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Abstract: Pulmonary fibrosis (PF) is an interstitial lung disease characterized by the destruction of the
pulmonary parenchyma caused by excessive extracellular matrix deposition. Despite the well-known
etiological factors such as senescence, aberrant epithelial cell and fibroblast activation, and chronic
inflammation, PF has recently been recognized as a metabolic disease and abnormal lipid signature
was observed both in serum and bronchoalveolar lavage fluid (BALF) of PF patients and mice PF
model. Clinically, observational studies suggest a significant link between high-fat diet (HFD) and
PF as manifested by high intake of saturated fatty acids (SFAs) and meat increases the risk of PF
and mice lung fibrosis. However, the possible mechanisms between HFD and PF remain unclear. In
the current review we emphasize the diversity effects of the epigenetic dysregulation induced by
HFD on the fibrotic factors such as epithelial cell injury, abnormal fibroblast activation and chronic
inflammation. Finally, we discuss the potential ways for patients to improve their conditions and
emphasize the prospect of targeted therapy based on epigenetic regulation for scientific researchers
or drug developers.
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1. Introduction

Pulmonary fibrosis (PF) is an interstitial lung disease characterized by inflammation
and destruction of lung parenchyma caused by accelerated extra cellular matrix (ECM)
deposition [1,2] which impaired gas exchange thus decreased quality of life [3]. Despite the
well-known etiological factors such as senescence and aging, PF is recently recognized as a
metabolic disease [4,5] and abnormal lipid signature has been observed both in serum and
bronchoalveolar lavage fluid (BALF) of PF patients and mice model suggesting disturbed
lipid metabolism [6–8]. Currently there is no cure for PF except for lung transplanta-
tion therefore revealing the potential pathogenic factors and possible mechanisms would
contribute to the prevention and treatment of this deadly disease.

A high-fat diet (HFD) is well accepted as a critical factor for obesity, a major global
health issue [9–11] and is associated with poor outcomes in respiratory disease such as
acute respiratory distress syndrome and PF [12–16]. HFD could induce various potentially
harmful effects to the lungs, including the decreased number and function of mitochondria
and increased lung inflammation and abnormal epithelial stem cell proliferation [17].
Observational studies found a significant link between HFD and PF [14,18] as manifested
by high intake of SFAs and meat increased the risk of PF and mice lung fibrosis [19–22]. The
exposure to lipids rich diets worsen the airway responsiveness to challenging agent [22,23]
and further increased the incidence of PF [24,25]. The involvement of dietary lipids in
PF was further supported by the fact that alterations in lipid metabolism enzymes could
exacerbate PF progression [26] and that PF patients presented decreased mitochondrial
β-oxidation capacity [27]. Taken together these studies reinforced the notion that dietary
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lipids are direct causative factors of PF which indicated that HFD was tightly associated
with the initiation and progression of PF. Nevertheless, the mechanisms that individuals
with HFD are susceptible to PF remained unclear. Since genomic mutations induced by
HFD are very low [28], it is highly probable that epigenetic changes might contribute to
HFD related PF.

Epigenetics is defined as heritable changes in gene expression that are influenced by
endogenous and exogenous factors without alterations in the nucleotide sequence [29,30].
The main epigenetic mechanisms included DNA methylation, histone modifications, and
non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) and RNA modification [31,32]
and dysregulated epigenetic modifications are well recognized player in the development
of PF [33–38].

In the current review we discussed the effects of HFD induced epigenetic dysregulation
on the progression of PF such as epithelial cell injury, abnormal fibroblast activation and
chronic inflammation and discussed the possible intervention methods to reduce the risk
of HFD related PF. Therefore, this review not only unveiled novel mechanisms but also
provided with possible intervention methods to improve the condition of HFD related PF.

