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Abstract: Background: Whole-genome models (GEMs) have become a versatile tool for systems
biology, biotechnology, and medicine. GEMs created by automatic and semi-automatic approaches
contain a lot of redundant reactions. At the same time, the nonlinearity of the model makes it difficult
to evaluate the significance of the reaction for cell growth or metabolite production. Methods: We
propose a new way to apply the global sensitivity analysis (GSA) to GEMs in a straightforward
parallelizable fashion. Results: We have shown that Partial Rank Correlation Coefficient (PRCC)
captures key steps in the metabolic network despite the network distance from the product synthesis
reaction. Conclusions: FBA-PRCC is a fast, interpretable, and reliable metric to identify the sign and
magnitude of the reaction contribution to various cellular functions.

Keywords: whole-genome model; constraint-based model; metabolic network; global sensitivity
analysis; FBA

1. Introduction

Genome-scale metabolic models (GEMs) that combine functional annotation of the genome
with available metabolic knowledge are an valuable tool for modern computational and systems
biology [1,2]. GEMs were used in biotechnology for strain engineering [3–5] for a better
understanding of the metabolic consequences of various pathological processes [6–8], such as
cancer [9,10], metabolic syndrome, and obesity [11], to name a few. Over the past decade, GEMs
have been created for several hundreds of unicellular organisms (BiGG [12], MEMOTE [13],
AGORA [14]) and dozens of human body tissue types [15]. However, most of these models
were created by either semi- or fully-automated processes, which could suffer from incorrect
gene annotation, arbitrary reactions added by the gap-filling process [13,14,16], etc. All of these
inflate the size of the model, tangle it with unnecessary reactions, and make its analysis more
complicated. There is a quote attributed to Einstein: “You should make things as simple as
possible, but not simpler”. The model reduction methods applicable to the GEMs are an active
area of research [17,18]. Here we propose another approach to model simplification, which is
based on flux balance analysis (FBA) and global sensitivity analysis (GSA).

FBA is a computational approach used to analyze and predict the metabolic behavior
of an organism using GEM [19]. FBA is commonly used in systems biology and metabolic
engineering to study cellular metabolism and to predict the growth and behavior of an
organism in different conditions. FBA is based on the principle of mass balance, where the
input and output of each metabolite in a metabolic network are balanced. The metabolic
network is represented as a set of reactions, which are connected by metabolites. Each
reaction has an associated flux, which represents the rate at which the reaction occurs. FBA
uses linear programming to optimize the flux through the metabolic network of GEM,
subject to constraints such as the availability of nutrients and the capacity of enzymes. The
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goal of FBA is to find the set of fluxes that maximizes a specific objective function, such
as the growth rate of the organism. The FBA approach can be used to predict the effect of
genetic and environmental perturbations on cellular metabolism, and to identify metabolic
engineering targets for improving the performance of industrial bioprocesses. FBA has
been successfully applied to a wide range of organisms, including bacteria, yeast, plants,
and humans.

Kinetic modeling involves creating mathematical models that describe the behavior of
complex systems, such as chemical reactions, biological processes, or ecological systems.
These models often contain a large number of parameters, each representing a specific
aspect of the system, such as reaction rates, enzyme concentrations, or external inputs.
However, not all of these parameters are equally important for the behavior of the system.
Some parameters may have little influence on the system trajectory, and their values may be
difficult or impossible to estimate from experimental data. These unimportant parameters
are called unobservable parameters. Identifying unobservable parameters is important
because it can help simplify the model and reduce the number of unknowns that need to
be estimated. One approach to identifying unobservable parameters is global sensitivity
analysis (GSA), which estimates how variations in each parameter value affect the behavior
of the system as a whole [20]. GSA can help identify parameters that have little influence
on the system behavior, and therefore can be considered unobservable.

