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Abstract: Aflatoxin B1 (AFB1) is a highly toxic mycotoxin produced by aspergillus species under spe-
cific conditions as secondary metabolites. In this study, types of PCL (Polycaprolactone) membranes
anchored (or not) to g-C3N4/CQDs composites were prepared using electrospinning technology with
(or without) the following surface modification treatment to remove AFB1. These membranes and
g-C3N4/CQDs composites were characterized by SEM, TEM, UV-vis, XRD, XPS and FTIR to analyze
their physical and chemical properties. Among them, the modified PCL-g-C3N4/CQDs electrospun
membranes exhibited an excellent ability to degrade AFB1 via synergistic effects of adsorption and
photocatalysis, and the degradation rate of 0.5 µg/mL AFB1 solution was observed to be up to 96.88%
in 30 min under visible light irradiation. Moreover, the modified PCL-g-C3N4/CQDs electrospun
membranes could be removed directly after the reaction process without centrifugal or magnetic
separation, and the regeneration was a green approach synchronized with the reaction under vis-
ible light avoiding physical or chemical treatment. The mechanism of adsorption by electrostatic
attraction and hydrogen bonding interaction was revealed and the mechanism of photodegradation
of AFB1 was also proposed based on active species trapping experiments. This study illuminated
the highly synergic adsorption and photocatalytic AFB1 removal efficiency without side effects from
the modified PCL-g-C3N4/CQDs electrospun membranes, thereby offering a continual and green
solution to AFB1 removal in practical application.

Keywords: PCL electrospun membranes; aflatoxin B1; adsorption; photocatalysis; g-C3N4/CQDs;
visible light

1. Introduction

At present, the biological contamination of food has been paid more and more at-
tention, along with the issue of food safety. Mycotoxin contamination is one of the main
factors causing food safety problems. There are many kinds of mycotoxins, among which
aflatoxin B1 (AFB1) is the most toxic biological toxin food produced by aspergillus species
so far. Its toxicity is 10 times that of potassium cyanide and 68 times that of arsenic, and
it is classified as a class I human carcinogen by the International Agency for Research on
Cancer (IARC) [1]. AFB1 can easily enter the human food chain and threaten people’s
health. In order to ensure human health from the harm of AFB1, international organizations
and countries around the world have determined the maximum tolerable limits of AFB1 in
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various foods. In the European Commission [2], the maximum limits are 2 µg/kg for AFB1
in edible oils, cereals and cereal products. In China [3], the maximum limits of AFB1 are set
at 20 µg/kg for peanut and maize oils, and 10 µg/kg for the other vegetable oils. In the
United States [4], the maximum limits of total aflatoxins (AFB1 + AFB2 + AFG1 + AFG2) in
all foods (except milk) are 20 µg/kg; acceptable levels of AFM1 in milk and dairy products
are 0.5 µg/kg.

Studies have shown that intake of large amounts of AFB1 in a short time can lead to
liver damage, such as liver tissue hemorrhage and acute hepatitis. To reduce or eliminate
the adverse effects caused by AFB1, on the one hand, it is necessary to control the growth of
the aspergillus species or hold back the arise of AFB1 [5]; on the other hand, the symptoms of
AFB1 poisoning can be effectively relieved by taking animal function regulators (curcumin)
or antiaflatoxin bacteria (probiotics) [6]. Furthermore, we need to develop various effective
and practical methods for the detoxification of AFB1 [7]. Adsorption is a widely used
method to decrease aflatoxin contamination. There has been a series of studies on the
elimination of AFB1 with adsorbents. Ma et al. applied copper-based metal-organic
frameworks (MOFs) to synthesize the porous carbonaceous materials as sorbents for the
removing of AFB1 from plant oils, and removed more than 90% of AFB1 within 30 min [8].
Phillips et al. synthesized a highly active sodium bentonite clay with enhanced AFB1
sorption efficacy compared with bentonite clay and other clays [9]. Karmanov et al. studied
the performance of adsorption-desorption of aflatoxin B2 (AFB2) using lignins obtained
from several cultivated and medicinal plants in an in vitro simulated gastrointestinal tract
environment; lignins from ledum and jerusalem artichoke exhibited the highest AFB2
adsorption capacity, and the chemisorption mechanisms played the most leading role [10].
However, the adsorption capacity gradually decreases as the adsorbents are saturated
with the adsorbed AFs. In addition, some adsorbents are short of reusability due to
the shortage of environmentally friendly regeneration methods. For instance, common
powder adsorbents usually need centrifuge separation for adsorbents recovery [11], and
the regeneration process usually requires solvent washing under acidic/alkaline conditions
or undergoing calcination treatment, which would inevitably release pernicious chemicals
into the environment [12].