2. Epithelial Cell Injury and Abnormal Activation

Lung epithelium, principally composed of ciliated cells, basal stem cells and alveolar
epithelial cells (AECs), forms a continuous layer and is responsible for gas transportation
and exchange, however it is constantly exposed to external insults especially repeated
stimulations which would destroy the its integrity [39,40]. Under normal conditions, the
damaged lung epithelium repairs itself through activation of local airway or alveolar stem
cells (Type 2 alveolar epithelial cells: AEC2s), however dysfunction of these stem cells will
hamper this process [41] and apoptotic AEC2s is predominant in idiopathic pulmonary
fibrosis (IPF) patients [42]. A recent study showed that HFD slowed resolution of lung
fibrosis and delayed alveolar repair by compromising the contribution of AEC2s [20].
Therefore, repeated lung epithelial cell damage and repair dysfunction are widely accepted
as the prominent initiation factors of lung fibrosis.

Excessive lipid accumulation or defective fatty acid oxidation is associated with the
development of fibrosis [43] and intake of lipids rich diets could trigger the occurrence of
PF [24,25]. A recent randomized controlled trial demonstrated that low-carbohydrate HFD
could increase serum cholesterol [44] and high cholesterol and HFD could directly induce
lipid accumulation in AEC2s thereby up-regulating the expression of Toll like receptor 4
(TLR4) [45] which would lead to apoptosis of AECs and lung fibrosis [46]. However, the
possible mechanisms remained unknown. DNA methylation is the main epigenetic mecha-
nism of selective gene expression regulation and methylation on the cytosine residues in
CpG dinucleotides representing the simplest form [47]. In mammals, approximately 70% of
gene promoter regions contain CpG islands and most which are unmethylated. Traditional
concept hold that hypermethylation of CpG islands in gene promoters resulted in gene
silencing while hypomethylation lead to activated transcription [47]. While in obese indi-
viduals significant lower methylation of CpGs in the first exon of the TLR4 were observed,
therefore these evidence indicated that HFD mediated promoter DNA demethylation con-
tributed to the up-regulation of TLR4 which promoted the apoptosis of AECs and lung
fibrosis [46,48]. In addition to AECs apoptosis, several recent studies have unveiled a dis-
crete population of progenitor cells in a “transitional” state that expand dramatically after
lung injury [40,49]. These cells, called damage-associated transient progenitor (DATP) cells,
are derived from both airway and alveolar epithelial cells and represent a transitional state
between injured epithelial cells and newly regenerated alveoli [50]. DATPs are featured by
pro-fibrotic phenotype and could facilitate lung fibrosis progression while DNA damage
response (DDR) pathway is known to be critical to the DATP phenotype [50]. Accordingly
recent studies high light the critical role of increased lung epithelium DDR in the process
of PF [50,51]. Histones are vital proteins that compress DNA within the nucleus to form
chromatin therefore provide a platform for gene transcription regulation through variety
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kinds of post-translational modifications such as acetylation, methylation, ubiquitylation
and phosphorylation [52]. Specifically histone acetylation and methylation are the most
common post-translational modifications that occur at specific sites and residues, which
subsequently control gene expression through regulating DNA accessibility to transcrip-
tion factors and RNA polymerase II [53]. Histone acetylation diminishes the interaction
between histones and DNA due to the neutralization of the lysine residue which open the
chromatin structure therefore hyperacetylation resulted in gene activation [52]. A recent
study showed that HFD could exacerbate particulate matters induced DDR and lung injury
by enhancing histone H4 acetylation at lysine 12 (H4K12Ac) as manifested by up-regulation
of DNA damage marker molecules such as the total p53, phosphorylated -p53, total Chk1,
phosphorylated -Chk1 and γ-H2AX [54]. Taken together the above evidence indicated that
HFD could augment the DDR in lung through promoting histone acetylation.