One approach to identifying unobservable parameters in FBA is Flux Variability Anal-
ysis (FVA). FVA estimates the range of possible flux values for each reaction in the network,
while keeping the objective near its optimal value. This allows researchers to identify
reactions that are essential for the network’s behavior, which have narrow flux distribution,
as well as reactions that can be varied without significantly affecting the network’s out-
put. However, FVA does not provide information about flux interactions and how fluxes
influence the objective value when it is far from optimum, which can be important for
understanding the behavior of complex networks. To analyze flux interactions, Kelk and
colleagues have developed a method called CoPE-FBA [21], which utilizes a decomposi-
tion approach to break down alternative flux distributions into three topological features:
vertices, rays, and linealities. These features correspond to paths, irreversible cycles, and
reversible cycles in a metabolic network, respectively. The authors demonstrated that the
optimal solution space is often determined by a few subnetworks or modules consisting of
numerous reactions, each with multiple internal routes. By analyzing the solution space
using this method, it is possible to characterize the entire space based on these subnet-
works or modules. As a result, two reactions would be present in the same module if their
flux values across all vertices are correlated, regardless of whether they are in the same
flux route or in exclusive ones. To analyze how flux perturbation influences other fluxes
and objectives, a local version of sensitivity analysis in FBA that is combining FVA with
Monte-Carlo sampling was developed [22]. In this approach, all reactions are divided into
three groups: ‘stable’ reactions have a low FVA range, ‘robust’ reactions vary a little with
perturbations of the other reaction fluxes, and ‘sensitive’ reactions significantly change
their fluxes in response to the perturbation. Then, the fraction of each group was compared
between different constraint types and mutations. However, neither the CoPE-FBA nor
Monte-Carlo approach show how variation in the flux influences the objective value.

Recently, a global sensitivity analysis (GSA) of constraint-based models was published
in the literature [23]. This type of analysis is useful for identifying which model parameters
have the greatest impact on the model output, and for understanding the behavior of the
model in response to changes in those parameters. However, the authors of the study chose
to use a relatively complicated and computationally expensive method of GSA called Sobol
variance-based sensitivity analysis.

Sobol variance-based sensitivity analysis is a powerful tool for quantifying the contri-
bution of individual parameters and interactions between parameters to the variability of
the model output. It is based on the decomposition of the variance of the model output
into contributions from individual parameters, as well as combinations of parameters. This
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allows the authors to identify which parameters have the greatest impact on the output,
and to quantify the degree to which the interactions between parameters affect the model
behavior. This method of GSA is computationally expensive and requires the development
of a complex computational infrastructure. This may limit its applicability in some con-
texts, particularly for models that are computationally intensive or have a large number
of parameters. Moreover, it may require specialized expertise in order to implement and
analyze the results of the method.

Despite its limitations, Sobol variance-based sensitivity analysis remains a powerful
tool for GSA and can provide valuable insights into the behavior of complex models. It is
important for researchers to carefully consider the trade-offs between computational cost
and analytical power when selecting a method for GSA, and to choose a method that is
well-suited to the specific needs of their study.

In response to the limitations of Sobol variance-based sensitivity analysis, a new
approach has been proposed for estimating objective function sensitivity to flux boundary
values using Partial Rank Correlation Coefficient (PRCC) calculations [20]. The PRCC
approach is based on calculating the partial correlation coefficient between the ranks of
each parameter and the rank of the objective function value:

rxj ,y =
Cov

(
x̂j, ŷ

)√
Var

(
x̂j
)
Var(ŷ)

; ŷ = y− ỹ; x̂j = xj − x̃j (1)

where ỹ and x̃j are obtained from linear regression models:

x̃j = c0 + ∑N
p=1,p 6=j cpxp; ỹ = b0 + ∑N

p=1,p 6=j bpxp (2)

This approach provides a measure of the sensitivity of the objective function to each pa-
rameter, while taking into account the interactions between parameters. Rank-transformed
data are used to take into account possible nonlinearity in the data.