As we all know, adsorption membranes prepared by electrospinning technology have
attracted sense of attention in wastewater treatment due to their large specific surface
area [13,14]. Many kinds of pristine electrospinning polymer adsorption membranes or
electrospinning polymer adsorption membranes containing additives (such as graphene
oxide [15], silica [16], and carbon nanotubes [17]) were developed to adsorb organic pollu-
tants or heavy metal ions [18,19]. These membranes were easy to separate from the reaction
substrate after adsorption reaction, thus avoiding centrifugal separation and possible sec-
ondary pollution. Therefore, it is a reasonable strategy to use electrospun membranes
to absorb AFB1 in an aqueous medium. However, these electrospun membranes still
need to be treated by chemical or physical methods for regeneration. Are there recyclable
membranes that can not only degrade AFB1 efficiently, but also avoid releasing harmful
chemicals to the environment during regeneration?

Photocatalytic technology is a newly developed technology to degrade pollutants
under mild or gentle conditions including AFB1 [20,21]. In the photocatalytic process,
When the light with appropriate energy irradiates the photocatalysts, the electrons (e−) are
excited from the valence band to the conduction band leaving behind holes (h+) [22]. Then,
these photogenerated charges (e− and h+) migrate from the inner of the photocatalysts
to the surface of the photocatalysts. These photogenerated charges interact with H2O,
O2 or OH− around to produce •OH and •O2

−, which can attack the pollutant molecules
into smaller fragments, even CO2 or H2O [23]. Compared with traditional treatment
methods, photocatalysis technology is environmentally friendly and low-cost. Inspired
by the process mentioned above, it is an attractive strategy to develop a kind of green
and recyclable membrane that combines adsorption and photocatalysis techniques to
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degrade AFB1 synergistically through electrospinning technology, overcoming difficulties
in separating traditional adsorbents and photocatalysts.

Among the wide variety of polymers that can be used for electrospinning [24,25],
polycaprolactone (PCL) has attracted extensive interest due to its availability, non-toxicity,
and stability [26,27]. More importantly, the electrospun membranes prepared by PCL have
excellent mechanical properties [28]. In this paper, PCL was chosen as the raw material
of electrospun membranes. In order to overcome the disadvantage of poor adsorption
capacity of the PCL electrospun membranes, surface modification technology was used to
functionalize the membranes. Polydopamine (PDA) modification inspired by the excellent
adhesion of Mytilus edulis foot has been widely used in membrane surface modification.
Dopamine (DA) can self-polymerize to form a PDA layer coating at plenty of substrates
under alkaline conditions or air atmosphere [29], which can improve the hydrophilicity and
mechanical properties of the modified membranes. Furthermore, the phenolic hydroxyl
groups on the surface of the PDA layer can be used to conjugate with amino-containing
compounds to capture target molecules intentionally. So far, it has been reported that
polyethyleneimine (PEI) [30], polyacrylamide (PAAM) [31], and other amino-containing
compounds were grafted onto PDA-modified membranes to adsorb CO2, dye molecules,
protease and other substances. In this study, we used PEI conjugate onto PDA-modified
PCL electrospun membranes to adsorb AFB1.

In terms of photocatalysts, graphitic carbon nitride (g-C3N4), a metal-free semicon-
ductor, has attracted wide attention due to its environmental friendliness, easy modifi-
cation, and proper band gap [32]. However, the high recombination rate of photogen-
erated charges and poor spectral response range have become crucial issues for pristine
g-C3N4 [33]. Metal/non-metal element doping [34,35], construction of heterojunction [36],
and other strategies were used to optimize the photocatalytic performance of g-C3N4. Car-
bon quantum dots (CQDs), a “zero-dimensional” nanomaterial, has become one of the most
promising co-catalysts due to their excellent electron transfer ability and up-converting
photoluminescence [37]. Therefore, it is a reasonable way to modify g-C3N4 with CQDs
to enhance visible light absorption as well as reduce the recombination of photogener-
ated charges [38]. The raw materials (such as urea, melamine, citric acid, sucrose, etc.)
required for the preparation of CQDs and g-C3N4 are easy to obtain and the preparation
process is simple, which is favorable for practical applications. In this paper, g-C3N4/CQDs
composites were used for the photocatalytic degradation of AFB1 under visible light.

Herein, the flexible PCL-g-C3N4/CQDs electrospun membranes were successfully
prepared using electrospinning technology. The surface of electrospun membranes were
modified by PDA and PEI to remove AFB1 continuously. To study the synergistic effect of
adsorption and photocatalysis, comparative experiments were carried out using pristine
PCL electrospun membranes, modified PCL electrospun membranes, PCL-g-C3N4/CQDs
electrospun membranes and modified PCL-g-C3N4/CQDs electrospun membranes. The
adsorption mechanism and the photocatalytic degradation mechanism of AFB1 were inves-
tigated in the presence of different sacrificial agents. Moreover, the effect of recycling on
the adsorption and photocatalytic efficiency was also evaluated. The work presented in
this paper has potential practical value for the degradation of AFB1, which has plagued the
food industry for a long time.