Epithelial mesenchymal transition (EMT), which is featured by loss of epithelial cell-
cell adhesion markers, such as E-cadherin and gain of mesenchymal molecules, such as
N-cadherin, Vimentin and α-SMA is an initial step in the process of physiological wound
healing [55,56]. However, dysregulated EMT contributed to fibrotic diseases progres-
sion [57,58]. The role of HFD in EMT is emerging. A recent study showed that HFD
promoted EMT in lung tissue as manifested by down regulation of E-cadherin and in-
creased expression of Twist contributed to the formation of lung airway fibrosis but the
potential mechanisms remained unclear [59]. Histone methylation generally occurs at argi-
nine residues (such as H3R2 and H3R8) and lysine residues (such as H3K4 and H3K9) [60].
However, unlike histone acetylation, the regulation effects of histone methylation depend
on the methylation site. For example, methylation of H3K4, H3R17 and H3K36 were
found in transcriptionally active regions, whereas methylation of H3K9, H3K27 and H4K20
were found in transcriptionally repressed regions [61]. Recent studies showed that HFD
could significantly increase the histone H3 trimethylation at lysine 4 (H3K4Me3) [62] while
increased H3K4Me3 level at the interleukin 6 (Il-6) promoter region could promote its
expression which subsequently contributed to lung fibrosis through enhancing EMT [63].
Furthermore HFD could increase histone H4 acetylation at lysine 8 (H4K8Ac) and H4K12Ac
modification [54] which accounted for EMT in human bronchial epithelial cells and lung
fibrosis progression [57,64]. This evidence suggested that histone modification is crucial for
HFD mediated EMT in lung fibrosis progression.

Fibrotic diseases are typically characterized by up-regulation of transforming growth
factor-beta (TGF-β) and its expression was often correlated with disease severity [65]. TGF-
β is a dimeric polypeptide growth factor that regulates cell proliferation and differentiation.
In the wound healing process upon epithelium injury, TGF-β could promote the production
of collagen, fibronectin and proteoglycans and reduce the function of enzymes involved in
ECM degradation such as collagenase and matrix metalloproteinases, thereby resulting in
accumulated ECM deposition [53].

A previous study found that HFD could augment the expression of TGF-β which
was accompanied by ECM deposition and pro-fibrotic factors expression and TGF-βwas
mainly originated from in epithelial cells rather than inflammatory cells, suggesting the
direct effect of HFD on lung epithelial cell [24]. To promote fibrotic remodeling, latent
TGF-β must be converted to active form [66]. A recent study showed that HFD could
increase the transformation of latent TGF-β into active state in bronchial epithelium, thereby
facilitating lung fibrosis [1,22] and this transformation was partially controlled by epigenetic
regulation since increasing DNA methylation (5-mC) levels in HFD mice could decrease
TGF-β expression [67]. Similarly, in HFD treated rats, the n6-methyladenosine (m6A)
modification on the 5′ untranslated region (UTR) of TGF-βmRNA was increased which
resulted in m6A-dependent translation of TGF-βmRNA [68] and in HFD induced kidney
fibrosis, reduced occupancy of histone H2A lysine 119 mono-ubiquitination (H2AK119Ub)
at promoter region facilitated the expression of TGF-β [69]. Furthermore HFD could also
decrease miRNAs such as let7, mir-21 and mir-27 to activate TGF-β signaling by promoting
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TGFβRIII expression [70]. These studies strongly supported the notion that epigenetic
regulation was vital for HFD induced TGF-β signaling activation.

Upon lung injury, type 1 alveolar epithelial cells (AEC1s) are susceptible to injury while
AEC2s serve as progenitor cells which could proliferate and differentiate to create new
AEC2s and AEC1s [71]. Altered response of the lung epithelial stem cells (AEC2s and club
cells) to injuries is known to be the major contributor to lung fibrosis [72]. These stem cells
might over proliferate and cause aberrant repair and therefore forming fibroblast foci [72,73].
A recent study showed that HFD slowed resolution of lung fibrosis and delays alveolar
repair by compromising the contribution of AEC2s [20] which was due to impairment of
mitochondrial function of AEC2s induced by HFD [17]. Fatty acid synthase (FASN) is
the lone lipogenic enzyme that was able to synthesize fatty acids de novo in humans [74],
while a recent study showed that HFD could decrease FASN expression in AEC2s which
resulted in mitochondrial dysfunction and more severe lung injury [75]. Physiologically the
dysfunctional mitochondria were eliminated by PINK1/Parkin-mediated mitophagy [76]
however, HFD could compromise mitochondrial homeostasis through increasing histone
H3 acetylation at lysine 27 (H3K27Ac) at the promoter of PINK1 which subsequently
inhibited its expression, thereby deactivating PINK1/Parkin-mediated mitophagy [77].
Therefore, deficient mitophagy caused by HFD could compromise the mitochondrial
function in AEC2s, thereby facilitating fibrosis progression.

