio 2019, 10. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hallen, L.; Burki, Y.; Ebeling, M.; Broger, C.; Siegrist, F.; Oroszlan-Szovik, K.; Bohrmann, B.; Certa, U.; Foser, S. Antiproliferative Activity of the Human IFN-α-Inducible Protein IFI44. J. Interf. Cytokine Res. 2007, 27, 675–680. [Google Scholar] [CrossRef]
- Yang, G.; Artiaga, B.L.; Lewis, S.T.; Driver, J.P. Characterizing porcine invariant natural killer T cells: A comparative study with NK cells and T cells. Dev. Comp. Immunol. 2017, 76, 343–351. [Google Scholar] [CrossRef]
- Braun, R.O.; Python, S.; Summerfield, A. Porcine B Cell Subset Responses to Toll-like Receptor Ligands. Front. Immunol. 2017, 8, 1044. [Google Scholar] [CrossRef][Green Version]
- Dixit, V.D.; Mielenz, M.; Taub, D.D.; Parvizi, N. Leptin Induces Growth Hormone Secretion from Peripheral Blood Mononuclear Cells via a Protein Kinase C- and Nitric Oxide-Dependent Mechanism. Endocrinology 2003, 144, 5595–5603. [Google Scholar] [CrossRef][Green Version]
- Jacobs, S.R.; Herman, C.E.; MacIver, N.J.; Wofford, J.A.; Wieman, H.L.; Hammen, J.J.; Rathmell, J.C. Glucose Uptake Is Limiting in T Cell Activation and Requires CD28-Mediated Akt-Dependent and Independent Pathways. J. Immunol. 2008, 180, 4476–4486. [Google Scholar] [CrossRef][Green Version]
- Cham, C.M.; Gajewski, T.F. Glucose Availability Regulates IFN-γ Production and p70S6 Kinase Activation in CD8+ Effector T Cells. J. Immunol. 2005, 174, 4670–4677. [Google Scholar] [CrossRef][Green Version]
- Faldyna, M.; Samankova, P.; Leva, L.; Cerny, J.; Oujezdska, J.; Rehakova, Z.; Sinkora, J. Cross-reactive anti-human monoclonal antibodies as a tool for B-cell identification in dogs and pigs. Veter.-Immunol. Immunopathol. 2007, 119, 56–62. [Google Scholar] [CrossRef]
- Charerntantanakul, W.; Roth, J.A. Biology of porcine T lymphocytes. Anim. Health Res. Rev. 2006, 7, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Añover, P.; Encinas, T.; Gomez-Izquierdo, E.; Sanz, E.; Letelier, C.; Torres-Rovira, L.; Pallares, P.; Sanchez-Sanchez, R.; Gonzalez-Bulnes, A. Advanced Onset of Puberty in Gilts of Thrifty genotype(Iberian Pig). Reprod. Domest. Anim. 2009, 45, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Saenger, P. Dose Effects of Growth Hormone during Puberty. Horm. Res. Paediatr. 2003, 60, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Pescovitz, M.; Sakopoulos, A.G.; Gaddy, J.A.; Husmann, R.; Zuckermann, F. Porcine peripheral blood CD4+/CD8+ dual expressing T-cells. Veter.-Immunol. Immunopathol. 1994, 43, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pei, Z.; Bai, Y.; Wang, L.; Shi, J.; Tian, K. Phenotypic Characterization of Porcine IFNγ-Producing Lymphocytes in Porcine Reproductive and Respiratory Syndrome Virus Vaccinated and Challenged Pigs. Virol. Sin. 2018, 33, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Pietrasina, O.; Miller, J.; Rząsa, A. Differences in the relative counts of peripheral blood lymphocyte subsets in various age groups of pigs. Can. J. Veter.-Res. = Rev. Can. Rech. Veter. 2020, 84, 52–59. [Google Scholar]
- Zuckermann, F.A.; Husmann, R.J. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 1996, 87, 500–512. [Google Scholar]