2. Experiment
2.1. Materials and Reagents

AFB1 was purchased from Beijing Puhuashi Technology Development Co., Ltd. (Bei-
jing, China). and dissolved to a certain concentration with deionized water. Urea (≥99.0%
purity), anhydrous citric acid (≥99.0% purity), anhydrous methanol (≥99.0% purity) poly-
caprolactone (PCL, Mw ≈ 80,000), dopamine hydrochloride (AR, 99.5%), polyethyleneimine
(PEI, Mw ≈ 10,000), N,N-dimethylformamide (DMF, AR, 99.5%), hexafluoroisopropanol
(HFIP, AR, 99.5%), sodium hydroxide (AR, 99.5%) and Tris-HCl buffer (pH = 8.5) were
purchased from Jingji Co., Ltd. (Suzhou, China). Glacial acetic acid (for HPLC, ≥99.9%),
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methanol (for HPLC, ≥99.9%), trifluoroacetate (for HPLC, ≥99.5%) and acetonitrile (for
HPLC, ≥99.9%) were purchased from Macklin Biochemical Co., Ltd. (Shanghai, China).
All reagents were used without any further purification. Dialysis bags were purchased
from Shanghai yuan ye Bio-Technology Co., Ltd. (Shanghai, China). The deionized water
used in this work was purified using the Millipore system purchased from Merck Co., Ltd.
(Shanghai, China).

2.2. Preparation of g-C3N4/CQDs Composites

Powdered g-C3N4 was prepared by calcining urea at 550 ◦C for 3 h (5 ◦C/min). CQDs
were synthesized through a facile hydrothermal method according to the improved method
in reference [39]. Briefly, a certain amount of urea and citric acid with a mass ratio of 48:19
were fully dissolved in DMF. Then the solution was transferred to a polytetrafluoroethylene
reactor, followed by placing it in a drying furnace at 180 ◦C for 6 h. After the reaction,
on cooling to room temperature, the obtained red solution was centrifuged at a speed of
8000 r·min−1 for 10 min to remove the large deposit, and dialysis was carried out in a
dialysis bag with a molecular weight of 500 Da for 48 h. Finally, the CQDs was obtained
after freeze-drying treatment.

In a typical preparation of g-C3N4/CQDs composites, a certain amount of g-C3N4 was
dissolved in anhydrous methanol. Then, CQDs were added into the above solution, stirred
and ultrasonicated for 1 h, respectively. After the suspension was dried at 60 ◦C for 6 h,
g-C3N4/CQDs composites were obtained. The photocatalytic degradation performance of
g-C3N4/CQDs samples with different contents of CQDs (0.1%, 0.3%, 0.5%, and 0.7%) and
pristine g-C3N4 can be seen in Figure S1, we determined that the mass ratio of CQDs in
g-C3N4/CQDs composites was 0.5% in this study.

2.3. Preparation of Modified PCL-g-C3N4/CQDs Electrospun Membranes

The modified PCL-g-C3N4/CQDs electrospun membranes were prepared by electro-
spinning and the following surface modification treatment. The schematic illustration was
shown in Figure 1. Typically, 0.2 g g-C3N4/CQDs composites were added into 10 mL HFIP
and ultrasonicated for 1h to fully disperse. Subsequently, 1 g PCL was added and stirred
for 12 h at 50 ◦C to obtain a yellow-grey solution. Then loaded the prepared solution into a
10 mL plastic syringe with a metal needle. The syringe was driven by a hydraulic pump for
electrospinning at a flow rate of 2.5 mL/h. The applied voltage during electrospinning was
20 kV and the distance from the aluminum foil surface to the metallic needle was 15 cm.
After electrospinning, the PCL-g-C3N4/CQDs electrospun membranes were dried at 45 ◦C
in a drying furnace for 12 h.
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Surface modification treatment was a two-step process that combines hydrolysis
reaction with subsequent grafting technology, which was briefly described as follows. First,
immersed the PCL-g-C3N4/CQDs electrospun membranes in 2 g·L−1 DA hydrochloride
solution (Tris-HCl buffer, pH = 8.5) at 45 ◦C with 120 r·min−1 agitations to form PDA
layer for 12 h. Second, placed the washed PDA-coated PCL-g-C3N4/CQDs electrospun
membranes by deionized water in 2 g·L−1 PEI aqueous solution at 45 ◦C with 120 r·min−1

agitations for 12 h. Finally, the modified PCL-g-C3N4/CQDs electrospun membranes were
obtained after washing and drying treatment.

Pristine PCL electrospun membranes, modified PCL electrospun membranes and PCL-
g-C3N4/CQDs electrospun membranes were prepared in a similar manner, respectively.