Endoplasmic reticulum (ER) stress refers to accumulation of unfolded proteins induced
by imbalanced protein homeostasis [78]. Excessive ER stress lead to repetitive damages
to epithelial cells and was recently showed to facilitate PF progression [1,79]. Diets with a
high-fat content are associated with elevated circulating free fatty acids, which could induce
ER stress in non-adipose tissues [80]. A recent study demonstrated that administration
of HFD in mice could increase epithelial ER stress and susceptibility to lung fibrosis [21]
while ER stress could be evoked by HFD through decreasing methylated histones in Lxrα
promoter [28]. Taken together the above evidence suggested that epigenetic regulation
played significant roles in HFD mediated lung epithelial cell injury and aberrant activation
which facilitated lung fibrosis progression (Figure 1).
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injury by enhancing H4K12Ac; (b): HFD decreases promoter DNA methylation levels in mice whereby
increasing pro-fibrotic molecule TGF-β expression; (c): In HFD treated rats the m6A modification
on the 5′UTR of TGF-βmRNA is increased which resulted in m6A-dependent translation of TGF-β
mRNA; (d): HFD could significantly increase the H3K4Me3, H4K8Ac and H4K12Ac modification
which are accounted for EMT in human bronchial epithelial cells, thereby contributing to lung fibrosis;
(e): HFD could compromise mitochondrial homeostasis through increasing H3K27Ac at the promoter
of PINK1 which subsequently inhibits its expression, thereby inducing mitochondria dysfunction.

3. Uncontrolled Fibroblast Activation

Due to its tremendous surface area, the lung epithelium is constantly faced with
external insults while the repair process not only required the activation of lung epithelium
stem cells but also fibroblast to secrete ECM which generated contractile force for repairing
the damaged cells and wound closure [39,40]. Ideally this process is temporary and normal
pulmonary homeostasis will be restored, however under pathologically conditions this
process was sustained and massive ECM were generated, thereby leading to fibrosis [1,81].
Fibroblasts from PF patients exhibited an abnormally “activated” phenotype and alterations
in DNA methylation contribute to activation of fibroblasts [81]. Consistently, mounting
evidence indicated that abnormal activation of lung fibroblasts played a vital role in
modulating repair after lung injury, thereby contributing to fibrotic progression [1,82].
However, the possible roles of fibroblast played in HFD induced PF were still unclear.
A recent study showed that high-fat and high-fructose diet could facilitate lung fibrosis
through inducing lung fibroblasts inflammation via transcriptional up-regulating dedicator
of cytokinesis 2 (DOCK2) [83]. Accordingly, miR-34 was crucial for HFD induced fibrotic
genes expression such as Col6a1, MMP12, and TGF-β [84].

Cholesterol from HFD was one of the major bioactive lipid molecules that were dys-
regulated in many chronic lung diseases such as chronic obstructive pulmonary disease
and lung fibrosis [85,86]. The link between cholesterol and fibrosis is becoming progres-
sively clearer. The development of HFD induced hypercholesterolemia in ApoE−/− mice
could contribute to lipid accumulation within the lung and subsequent fibrosis [87] while
Atorvastatin could attenuate PF in mice by regulating myofibroblast differentiation and
apoptosis [88]. Under physiological conditions the lung fibroblasts secrete little ECM,
however, under fibrotic conditions over proliferated fibroblast, which was featured by
expression of proliferative phenotype marker Cyclin D1 could secrete more ECM, therefore,
inhibiting fibroblast proliferation has become an important treatment strategy for PF [89].
Mechanistically, cholesterol could significantly recover the reduced chromatin accessibility
induced by Pitavastatin through restoring H3K27Ac at the enhancer regions of Myc [90].
Accordingly HFD could enhance Myc transcriptional through enhancing histone H4K20
hypomethylation at the promoter regions [91] while MYC further promoted proliferation
and differentiation of lung fibroblasts, thereby facilitating the progression of PF [92]. Fur-
thermore, HFD feeding could give rise to type I collagen-depositing fibroblasts [93]. The
above evidence indicated that cholesterol lowing drug could be the potential drugs for
HFD related lung fibrosis.