- Appleyard, G.; Furesz, S.; Wilkie, B. Blood lymphocyte subsets in pigs vaccinated and challenged with Actinobacillus pleuropneumoniae. Veter.-Immunol. Immunopathol. 2002, 86, 221–228. [Google Scholar] [CrossRef]
- Sarradell, J.; Andrada, M.; Ramírez, A.S.; Fernández, A.; Gómez-Villamandos, J.C.; Jover, A.; Lorenzo, H.; Herráez, P.; Rodríguez, F. A Morphologic and Immunohistochemical Study of the Bronchus-associated Lymphoid Tissue of Pigs Naturally Infected with Mycoplasma hyopneumoniae. Veter.-Pathol. 2003, 40, 395–404. [Google Scholar] [CrossRef]
- Hontecillas, R.; Bassaganya-Riera, J. Differential requirements for proliferation of CD4+ and γδ+ T cells to spirochetal antigens. Cell. Immunol. 2003, 224, 38–46. [Google Scholar] [CrossRef]
- Jonasson, R.; Johannisson, A.; Jacobson, M.; Fellström, C.; Jensen-Waern, M. Differences in lymphocyte subpopulations and cell counts before and after experimentally induced swine dysentery. J. Med. Microbiol. 2004, 53, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Kick, A.R.; Tompkins, M.B.; Hammer, J.M.; Routh, P.A.; Almond, G.W. Evaluation of peripheral lymphocytes after weaning and vaccination for Mycoplasma hyopneumoniae. Res. Veter.-Sci. 2011, 91, e68–e72. [Google Scholar] [CrossRef] [PubMed]
- Salles, M.; Perez-Casal, J.; Willson, P.; Middleton, D. Changes in the leucocyte subpopulations of the palatine tonsillar crypt epithelium of pigs in response to Streptococcus suis type 2 infection. Veter.-Immunol. Immunopathol. 2002, 87, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, O.; Goldberg, E.L.; Camell, C.D.; Youm, Y.-H.; Kopchick, J.J.; Nguyen, K.Y.; Bartke, A.; Sun, L.Y.; Dixit, V.D. Growth Hormone Receptor Deficiency Protects against Age-Related NLRP3 Inflammasome Activation and Immune Senescence. Cell Rep. 2016, 14, 1571–1580. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sneppen, S.B.; Mersebach, H.; Ullum, H.; Feldt-Rasmussen, U. Immune function during GH treatment in GH-deficient adults: An 18-month randomized, placebo-controlled, double-blinded trial. Clin. Endocrinol. 2002, 57, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Bodart, G.; Farhat, K.; Renard-Charlet, C.; Becker, G.; Plenevaux, A.; Salvatori, R.; Geenen, V.; Martens, H. The Severe Deficiency of the Somatotrope GH-Releasing Hormone/Growth Hormone/Insulin-Like Growth Factor 1 Axis of Ghrh−/− Mice Is Associated With an Important Splenic Atrophy and Relative B Lymphopenia. Front. Endocrinol. 2018, 9, 296. [Google Scholar] [CrossRef]
- Ebner, F.; Schwiertz, P.; Steinfelder, S.; Pieper, R.; Zentek, J.; Schütze, N.; Baums, C.G.; Alber, G.; Geldhof, P.; Hartmann, S. Pathogen-Reactive T Helper Cell Analysis in the Pig. Front. Immunol. 2017, 8, 565. [Google Scholar] [CrossRef][Green Version]
- Summerfield, A.; McCullough, K.C. The porcine dendritic cell family. Dev. Comp. Immunol. 2009, 33, 299–309. [Google Scholar] [CrossRef]
- Schupp, M.; Chen, F.; Briggs, E.R.; Rao, S.; Pelzmann, H.J.; Pessentheiner, A.R.; Bogner-Strauss, J.G.; A Lazar, M.; Baldwin, D.; Prokesch, A. Metabolite and transcriptome analysis during fasting suggest a role for the p53-Ddit4 axis in major metabolic tissues. BMC Genom. 2013, 14, 758. [Google Scholar] [CrossRef][Green Version]