One advantage of the PRCC approach is that it does not require extensive coding
and can be implemented using standard flux balance analysis (FBA) tools, such as the
Cobrapy toolbox [24]. The calculation time for the PRCC approach depends on the number
of available CPUs in the high-performance computing (HPC) cluster, as parallelization is
applied at the level of flux boundaries. This approach is therefore computationally efficient
and can be applied to large-scale models with many parameters.

Another benefit of the PRCC approach is that the sensitivity coefficient is signed,
allowing researchers to distinguish between parameters that positively or negatively influ-
ence the objective function. This provides additional insight into the behavior of the model
and can help guide the selection of interventions or modifications to the system.

To calculate the PRCC sensitivity coefficient, a set of random points in the parameter set
is sampled using the Sobol low discrepancy sequence, as described in previous work [25–28].
The PRCC sensitivity coefficient is then calculated as a partial correlation coefficient between
each parameter and the objective function value, with the influence of other parameters
controlled for.

Marino and co-authors [20] provide methods to estimate both the significance and sat-
uration of the PRCC sensitivity coefficient. The significance of the coefficient is determined
by comparing its magnitude to the distribution of coefficients obtained from randomized
permutations of the data. The saturation of the coefficient is a measure of how much of the
variation in the objective function can be explained by the variation in the parameter value,
with higher saturation indicating a stronger relationship between the parameter and the
objective function.

In summary, the PRCC approach provides a computationally efficient and flexible alter-
native to Sobol variance-based sensitivity analysis for conducting GSA in constraint-based
models. Its ease of implementation and ability to provide signed sensitivity coefficients
make it a valuable tool for studying the behavior of complex systems.
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2. Materials and Methods

The metabolic network with m metabolites and r reactions is described by an m·r
stoichiometry matrix, N. The (i, j)-th entry of N, nij, is the stoichiometric coefficient of the
i-th metabolite in the j-th reaction. Any reaction flux vector v that satisfies Nv = 0 contains
reaction fluxes such that the system is in a steady state. In Flux Balance Analysis (FBA) [18],
some optimization problem is solved to identify a unique solution vector vo, such that
wvo = max

v
wv for vl ≤ v ≤ vu, where w is the objective coefficient vector and vl and vu

are reaction bounds. We are interested in the estimation of the sensitivity of the objective
function to the values of reaction boundaries.

There is a special type of reaction in the constraint-based modelling called ‘boundary
reactions’, which usually describe the exchange of metabolites between the internal ‘cell’
and the external ‘environment’.

Our approach consists of three steps:

1. Define parameter space: for non-boundary irreversible reactions only one parameter
vu is created, for reversible and boundary reactions two parameters are created for
each reaction—vl and vu.

2. Generate a set of quasi-random low-discrepancy points in the parameter space. Up-
date parameters (reaction bounds) and find the optimal objective value for each point
in the parameter space.

3. Calculate Partial Rank Correlation Coefficient (PRCC) for each parameter and objec-
tive value. The statistical significance of the PRCC value is estimated as described by
Marino et al. [20]. The sufficiency of the sample size for reliable PRCC estimation is
controlled by the top-down coefficient of concordance (TDCC): when TDCC between
PRCC vectors calculated at different sample sizes exceeds the threshold of 0.9, the
sample size is considered sufficient for analysis.

The toy model (Figure 1) was created with Cobrapy v.0.25.0 [24] and saved as JSON
for the model diagram drawing with Escher web interface [29] and SBML [30] format
for further simulations. E. coli str. K-12 substr. W3110 WGMM was taken from BiGG
database [12] in SBML format.
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Figure 1. Toy metabolic model with 23 metabolites and 27 reactions. The source and sink metabolites
are X, Y, T, and U, their concentrations are considered fixed in order to ensure a steady state, which
we assume to be stable. Reversible reactions are depicted by two-way arrows, irreversible reactions
by one-way arrows. FBA was applied to maximize the flux through reaction EX_Y.