A previous clinical study observed a positive correlation between SFAs intake and
increased risk of IPF in a Japanese cohort which suggested that high SFAs intake could
increase the risk of IPF [13] and a recent study demonstrated that HFD rich in palmitic
acid (PA) (a kind of SFA) could promote PF in mice [21]. These results were in accordance
with the fact that elevated relative PA contents were observed in IPF patients [94]. Fur-
thermore SFAs such as PA could generate a metabolic memory by increasing histone H3
dimethylation at lysine 36 (H3K36Me2) and decreasing histone H3 trimethylation at lysine
27 (H3K27Me3) on Foxo1 promoter region to increase its activity [95] which was crucial for
activated fibroblast to secret ECM in the progression of lung fibrosis [96].

Once the wound healing for lung epithelium repair is complete, the unrequired
proliferated and activated fibroblasts should be eliminated through apoptosis to limit
excess ECM deposition while impaired apoptosis of activated fibroblasts could lead to tissue
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fibrosis. Indeed, fibrotic lung fibroblasts seem to be resistant to apoptosis [71]. However, the
factors that distinguish normal wound repairs from fibrosis remained unknown. PA in HFD
could promote histone H3 trimethylation at lysine 9 (H3K9Me3) on the promoter region [97]
which resulted in the decreased expression of the death receptor Fas, thereby facilitating
the resistance of fibroblasts to Fas-mediated apoptosis in fibrotic lung [98]. Furthermore
recent studies showed that HFD induced obesity through promoting histone H4 acetylation
at lysine 16 (H4K16Ac) [99] which could modulate chromatin structure by serving as a
switch from a repressive to a transcriptionally active state and promote the expression of
pro-fibrotic genes to facilitate fibroblast collagen deposition in lung fibroblasts from IPF
patients and mice lung fibrosis model [100]. Thus, HFD mediated H4K16Ac modification
in obese population could promote lung fibrosis development via accelerating fibroblast
collagen deposition.

Circular RNAs (circRNAs), covalently closed at the 5′ and 3′ end, are novel ncRNAs
that regulating gene expression mainly though interaction with miRNAs or proteins, reg-
ulation of transcription and translation into peptides [101]. Recent study uncovered the
critical roles of CircRNAs as important epigenetic regulator in the pathogenesis of PF [101].
A recent study demonstrated that lipid accumulation caused by HFD could decrease mito-
chondrial circRNA Steatohepatitis-associated circRNA ATP5B Regulator (SCAR) which
could inhibit fibroblast activation by decreasing the expression of collagen and α-SMA,
while nanoparticle delivering circRNA SCAR could suppress fibroblast activation in HFD
treated mice [102]. Although this observation is in liver, the development of organ fibro-
sis shared common pathways and this could provide us with potential future direction
especially on drugs targeting epigenetic regulation [103–105].

Taken together, dysregulated epigenetic modifications are crucial for HFD induced
fibroblast activation, proliferation and apoptosis resistance, all of which are dominant
contributors to the progression of lung fibrosis (Figure 2).
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Figure 2. HFD facilitates the proliferation, over activation and apoptosis resistant through epigenetic
modification. (a): HFD could enhance MYC transcriptional through enhancing H4K20 hypomethyla-
tion and H3K27Ac at the promoter regions which promotes lung fibroblast proliferation; (b): HFD rich
in PA could activate Foxo1 through increasing H3K36Me2 and decreasing H3K27Me3 on promoter
region which is crucial for activated fibroblast to secret collagen in the progression of lung fibrosis;
(c): HFD could decrease mitochondrial circRNA SCAR to facilitate fibroblast activation; (d): PA could
promote H3K9Me3 which is responsible for the decreased expression of the death receptor Fas thus
facilitates fibroblasts resistance to apoptosis in fibrotic lung.
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4. Chronic Inflammation