2.4. Membranes Characterization

The morphologies of the pristine PCL electrospun membranes, modified PCL elec-
trospun membranes, PCL-g-C3N4/CQDs electrospun membranes and modified PCL-g-
C3N4/CQDs electrospun membranes were observed using scanning electron microscopy
(SEM, ZEISS Sigma, Germany) and the microstructures of g-C3N4/CQDs composites were
observed by transmission electron microscopy (TEM, JEM-2100F). The UV-vis absorp-
tion spectra and photoluminescence of g-C3N4/CQDs composites were measured with a
UV-vis-NIR double beam spectrophotometer (Lambda 1050, Perkin-Elmer, Waltham, MA,
USA) and a steady-state/transient fluorescence spectrometer (Edinburgh Instruments,
Livingston FL1000, UK). X-ray diffraction (XRD) patterns were obtained with an x-ray
diffractometer (XRD, MiniFlex 600, Rigaku, The Woodlands, TX, USA) at a scanning speed
of 2◦/min. Fourier-transformed infrared (FTIR) spectra were analyzed on a fourier infrared
spectrometer (Vector-22, BRUKER, wavenumber region: 500~4000 cm−1, wavenumber
resolution: 1 cm−1). High-resolution XPS spectra were analyzed using an X-ray photoelec-
tron spectrometer (NexsaG2, Thermo Scientific, Waltham, Ma, USA, voltage: 12 kV, energy
range: 100~700 eV, scanning step: 0.05 eV).

2.5. Photocatalytic Degradation Experiment

The adsorption experiments were performed at room temperature in the dark by
immersing 0.05 g of pristine PCL electrospun membranes, modified PCL electrospun mem-
branes, PCL-g-C3N4/CQDs electrospun membranes and modified PCL-g-C3N4/CQDs
electrospun membranes into 50 mL of AFB1 aqueous solutions (0.5 µg/mL), respectively.
During the experiments, 0.5 mL of the AFB1 aqueous solution was taken every 5 min within
30 min.

The adsorption-photocatalysis experiments were performed under visible light radia-
tion, whereas the other concentrations were kept constant with adsorption experiments.
A 300 W xenon lamp with a 400 nm cut-off filter was used as a light source. The distance
between the Xenon lamp and the AFB1 aqueous surface was 10 cm. During the experiments,
0.5 mL of the AFB1 aqueous solution was taken every 5 min for a total of 30 min.

In this study, the concentrations of the AFB1 were analyzed by the Waters-600 high-
performance liquid chromatography (HPLC) equipped with a UV/Visible detector (emission
wavelength at 365 nm) and C-18 Phenomenex reverse phase column (250 × 4.6 mm i.d., 5 µm)
at a flow rate of 1 mL/min with an isocratic system composed of acetonitrile: methanol: water
(10:20:70). The total running time was 20 min and the injection volume was 10 µL.

The stability of the modified PCL-g-C3N4/CQDs electrospun membranes was eval-
uated by 5 continuous cycle experiments. NaCl (0.1 mol) and urea (0.1 mol) were added
into AFB1 solutions in the dark, respectively, before adsorption experiments as electrostatic
and hydrogen bond inhibitors to explore the adsorption mechanism of AFB1. In order to
understand the mechanism of photodegradation of AFB1 by the electrospun membranes,
active species trapping experiments were carried out with the addition of ammonium
oxalate (AO, 1 mM), isopropanol (IPA, 1 mM), and 1,4-benzoquinone (BQ, 1 mM) to cap-
ture photogenerated holes (h+), hydroxyl radicals (•OH) and super-oxide anion radicals
(•O2

−), respectively.
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3. Results and Discussion
3.1. Micro-Structure of PCL-g-C3N4/ CQDs Electrospun Membranes

The morphologies of the pristine PCL electrospun membranes, modified PCL elec-
trospun membranes, PCL-g-C3N4/CQDs electrospun membranes and modified PCL-g-
C3N4/CQDs electrospun membranes were displayed in Figure 2. Figure 2a presented the
SEM images of the pristine PCL electrospun membranes, and these smooth PCL nanofibers
with a diameter around of 1200 nm form a crosslink network structure. After surface modi-
fication treatment (PDA/PEI-coating) the color of the pristine PCL electrospun membranes
changed from white to dark grey, and some randomly distributed small bumps could
be observed on the surface of the modified PCL electrospun membranes as depicted in
Figure 2b. When g-C3N4/CQDs composites were dissolved in the PCL electrospun solu-
tion, the synthesized PCL-g-C3N4/CQDs electrospun nanofibers could still retain crosslink
network structure, and a specific amount of embedded g-C3N4/CQDs could be observed
in Figure 2c. Similar to the pristine PCL electrospun membranes after surface modifica-
tion treatment, small bumps which adhere to the surface of PCL nanofibers and exposed
g-C3N4/CQDs composites also could be observed in the modified PCL-g-C3N4/CQDs
electrospun membranes as shown in Figure 2d. Compared with PCL-g-C3N4/CQDs electro-
spun membranes, the surface modification by PDA/PEI was conducive for the adsorption
of AFB1 to the vicinity of photodegradation sites and promoting the contact probability of
AFB1 and g-C3N4/CQDs composites, which improves the photocatalytic efficiency.
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3.2. Micro-Structure of g-C3N4/CQDs Composites