- Durand, S.V.M.; Hulst, M.M.; de Wit, A.A.C.; Mastebroek, L.; Loeffen, W.L.A. Activation and modulation of antiviral and apoptotic genes in pigs infected with classical swine fever viruses of high, moderate or low virulence. Arch. Virol. 2009, 154, 1417–1431. [Google Scholar] [CrossRef][Green Version]
- Zenz, G.; Jačan, A.; Reichmann, F.; Farzi, A.; Holzer, P. Intermittent Fasting Exacerbates the Acute Immune and Behavioral Sickness Response to the Viral Mimic Poly(I:C) in Mice. Front. Neurosci. 2019, 13, 359. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tominaga, M.; Uno, K.; Yagi, K.; Fukui, M.; Hasegawa, G.; Yoshikawa, T.; Nakumura, N. Association Between Capacity of Interferon-α Production and Metabolic Parameters. J. Interf. Cytokine Res. 2010, 30, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.O.; Wolf, M.M.; Madden, M.Z.; Andrejeva, G.; Sugiura, A.; Contreras, D.C.; Maseda, D.; Liberti, M.V.; Paz, K.; Kishton, R.J.; et al. Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell 2018, 175, 1780–1795.e19. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Campos-Sandoval, J.A.; de la Oliva, A.R.L.; Lobo, C.; Segura, J.A.; Matés, J.M.; Alonso, F.J.; Márquez, J. Expression of functional human glutaminase in baculovirus system: Affinity purification, kinetic and molecular characterization. Int. J. Biochem. Cell Biol. 2007, 39, 765–773. [Google Scholar] [CrossRef]
- Son, J.; Lyssiotis, C.A.; Ying, H.; Wang, X.; Hua, S.; Ligorio, M.; Perera, R.M.; Ferrone, C.R.; Mullarky, E.; Shyh-Chang, N.; et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013, 496, 101–105, Erratum in Nature 2013, 499, 504. [Google Scholar] [CrossRef][Green Version]
- Chapman, N.M.; Boothby, M.R.; Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 2020, 20, 55–70. [Google Scholar] [CrossRef]
- Xu, W.; Patel, C.H.; Zhao, L.; Sun, I.-H.; Oh, M.-H.; Helms, R.S.; Wen, J.; Powell, J.D. GOT1 regulates CD8+ effector and memory T cell generation. Cell Rep. 2023, 42. [Google Scholar] [CrossRef]
- Riedel, E.O.; Hinrichs, A.; Kemter, E.; Dahlhoff, M.; Backman, M.; Rathkolb, B.; Prehn, C.; Adamski, J.; Renner, S.; Blutke, A.; et al. Functional changes of the liver in the absence of growth hormone (GH) action – Proteomic and metabolomic insights from a GH receptor deficient pig model. Mol. Metab. 2020, 36, 100978. [Google Scholar] [CrossRef]
- Zhao, X.; Fu, J.; Du, J.; Xu, W. The Role of D-3-Phosphoglycerate Dehydrogenase in Cancer. Int. J. Biol. Sci. 2020, 16, 1495–1506. [Google Scholar] [CrossRef]
- Ma, E.H.; Bantug, G.; Griss, T.; Condotta, S.; Johnson, R.M.; Samborska, B.; Mainolfi, N.; Suri, V.; Guak, H.; Balmer, M.L.; et al. Serine Is an Essential Metabolite for Effector T Cell Expansion. Cell Metab. 2017, 25, 345–357, Erratum in Cell Metab. 2017, 25, 482. [Google Scholar] [CrossRef]
- Lomelino, C.L.; Andring, J.T.; McKenna, R.; Kilberg, M.S. Asparagine synthetase: Function, structure, and role in disease. J. Biol. Chem. 2017, 292, 19952–19958. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hope, H.C.; Brownlie, R.J.; Fife, C.M.; Steele, L.; Lorger, M.; Salmond, R.J. Coordination of asparagine uptake and asparagine synthetase expression modulates CD8+ T cell activation. J. Clin. Investig. 2021, 6. [Google Scholar] [CrossRef] [PubMed]