Chronic inflammation played important roles in the progression of PF [106]. In addition
to the above mentioned repair mechanisms: activation of lung epithelium stem cells and
fibroblast upon injury, the immune response was simultaneously triggered to protect the
tissue from further damages [107]. However, this process is out of control with chronic
repeated injuries (typically observed in lung fibrosis) [108,109]. Due to continuous inflam-
mation, secretion of pro-inflammatory cytokines such as IL-6 and tumor necrosis factor α
(TNFα) will be increased which could further augment wound healing process by facilitating
matrix deposition and subsequently resulted in fibrotic progression [103,104]. Therefore
identification of factors participating in the onset and progression of inflammation is vital
for comprehensively understanding inflammation related disorders such as PF [106,110].

Nutritional factors contributed to the formation of pro-inflammatory niche [111] and
chronic low-grade inflammation induced by altered metabolic homeostasis appeared to be
vital for the pathogenesis of organ fibrosis [112]. Chronic HFD has been linked with low-
grade systemic inflammation in obesity [113]. Particularly, the consumption of western type
HFD could provoke chronic metabolic inflammation which subsequently contributed to the
progression of chronic diseases such as nonalcoholic steatohepatitis and lung fibrosis [114].
In HFD related obesity, adipocytes and macrophages in the adipose tissue generated pro-
inflammatory cytokines such as TNFα and IL-6 which could provoke systemic inflamma-
tion and contribute to the progression of lung fibrosis [115,116]. A recent report showed that
mice displayed increased pulmonary neutrophile accumulation and collagen deposition by
feeding with HFD [25] and mice feed on HFD exhibited granulomatous lung inflammations
which subsequently lead to progressive lung fibrosis [117]. However, the mechanisms
through which HFD provoked inflammation response remained unclear. It has been well
established that epigenetic modifications upon environmental factor stimulation played a
fundamental role in regulation of inflammatory gene transcription [110,118–120]. Worse
still, the adverse effects of the inflammatory state may induce epigenetic changes that per-
petuate inflammation [121]. Therefore, we postulated that epigenetic signature alterations
induced by HFD may exacerbate inflammatory responses, thereby influencing progression
of chronic inflammatory disease such as lung fibrosis [101,110,118]. In support of this,
integrative epigenome wide association study showed that promoter methylation of TNFA
were decreased with consumption of dietary fat [122] suggesting a nutrient epigenomic
regulation of pro-inflammatory factors [123]. Accordingly high cholesterol and HFD would
lead to low-grade pulmonary inflammation through activating TLR4/NFκB signaling [45]
while significant lower methylation of CpGs in the first exon of the TLR4 were observed in
obese individuals, indicating epigenetic regulation of TLR4 expression in obesity [48]. Mice
fed on HFD exhibited significant reduced DNA methylation at the promoter of Pparγ1
which was critical for pro-inflammatory macrophages activation [124]. In adipose tissue,
the DNMT3a methyltransferase was markedly increased which was accompanied by ele-
vated expression of inflammatory cytokines such as TNFα and MCP-1, implying the role of
DNMT3a in obesity related inflammation [125]. Similarly, increased expression of DNMT3b
was found in adipose tissue macrophages and involved in the polarization of macrophage
and inflammation [126]. In mice, HFD led to hypermethylation of the Ankrd26 which in turn