Figure 3 showed the TEM and HRTEM images of g-C3N4/CQDs composites, revealing
the detailed microstructure. Apparently, many CQDs with diameters of 10–20 nm were
uniformly decorated on g-C3N4 with numerous stacked block structures, which was con-
sistent with the findings from previous studies [40,41]. In addition, a sharp dividing line
in the HRTEM image further exhibited the coexistence of g-C3N4 and CQDs nanoparticles,
which confirmed that CQDs homogeneously combined with g-C3N4. The micro-regional
heterostructures between CQDs and g-C3N4 could effectively enhance different orientation in-
trinsic driving forces to accelerate the separation and transfer of photogenerated charges [42].

3.3. UV-vis Absorption Spectra and PL Spectra of g-C3N4 with Different Content of CQDs

To analyze the light capture ability of g-C3N4/CQD composites, UV-vis absorption
spectra of g-C3N4/CQDs composites with different contents of CQDs (0.1%, 0.3%, 0.5%,
and 0.7%) and pristine g-C3N4 were recorded, as shown in Figure 4a. Compared with
pristine g-C3N4, the light absorption region of g-C3N4/CQDs was greatly enhanced with
the increasing content of CQDs. Redshift was observed from the absorption edge of g-C3N4
at 463 nm, which may be due to the effective combination of CQDs into g-C3N4 by thermal
polymerization. We performed photoluminescence (PL) analysis, the results were shown in
Figure 4b, to study the recombination of photogenerated charges of g-C3N4/CQDs com-



Biomolecules 2023, 13, 550 8 of 18

posites using an excitation wavelength of 360 nm. Both pristine g-C3N4 and g-C3N4/CQDs
samples with different contents of CQDs (0.1%, 0.3%, 0.5%, and 0.7%) had emission peaks
at about 460 nm originated from inter-band recombination of photogenerated charges. The
implanted CQDs acted as electron-accepting and transport centers that could facilitate
the photogenerated charges transfer greatly and promote π–electron delocalization in the
micro-region, inhibiting the recombination of photogenerated charges. Thereby, the emis-
sion peaks dramatically decreased with the increase in CQDs content (0~0.5%) and the
photocatalytic efficiency was improved accordingly [38]. However, when the content of
CQDs raised to 0.7%, the PL emission intensity turned over. In this situation, excess CQDs
not only weakened the light absorption of g-C3N4, but also acted as the recombination sites
of photogenerated charges, leading to an increase in emission intensity and a decrease in
photocatalytic efficiency [40].
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3.4. XRD Analysis of the Electrospun Membranes and g-C3N4/CQDs Composites

Figure 5a showed the XRD patterns of pristine PCL electrospun membranes, modified
PCL electrospun membranes, PCL-g-C3N4/CQDs electrospun membranes and modified
PCL-g-C3N4/CQDs electrospun membranes. The typical diffraction peaks at 21.5◦ and
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23.9◦ correspond to (110) and (200) crystal planes of PCL, respectively [28]. After surface
modification treatment, two accompanying peaks at 22.2◦ and 24.5◦ appeared on the XRD
patterns of modified PCL electrospun membranes and modified PCL-g-C3N4/CQDs elec-
trospun membranes, confirming the structural change caused by the functionalization
reaction [43]. This also revealed that the structure of PCL has not been destroyed by surface
modification treatment as the two diffraction peaks of PCL stay the same in the four XRD
patterns. As stated above, XRD patterns showed that those two electrospun membranes
were successfully modified. Moreover, no diffraction peaks for g-C3N4/CQDs were ob-
served due to the low content. The details of XRD patterns of four membranes from 15◦ to
30◦ can be seen in Figure S2a. In order to analyze the crystal structure of the synthesized
g-C3N4/CQDs composites, the XRD patterns of g-C3N4, CQDs and g-C3N4/CQDs compos-
ites were also obtained, as shown in Figure 5b. The characteristic peak of g-C3N4 appears
at 2θ = 13.1◦ was assigned to the (100) plane, which was attributed to the triazine unit.
Additionally, another stronger peak that appears at 27.6◦ was the typical (002) diffraction
plane attributed to the inter-planar stacking of the aromatic system in g-C3N4 [44]. The
XRD pattern of the CQDs exhibited a wide bump around 10◦, corresponding to the (002)
plane [45]. It is worth noting that due to the low content and uniform distribution of the
CQDs, almost no diffraction peaks of CQDs were observed in the g-C3N4/CQDs composite,
revealing that the incorporation of CQDs did not significantly change the crystal structure
of g-C3N4. More details can be found in Figure S2b.
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3.5. XPS Analysis of the Modified Electrospun Membranes