- Schmiedel, B.J.; Singh, D.; Madrigal, A.; Valdovino-Gonzalez, A.G.; White, B.M.; Zapardiel-Gonzalo, J.; Ha, B.; Altay, G.; Greenbaum, J.A.; McVicker, G.; et al. Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell 2018, 175, 1701–1715.e16. [Google Scholar] [CrossRef][Green Version]
- Wu, G. Urea synthesis in enterocytes of developing pigs. Biochem. J. 1995, 312, 717–723. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Elia, I.; Rowe, J.H.; Johnson, S.; Joshi, S.; Notarangelo, G.; Kurmi, K.; Weiss, S.; Freeman, G.J.; Sharpe, A.H.; Haigis, M.C. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ T cells. Cell Metab. 2022, 34, 1137–1150.e6. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Han, J.; Long, Y.S.; Epstein, P.N.; Liu, Y.Q. The role of pyruvate carboxylase in insulin secretion and proliferation in rat pancreatic beta cells. Diabetologia 2008, 51, 2022–2030. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ma, E.H.; Verway, M.J.; Johnson, R.M.; Roy, D.G.; Steadman, M.; Hayes, S.; Williams, K.S.; Sheldon, R.D.; Samborska, B.; Kosinski, P.A.; et al. Metabolic Profiling Using Stable Isotope Tracing Reveals Distinct Patterns of Glucose Utilization by Physiologically Activated CD8+ T Cells. Immunity 2019, 51, 856–870.e5. [Google Scholar] [CrossRef] [PubMed]
- Howden, A.J.M.; Hukelmann, J.L.; Brenes, A.; Spinelli, L.; Sinclair, L.V.; Lamond, A.I.; Cantrell, D.A. Quantitative analysis of T cell proteomes and environmental sensors during T cell differentiation. Nat. Immunol. 2019, 20, 1542–1554. [Google Scholar] [CrossRef]
- Volta, V.; Pérez-Baos, S.; de la Parra, C.; Katsara, O.; Ernlund, A.; Dornbaum, S.; Schneider, R.J. A DAP5/eIF3d alternate mRNA translation mechanism promotes differentiation and immune suppression by human regulatory T cells. Nat. Commun. 2021, 12, 6979. [Google Scholar] [CrossRef]
- List, E.O.; Sala, L.S.; Berryman, D.; Funk, K.; Kelder, B.; Gosney, E.S.; Okada, S.; Ding, J.; Cruz-Topete, D.; Kopchick, J.J. Endocrine Parameters and Phenotypes of the Growth Hormone Receptor Gene Disrupted (GHR−/−) Mouse. Endocr. Rev. 2010, 32, 356–386. [Google Scholar] [CrossRef][Green Version]
- Keeler, A.M.; Conlon, T.; Walter, G.; Zeng, H.; A Shaffer, S.; Dungtao, F.; Erger, K.; Cossette, T.; Tang, Q.; Mueller, C.; et al. Long-term Correction of Very Long-chain Acyl-CoA Dehydrogenase Deficiency in Mice Using AAV9 Gene Therapy. Mol. Ther. 2012, 20, 1131–1138. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Strauss, A.W.; Powell, C.K.; E Hale, D.; Anderson, M.M.; Ahuja, A.; Brackett, J.C.; Sims, H.F. Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Proc. Natl. Acad. Sci. USA 1995, 92, 10496–10500. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Aoyama, T.; Souri, M.; Ueno, I.; Kamijo, T.; Yamaguchi, S.; Rhead, W.J.; Tanaka, K.; Hashimoto, T. Cloning of human very-long-chain acyl-coenzyme A dehydrogenase and molecular characterization of its deficiency in two patients. Am. J. Hum. Genet. 1995, 57, 273–283. [Google Scholar] [PubMed]