contributed to enhanced secretion of pro-inflammatory factors [127]. Consistently, epige-
netic silencing of the ANKRD26 by promoter methylation was related to pro-inflammatory
state in obese individuals [128]. In addition to DNA methylation, significant association
between expression of histone deacetylases and inflammation status was demonstrated in
obese individuals [129]. Upon HFD treatment the levels of sphingosine-1-phosphate were
increased [130] which subsequently inhibited histone deacetylases activity and increased
histone acetylation at H3K9, H4K8 and H3K18, thereby promoting pro-inflammatory cy-
tokines in BALF [131]. Accordingly, sphingosine-1-phosphate was reported to be increased
in IPF patients and could facilitate disease progression [132,133]. Moreover ncRNAs, due
to their versatile roles in the regulation of gene expression, are widely involved in HFD
induced chronic inflammation. Consumption of high-fat or high calorie (rich in fat) diet
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was shown to increase inflammatory response by altering miRNA expression [134,135]
and bioinformatics study showed that a miRNAs network significantly associated with
obesity related inflammation [136] and deregulated circulating inflammatory miRNAs
contributed to the elevated inflammatory state in obesity [137]. Besides, adipocyte-secreted
exosomal miR-34 was progressively increased with the development of dietary obesity
and subsequent systemic inflammation [138]. In the same way, HFD could increase miR-
155 in adipocyte-derived microvesicles which could induce M1 macrophage polarization,
thereby causing chronic inflammation [139]. HFD could further down regulate miR-30
by DNA methylation which facilitated M1 macrophages polarization [140]. Although the
pro-inflammatory M1 macrophages are usually regarded as anti-fibrotic in lung fibrosis,
they could exacerbate the inflammatory status of the lung injury and evoke the fibrotic
response in lung fibrosis patients through activation of the TLR4 signaling [141]. Worse still,
the maternal HFD could further hinder the lung development and function of offspring by
epigenetic modulations [142,143] for example, maternal HFD could lead to offspring tissue
inflammation through down regulation of miR-706 [144]. Since HFD could also suppress
the expression of miR-26a and stimulate expression of pro-inflammatory cytokines such
as TNFα [145] while decreasing TNFα was demonstrated to improve lung function of
PF patient [146] therefore, this provide us with novel target for treating HFD related PF.
Taken together the above evidence highlighted the crucial roles of epigenetic regulated
inflammation in HFD induced lung fibrosis (Figure 3).
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Figure 3. Epigenetically activation of inflammatory related genes play significant roles in fostering
inflammation niche by HFD, thereby facilitating lung fibrosis progression. (a): HFD promotes TLR4
expression through demethylation of CpGs in the first exon whereby lead to low-grade pulmonary
inflammation; (b): HFD led to hypermethylation of the Ankrd26 promoter region which in turn
contribute to enhanced secretion of pro-inflammatory factors; (c): HFD increases histone acetylation
at H3K9, H4K8, H3K18 which promoted pro-inflammatory cytokines in BALF; (d): Consumption of
high-fat or high calorie diet (rich in fat) is shown to increase inflammatory response by altering miRNA
expression such as increasing miR-155 and down regulating miR-30 could induce M1 macrophage
polarization, thereby causing chronic inflammation.
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5. Clinical Perspectives