X-ray photoelectron spectroscopy (XPS) was used to investigate the chemical state
and composition of the modified PCL-g-C3N4/CQDs electrospun membranes as shown
in Figure S3, which showed that it was completely composed of C, N and O elements.
As the content of g-C3N4/CQDs in those electrospun membranes was low and played
a decisive role in the photodegradation of AFB1, we further carried out XPS analysis on
g-C3N4/CQDs composites. The XPS wide scan spectra of g-C3N4/CQDs was shown in
Figure 6a, revealing the existence of C, N and O elements at binding energies of 288 (C 1s),
400 (N 1s) and 532 eV (O 1s). Further, we used the peak-splitting simulation method to
understand the chemical properties. In the high-resolution XPS spectra of C 1s (Figure 6b),
four peaks located at 285.1, 286.0, 288.7 and 294.1 eV were ascribed to graphitic carbon
(C=C) of CQDs, a small quantity of C-O species, sp2 hybridized carbon (N-C=N) of g-C3N4
and π-excitation, respectively [42,46]. The spectra of N 1s (Figure 6c) could be fitted into
four peaks at 398.9, 399.8, 401.2 and 404.5 eV, which could be assigned to sp2 hybridized
aromatic N (C-N=C) in triazine rings, tertiary N in N-(C)3 and amino groups (N-H), π-
excitation, respectively [40,47]. The spectra of O 1s (Figure 6d) could be fitted into two
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peaks at 531.7 and 533.4 eV, which could be assigned to C-O and O-H of lattice oxygen and
adsorbed water, respectively [42,46]. In the whole spectrum, no characteristic peak related
to any other element was observed both in modified PCL-g-C3N4/CQDs electrospun
membranes and g-C3N4/CQDs composites indicating this metal-free material can avoid
the release of poisonous metal ions during practical application.

Biomolecules 2023, 13, x FOR PEER REVIEW 11 of 19 
 

  
(a) (b) 

  
(c) (d) 

Figure 6. XPS survey spectrum of g-C3N4/CQDs composites: (a) the full−scale XPS spectrum, 
high−resolution XPS spectra of (b) C 1s, (c) N 1s, (d) O 1s. 

3.6. FTIR Analysis of the Electrospun Membranes and g-C3N4/CQDs Composites 
Fourier transform infrared spectra (FTIR) can be used to characterize electrospun 

membranes and g-C3N4/CQDs composites. Figure 7a showed the FTIR spectra of the four 
membranes, which were almost the same. The PCL-related absorption peaks were ob-
served at 2949 cm−1 (asymmetric -CH2- stretching), 2868 cm−1 (symmetric -CH2- stretching), 
1727 cm−1 (-C=O carbonyl stretching), 1293 cm−1 (C–O and C–C stretching in the crystalline 
phase), 1240 cm−1 (asymmetric C–O stretching), 1190 cm−1 (symmetric C–O stretching), and 
1157 cm−1 (C–O and C–C stretching in the crystalline phase) [48,49]. Whether the electro-
spun membranes were surface-modified or anchored with g-C3N4/CQDs composites, their 
FTIR results were basically the same. The reason may be that the PDA/PEI molecules and 
g-C3N4/CQDs composites were too few to detect. The same was true of the work of other 
researchers, such as Scaffaro et al. [49], and Xu et al. [50]. Figure 7b showed the FTIR spec-
trums of the g-C3N4 and g-C3N4/CQDs composites. The main absorption peaks at 3200 
cm−1 (N–H stretching), 1637 cm−1 (C=N stretching), 1574 cm−1 (C=N stretching), 1405 cm−1 
(C-N stretching), 1316 cm−1 (C-N stretching), 1236 cm−1 (C-N stretching), and 810 cm−1 (vi-
bration mode of 3-s-triazine unit) belonged to g-C3N4 [40,47]. It was clear that the g-C3N4 
and g-C3N4/CQDs composites had almost the same FTIR spectra, indicating that the intro-
duction of CQDs did not significantly change the chemical structure of g-C3N4. 

Figure 6. XPS survey spectrum of g-C3N4/CQDs composites: (a) the full-scale XPS spectrum,
high-resolution XPS spectra of (b) C 1s, (c) N 1s, (d) O 1s.