- Van Hove, J.L.; Zhang, W.; Kahler, S.G.; Roe, C.R.; Chen, Y.T.; Terada, N.; Chace, D.H.; Iafolla, A.K.; Ding, J.H.; Millington, D.S. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: Diagnosis by acylcarnitine analysis in blood. Am. J. Hum. Genet. 1993, 52, 958–966. [Google Scholar]
- Manzo, T.; Prentice, B.M.; Anderson, K.G.; Raman, A.; Schalck, A.; Codreanu, G.S.; Lauson, C.B.N.; Tiberti, S.; Raimondi, A.; Jones, M.A.; et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med. 2020, 217. [Google Scholar] [CrossRef]
- Jones, R.G.; Thompson, C.B. Revving the Engine: Signal Transduction Fuels T Cell Activation. Immunity 2007, 27, 173–178. [Google Scholar] [CrossRef][Green Version]
- Perry, C.G.; Kane, D.A.; Lanza, I.R.; Neufer, P.D. Methods for Assessing Mitochondrial Function in Diabetes. Diabetes 2013, 62, 1041–1053. [Google Scholar] [CrossRef][Green Version]
- Zhang, J.; Zhang, Q. Using Seahorse Machine to Measure OCR and ECAR in Cancer Cells. In Cancer Metabolism: Methods and Protocols; Haznadar, M., Ed.; Springer: New York, NY, USA, 2019; pp. 353–363. [Google Scholar]
- Bhattacharjee, J.; Das, B.; Mishra, A.; Sahay, P.; Upadhyay, P. Monocytes isolated by positive and negative magnetic sorting techniques show different molecular characteristics and immunophenotypic behaviour. F1000Research 2017, 6, 2045. [Google Scholar] [CrossRef]
- Dianzani, U.; Shaw, A.; Fernandez-Cabezudo, M.; Janeway, J.C.A. Extensive CD4 cross-linking inhibits T cell activation by anti-receptor antibody but not by antigen. Int. Immunol. 1992, 4, 995–1001. [Google Scholar] [CrossRef]
- Tsygankov, A.Y.; Bröker, B.M.; Guse, A.H.; Meinke, U.; Roth, E.; Rossmann, C.; Emmrich, F. Preincubation with anti-CD4 influences activation of human T cells by subsequent co-cross-linking of CD4 with CD3. J. Leukoc. Biol. 1993, 54, 430–438. [Google Scholar] [CrossRef]
- Clerc, I.; Moussa, D.A.; Vahlas, Z.; Tardito, S.; Oburoglu, L.; Hope, T.J.; Sitbon, M.; Dardalhon, V.; Mongellaz, C.; Taylor, N. Entry of glucose- and glutamine-derived carbons into the citric acid cycle supports early steps of HIV-1 infection in CD4 T cells. Nat. Metab. 2019, 1, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-L.; Coschigano, K.T.; Robertson, K.; Lipsett, M.; Guo, Y.; Kopchick, J.J.; Kumar, U.; Liu, Y.L. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am. J. Physiol. Metab. 2004, 287, E405–E413. [Google Scholar] [CrossRef] [PubMed][Green Version]
Enriched Pathway | Pathway Genes Total | Proteins |
---|---|---|
Alpha-amino acid biosynthetic process | 58 | ASNS, GLS, PHGDH, GOT1, SEPHS2 |
Insulin secretion signaling pathway | 273 | EIF4G1, GNA11, PAIP1, PC |
Enriched Pathway | Pathway Genes Total | Proteins |
---|---|---|
Fatty acid beta-oxidation using acyl-CoA dehydrogenase | 10 | ACADVL, ACADM, IVD, ETFDH |
Oxidative phosphorylation | 111 | ATP5PB, COX5B, NDUFB4, NDUFS2, UQCRH |
Accession | Protein | Gene | Ratio | p-Value | Peptides Used for Identification |
---|---|---|---|---|---|
ENSSSCP00000004051 | Polypeptide N- acetylgalactosaminyltransferase | GALNT1 | 0.1 | 0.0078 | 4 |
ENSSSCP00000012194 | Nischarin | NISCH | 0.5 | 0.0044 | 4 |
ENSSSCP00000007163 | D-3-phosphoglycerate dehydrogenase | PHGDH | 0.5 | 0.0089 | 7 |
