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Figure S1. A detailed illustration of the DL-TODA pipeline. All complete bacterial genomes were
selected from local NCBI and GTDB databases. A fasta file was created for each genome that

contains chromosomal sequences, excluding plasmids or phages. In the next steps, the NCBI and

every read

tiff format

See figures in paper |

GTDB taxonomies are retrieved for each selected genome followed by the assignment of each
genome for training or testing purposes. Reads are then simulated for each genome with the ART
[llumina read simulator and reads from genomes assigned for training are shuffled and split
between training (70%) and validation sets (30%) and stored in fastq files that are then converted
into TFRecords. Fastq files of simulated reads obtained from genomes intended for testing are
directly converted into TFRecords. Nvidia DALI indexes are then created for each file with
TFRecords. Files with training and validation TFRecords and Nvidia DALI indexes are used as
input for training DL-TODA along with other accessory files. Testing is done with testing
TFRecords and their corresponding Nvidia DALI indexes as well as a Tensorflow checkpoint
obtained during training. R scripts were generated to visualize the distribution of training and
testing reads, the learning curves, the distribution of probability scores in DL-TODA for correct
and incorrect predictions, the analysis of precision for the 639 species in the testing set in DL-

TODA at different decision thresholds and the accuracy at different taxonomic ranks.
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Figure S2. Precision of DL-TODA predictions over 639 species in the testing set plotted against the depth
of training set coverage for each corresponding species. The precision is calculated by considering reads

classified with a probability score above 0.8.