3.6. FTIR Analysis of the Electrospun Membranes and g-C3N4/CQDs Composites

Fourier transform infrared spectra (FTIR) can be used to characterize electrospun mem-
branes and g-C3N4/CQDs composites. Figure 7a showed the FTIR spectra of the four
membranes, which were almost the same. The PCL-related absorption peaks were ob-
served at 2949 cm−1 (asymmetric -CH2- stretching), 2868 cm−1 (symmetric -CH2- stretching),
1727 cm−1 (-C=O carbonyl stretching), 1293 cm−1 (C–O and C–C stretching in the crystalline
phase), 1240 cm−1 (asymmetric C–O stretching), 1190 cm−1 (symmetric C–O stretching), and
1157 cm−1 (C–O and C–C stretching in the crystalline phase) [48,49]. Whether the electro-
spun membranes were surface-modified or anchored with g-C3N4/CQDs composites, their
FTIR results were basically the same. The reason may be that the PDA/PEI molecules and
g-C3N4/CQDs composites were too few to detect. The same was true of the work of other
researchers, such as Scaffaro et al. [49], and Xu et al. [50]. Figure 7b showed the FTIR spec-
trums of the g-C3N4 and g-C3N4/CQDs composites. The main absorption peaks at 3200 cm−1

(N–H stretching), 1637 cm−1 (C=N stretching), 1574 cm−1 (C=N stretching), 1405 cm−1 (C-N
stretching), 1316 cm−1 (C-N stretching), 1236 cm−1 (C-N stretching), and 810 cm−1 (vibra-
tion mode of 3-s-triazine unit) belonged to g-C3N4 [40,47]. It was clear that the g-C3N4 and
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g-C3N4/CQDs composites had almost the same FTIR spectra, indicating that the introduction
of CQDs did not significantly change the chemical structure of g-C3N4.
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3.7. Performance of Removing AFB1

The adsorption-removal performances of AFB1 aqueous solution were evaluated in dark
and the adsorption experiments were 30 min. We could see from Figure 8a that the concentra-
tions of AFB1 were reduced to 87.1% and 84.2% with pristine PCL electrospun membranes and
PCL-g-C3N4/CQDs electrospun membranes immersed in 30 min, respectively. However, the
adsorption-removal efficiencies were significantly improved and up to 63.5% and 58.6% when
using modified PCL electrospun membranes and modified PCL-g-C3N4/CQDs electrospun
membranes. It could be inferred that the surface modification by PDA/PEI coating not only
improved the hydrophilicity of the membranes (Figure S4) but also endowed the membranes
with extremely strong adsorption capacity for AFB1. Moreover, we saw that the hydrophobic
interaction between the modified membranes and AFB1 was a key factor for the adsorption
mechanism. The HPLC chromatogram of AFB1 aqueous solution concentrations over the ad-
sorption time with modified PCL-g-C3N4/CQDs electrospun membranes was demonstrated
in Figure 8b. When the experiments were carried out under visible light irradiation, the
concentrations of AFB1 decreased rapidly with PCL-g-C3N4/CQDs electrospun membranes
and modified PCL-g-C3N4/CQDs electrospun membranes immersed. After 30 min of visible
light radiation, only 16.1% and 3.1% of AFB1 were left over, as shown in Figure 8c. Moreover,
the removal efficiencies of the other two membranes without g-C3N4/CQDs remained almost
unchanged compared with the adsorption experiments. These results unambiguously showed
that the removal of AFB1 under visible light irradiation was due to synergistic adsorption and
photocatalytic degradation. The HPLC chromatogram of AFB1 aqueous solution concentra-
tions over the irradiation time with modified PCL-g-C3N4/CQDs electrospun membranes
was demonstrated in Figure 8d. Different from adsorption experiments, intermediate products
would be produced during the process of photocatalysis, depending on the type of photo-
catalysts and reaction conditions [51]. The chromatogram peaks appearing at 8.5–9.5 min in
Figure 8d were attributed to intermediate products [51], and most of them were eliminated by
adsorption and photocatalysis.

To understand more about the adsorption behavior, the pseudo-first-order [Equation (1)]
and pseudo-second-order [Equation (2)] kinetic models were then used to analyze the adsorp-
tion kinetics process [12,52].

log(qe − qt) = logqe − k1t/2.303 (1)

t/qt = 1/k2qe
2 + t/qe (2)
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where qe and qt (µg/mg) represent the equilibrium adsorption amount and the adsorption
amount at time t; k1 (1/min) and k2 (mg/(µg·min)) are the rate constants for the first-
and second-order adsorption process, respectively. The fitting results were illustrated in
Figure 9. The relevant kinetic parameters calculated from the fitting curves were listed
in Table 1. In general, the pseudo-first-order model assumes that the adsorption process
is mainly due to physical adsorption, whereas the pseudo-second-order model indicates
that the whole adsorption process is dominated by chemical adsorption. Both instances
of R2 in the pseudo-first-order model (0.99236) and pseudo-second-order model (0.98694)
were greater than 0.95, indicating that physical adsorption and chemical adsorption both
contributed to the removal of AFB1 and exhibited mainly physical adsorption accompanied
by chemical adsorption [53].
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Figure 8. (a) Adsorption-removal performances of AFB1 with the four kinds of membranes under
dark. (b) HPLC chromatogram of AFB1 adsorption-removal with modified PCL-g-C3N4/CQDs
electrospun membranes under dark at different times. (c) Synergistic adsorption and photocatalytic
degradation performance of AFB1 with the four kinds of membranes under visible light irradiation.
(d) HPLC chromatogram of AFB1 adsorption and photocatalytic degradation with modified PCL-g-
C3N4/CQDs electrospun membranes under visible light irradiation at different times.
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Table 1. Kinetics parameters for AFB1 adsorption removal.