ENSSSCP00000017737 | NudC domain containing 3 | NUDCD3 | 0.6 | 0.0095 | 5 |
ENSSSCP00000017707 | Protein associated with LIN7 2 | PALS2 | 0.6 | 0.0081 | 3 |
ENSSSCP00000009186 | CYFIP related Rac1 interactor A | CYRIA | 0.6 | 0.0056 | 4 |
ENSSSCP00000017156 | CCR4-NOT transcription complex subunit 9 | CNOT9 | 0.8 | 0.0033 | 4 |
ENSSSCP00000026071 | Exportin-2 | CSE1L | 0.8 | 0.0026 | 14 |
Accession | Protein | Gene | Ratio | p-Value | Peptides Used for Identification |
---|---|---|---|---|---|
ENSSSCP00000001946 | Fumarylacetoacetase | FAH | 1.4 | 0.0051 | 13 |
Accession | Protein | Gene | Ratio | p-Value | Peptides Used for Identification |
---|---|---|---|---|---|
ENSSSCP00000004071 | Interferon-induced protein 44 | IFI44 | 0.5 | 0.0099 | 11 |
ENSSSCP00000024727 | Branched-chain-amino-acid aminotransferase | BCAT1 | 0.6 | 0.0066 | 5 |
ENSSSCP00000028215 | Inosine triphosphate pyrophosphatase isoform X3 | ITPA | 0.6 | 0.0012 | 4 |
ENSSSCP00000025556 | Latexin | LXN | 0.6 | 0.0026 | 6 |
ENSSSCP00000000794 | WASH complex subunit 1 | WASHC1 | 0.6 | 0.0057 | 4 |
ENSSSCP00000008724 | Phosducin-like protein 3 | PDCL3 | 0.7 | 0.0083 | 6 |
ENSSSCP00000005105 | EH domain-containing protein 4 | EHD4 | 0.7 | 0.0058 | 5 |
ENSSSCP00000008359 | RB binding protein 6 | RBBP6 | 0.7 | 0.0059 | 8 |
ENSSSCP00000020456 | Tyrosine-protein kinase | BLK | 0.7 | 0.0096 | 2 |
ENSSSCP00000000729 | Ubiquitin carboxyl-terminal hydrolase | USP5 | 0.8 | 0.0077 | 34 |
ENSSSCP00000026564 | T-complex protein 1 subunit epsilon | CCT5 | 0.8 | 0.0061 | 24 |
ENSSSCP00000007572 | 5′-3′ exoribonuclease | XRN2 | 0.9 | 0.0082 | 18 |
Accession | Protein | Gene | Ratio | p-Value | Peptides Used for Identification |
---|---|---|---|---|---|
ENSSSCP00000008283 | Integrin subunit alpha M | ITGAM | 2.4 | 0.0002 | 7 |
ENSSSCP00000020286 | Runt-related transcription factor 3 isoform X2 | RUNX3 | 2.0 | 0.0050 | 2 |
ENSSSCP00000000739 | Condensin complex subunit 1 | NCAPD2 | 1.8 | 0.0045 | 5 |
ENSSSCP00000024566 | TRIO and F-actin binding protein | TRIOBP | 1.7 | 0.0037 | 2 |
ENSSSCP00000028116 | grpE protein homolog 1, mitochondrial | GRPEL1 | 1.5 | 0.0039 | 6 |
ENSSSCP00000018679 | 28S ribosomal protein S23, mitochondrial | MRPS23 | 1.4 | 0.0038 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schilloks, M.-C.; Giese, I.-M.; Hinrichs, A.; Korbonits, L.; Hauck, S.M.; Wolf, E.; Deeg, C.A. Effects of GHR Deficiency and Juvenile Hypoglycemia on Immune Cells of a Porcine Model for Laron Syndrome. Biomolecules 2023, 13, 597. https://doi.org/10.3390/biom13040597
Schilloks M-C, Giese I-M, Hinrichs A, Korbonits L, Hauck SM, Wolf E, Deeg CA. Effects of GHR Deficiency and Juvenile Hypoglycemia on Immune Cells of a Porcine Model for Laron Syndrome. Biomolecules. 2023; 13(4):597. https://doi.org/10.3390/biom13040597
Chicago/Turabian StyleSchilloks, Marie-Christin, Isabella-Maria Giese, Arne Hinrichs, Lucia Korbonits, Stefanie M. Hauck, Eckhard Wolf, and Cornelia A. Deeg. 2023. "Effects of GHR Deficiency and Juvenile Hypoglycemia on Immune Cells of a Porcine Model for Laron Syndrome" Biomolecules 13, no. 4: 597. https://doi.org/10.3390/biom13040597