In the current review we emphasized the important roles of epigenetic regulation in
HFD related lung fibrosis. HFD is well accepted as a critical factor leading to the obesity [11].
Paradoxically, previous multicenter study showed that body weight loss predicted worse
survival of PF patients [147]. This issue was due to the currently used body weight
measurement which neglected the body mass composition [148]. Actually individuals
with the same body mass may varied in composition including fat mass (FM) and fat-
free mass (FFM; or lean mass) which played different roles in health outcomes [148,149].
Large prospective cohort studies demonstrated that increased FM could significantly
increase the risk while FFM reduced the risk of inflammation related and respiratory
diseases [149,150] which mean that hidden loss of FFM or lean mass rather than weight
loss was related to increased systemic inflammatory [151] since elevated expression of
inflammation related genes were induced by HFD related FM increase [152]. On the
contrary increased proportion of FFM was associated with better lung condition [153]
which could be attributed to lower inflammation.

It is well established that high intake of polyunsaturated fatty acids (PUFAs) has been
associated with reduction of adiposity and increases in lean body mass [154]. However
in the last decades, the daily diets FA intake has dramatically changed from monounsat-
urated and PUFAs rich pattern to a westernized pattern characterized by a high content
in SFAs [155]. Accordingly, a previous comparative study showed that SFAs intake could
increase the risk of PF [13] while the beneficial effects of PUFAs on mitigating lung fibrosis
have been demonstrated in many studies. Intake of fish oil rich in eicosapentaenoic acid
decreased bleomycin induced lung hydroxyproline accumulation [156]. Furthermore, the
mitigation of lung fibrosis has been demonstrated with long-chainω-3 PUFA docosahex-
aenoic acid [157] and short-chainω-3 PUFA [158,159]. A relevant case showed that maternal
diet supplied with docosahexaenoic acid could alleviate lung fibrosis and improve lung
function in offspring by reducing collagen deposition and lessening inflammation [160].
These anti-fibrotic properties of PUFA could be mediated through inhibiting EMT in hu-
man AEC2s [161] and through activating PPARγ signaling [162]. Since HFD is critical
contributor to fat body mass increase and obesity [11,152] while intake of PUFAs has been
associated with reduction of adiposity and increases in fat-free body mass [154] therefore,
an adequate dietary PUFAs intake might reduce the risk of HFD related lung fibrosis.
Indeed observational data from a cohort of 104 Japanese patients showed that SFAs intake
may be an independent risk factor for PF [13] while consumption of fruit was associated
with a reduced risk [163]. Therefore a shift of dietary habit should be recommended for
individuals with a high fat mass to avoid the occurrence of PF. Alternatively, an relative
easy way for HFD individual to reduce the risk of lung fibrosis might be exercise since a
latest study demonstrated that aerobic exercise could alleviate PF by ameliorating HFD
induced inflammatory response and neutrophil infiltration [164].

6. Conclusions

Lung fibrosis is an interstitial lung disease characterized by chronic inflammation and
destruction of lung parenchyma which was caused by accelerated ECM deposition [1].
Upon injury, normal stem cell activation and wound healing procedure will lead to epithe-
lium repair while abnormal lung epithelium cell, fibroblast activation and accompanied
chronic inflammation will result in tissue fibrosis which impaired gas exchange and lead
to breathlessness, thereby decreasing quality of life. However, the mechanisms that shift
normal repair to fibrotic response remained unclear.

Recently, lung fibrosis is recognized as a metabolic disease and abnormal lipid signa-
ture was observed both in serum and BALF of PF patients and mice model, suggesting
that lipid metabolism was unbalanced in lung fibrosis. Consistently clinical observation
and animal studies showed that HFD was associated with the progression of lung fibro-
sis [14,18,21,24,25]. However, the mechanisms of individuals with HFD are susceptible
to lung fibrosis remained unclear. Since genomic mutation induced by HFD is very low,
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it is highly probable that epigenetic changes might contribute to HFD related lung fibro-
sis. In the current review we highlight the vital roles of epigenetic dysregulation in HFD
induced PF from the perspective of epithelial cell injury, abnormal fibroblast activation
and chronic inflammation. This knowledge opens new possibilities for a potential use of
epigenetic signatures as biomarkers for diagnosis and targets for PF management [110].
Currently, there is no cure for PF except for lung transplantation therefore, revealing the
potential pathogenic factors and possible mechanisms would contribute to the prevention
and treatment of this deadly disease. Due to the reversible nature, intervention meth-
ods targeting dysregulated epigenetic regulation represented a promising way to treat
lung fibrosis [165–167]. For a long time we have studied on the therapeutic effects of
miRNAs mimics in treating lung fibrosis [168,169]. Recently, we generated MRG-229, a
next-generation miR-29 mimic with improved stability and potential for targeted delivery
which showed significant anti-fibrotic effects on human precision cut lung slices and mice
lung fibrosis model and showed no adverse effects on non-human primates cynomolgus
monkeys [168]. Accordingly, delivering circRNA SCAR using nanoparticle could suppress
fibroblast activation in HFD treated mice [102]. The above evidence demonstrated the vital
roles of targeting abnormal epigenetic regulation in ameliorating PF progression.

In summary, our review not only unveil the important roles of epigenetic regulation
in HFD mediated PF but also provide potential ways to deal with this issue. For patients
they could change their diet habitat and do more aerobic exercise [158,159,164] while for
scientific researchers or drug developers, unveiling the epigenetic mechanism of HFD
related lung fibrosis will provide novel targets to treat this deadly disease.
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Histone H3 trimethylation at lysine 9 (H3K9Me3)
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Idiopathic pulmonary fibrosis (IPF)
Interleukin6 (IL-6)
N6-methyladenosine (m6A)
Palmitic acid (PA)
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Pulmonary fibrosis (PF)
Saturated fatty acids (SFAs)
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