Sample qe (µg/mg)
Pseudo-First Order Pseudo-Second Order

log(qe − qt) = logqe − k1t/2.303 t/qt = 1/k2qe
2 + t/qe

k1 (1/min) R2 k2 (mg/(µg·min)) R2

Modified PCL-g-
C3N4/CQDs
electrospun
membranes

0.2075 0.03589 0.99236 0.02378 0.98694

To test the stability of the modified PCL-g-C3N4/CQDs electrospun membranes, we
conducted 5 consecutive experiments under the same experimental conditions. Figure 10
showed the reproducibility results of AFB1 degradation. We can learn that the degradation
rate reached more than 96% within 30 min after five consecutive experiments. The recycla-
bility of the modified PCL-g-C3N4/CQDs electrospun membranes shows the possibility of
its practical application as well as better economic benefits.
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3.8. Mechanism for Enhanced Degradation Performance

To better understand the mechanism of synergistic adsorption and photocatalytic
degradation for AFB1 by the modified PCL-g-C3N4/CQDs electrospun membranes, modi-
fied PCL electrospun membranes and g-C3N4/CQDs composites were used for adsorption
and photocatalysis experiments, respectively, under the same conditions described above.
NaCl and urea were added into AFB1 solutions before adsorption experiments, and the
AFB1 removal rate decreased to 41.3% and 7.31%, as shown in Figure 11a. NaCl and urea
are well-known “killers” of electrostatic and hydrogen bonds [54], which indicated that
electrostatic attraction and hydrogen bonds were the main adsorption mechanisms between
AFB1 molecules and PDA/PEI coating. For the photocatalysis experiments, AO, IPA and
BQ were employed as the scavengers for h+, •OH and•O2

−, respectively [55]. Figure 11b
displays that the degradation rate of the AFB1 solution without a sacrificial agent was 97.2%
after 5 min of visible light irradiation, whereas those with scavengers such as IPA, BQ, and
AO were 79.6%, 4.6%, and 96.7%, respectively. Based on the above results, we learned that
both •O2

− and •OH contributed to AFB1 degradation, and •O2
− played the dominant role.
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The possible adsorption and photocatalytic mechanism of AFB1 degradation by the
modified PCL-g-C3N4/CQDs electrospun membranes was proposed, as shown in Figure 12.
PDA/PEI coating on the surface of the membranes adsorbs and intercepts AFB1 molecules
depending on electrostatic attraction and hydrogen bonds firstly. Upon visible light ir-
radiation, photogenerated electron-hole pairs are generated in the g-C3N4 component
of the g-C3N4/CQDs composites on the membranes. The generated h+ stayed in the
valence band of g-C3N4, whereas e- migrates to the conduction band. As the valence
band of g-C3N4 is more negative than the potential of E(OH−/·OH) or E(H2O/·OH)
(1.53V < 1.99 or 2.4V) [40], the h+ would not react with H2O/OH− to produce ·OH. More-
over, the implanted CQDs act as electron-accepting and transport centers enhance the
separation of photogenerated electron-hole pairs and promote the generation of •O2

− [56].
Part of •O2

− oxidizes H2O to •OH [40]. At last, the •O2
− and •OH can decompose AFB1

molecules into smaller fragments, even CO2 and H2O. After the reaction, the modified
PCL-g-C3N4/CQDs electrospun membranes are regenerated as the initial, which can be
immediately used in a new process without any further treatment.
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4. Conclusions

In summary, we employed electrospinning and surface modification technology to
prepare novel modified PCL-g-C3N4/CQDs electrospun membranes. It was observed that
adsorption significantly accelerated the process of photodegradation according to contrast
experiments. More importantly, the as-prepared membranes can continuously eliminate
AFB1 through the synergistic effects of adsorption and photocatalysis; moreover, regenera-
tion is a green approach synchronized with the reaction under visible light without any
physical or chemical treatment. The adsorption mechanism in which electrostatic attraction
and hydrogen bonds play major roles was revealed, and the photodegradation mechanism
of AFB1 using g-C3N4/CQDs composites was studied based on active species trapping
experiments. The reusability and stable activity were confirmed during five cycles of degra-
dation experiments. Thus, the novel modified PCL-g-C3N4/CQDs electrospun membranes
demonstrated easy separation, good reusability and provided a new insight into the design
of high-performance membranes for the degradation of AFB1 in practical application.
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