For network distance calculations, all metabolites participating in more than 20 reac-
tions in any compartment, except amino acids, succinate, PEP, and fructose-6-phospate,
were removed. Network distance was calculated as the number of reaction steps between
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the node of interest and objective reaction. Calculations were performed with R package
‘igraph’ version 1.3.5 [31].

The Sobol quasi-random low-discrepancy sequence was generated with the python
Quasi-Monte Carlo submodule of the SciPy v.1.7.3 [32]. Model simulation was performed
with Cobrapy v.0.25.0 [24]. All calculations were performed using Python version 3.10.2.

PRCC calculations were performed with R package ‘sensitivity’ version 1.28.0 [33].
TDCC values were calculated by ‘ODEsensitivity’ R package version 1.1.2 [34]. All calcula-
tions were performed with R version 4.2.1 [35].

All simulations were performed on the OIST HPC cluster with 8CPU and 64GB per
job. Sobol points generation, application to the reaction boundaries and optimization of
objectives were performed in chunks of 8192 per job. Calculations of the PRCC sensitivity
coefficients were performed on 262,144 Sobol points in chunks of 10 features per job.
Convergence of the calculation was controlled by TDCC between consecutive datasets
different in 8192 Sobol points. The TDCC value between 262,144 and 253,952 was 0.909.
The average execution time was 30 min per job for the Sobol point calculations and 7 h per
job for the PRCC calculation.

3. Results

Techniques such as Flux Balance Analysis (FBA) utilize the stoichiometry matrix of the
reaction system to estimate steady-state fluxes, which are compatible with the viable state
of the system. In FBA, an objective is optimized over the steady-state flux vectors, usually
by maximizing the flux through certain reactions. The behavior of constraint-based models
is controlled by parameters, such as reaction flux boundaries. Our approach estimates the
sensitivity of the model’s objective function to these boundary values.

3.1. FBA-PRCC Can Identify the Backbone of the Flux-Related Network

To construct the parameter space, we consider that reversible reactions have
two boundaries, whereas irreversible reactions have only one, with the lower bound
usually set to zero. Boundary reactions, which describe the transport of matter through the
model boundary, require special treatment. To evaluate the sensitivity of the objective func-
tion to the presence of various nutrients, all boundary reactions are considered reversible,
contributing two parameters to the parameter space.

As an example, we consider the toy model described in the Kelk paper [21] (Figure 1),
consisting of 27 reactions, of which, two are boundary, nine are reversible, and EX_Y
is the objective reaction; there are 37 parameters in our GSA. The parameter space is
sampled with a Sobol low-discrepancy sequence, which is designed for uniform coverage
of multidimensional spaces with quasi-random points. With 20 K points, we obtain a
stable estimation of the PRCC coefficients (Table 1). As expected, the upper boundaries for
reactions R5, R12, and R22 are among the most sensitive parameters, and the upper bounds
for reactions R8 and R11 control the reaction module between R5 and R12. The presence of
the reversible loop R19-R20-R21-R14 renders reactions R15 and R18 less important for the
EX_Y flux. As expected from the model structure, EX_Y flux appears to be sensitive to no
one of the lower bound parameters.

Table 1. PRCC sensitivity coefficients for the toy model, p-value calculated according to Marino [14],
suffixes ‘u’ and ‘l’ correspond to the upper and the lower bound of the flux, respectively.

Name Value p-Value Name Value p-Value

R1u 0.0472 0 R4u −0.00183 0.564
R5u 0.388 0 R13u 0.00167 0.597
R8u 0.0398 0 R25u −0.00162 0.61

R12u 0.0309 0 R21u 0.00157 0.62
R22u 0.0443 0 R4l 0.00114 0.718
R26u 0.0521 0 R10u 0.00101 0.749

EX_Xu 0.83 0 R23l −0.000947 0.765
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Table 1. Cont.

Name Value p-Value Name Value p-Value

R11u 0.0257 4.44 × 10−16 R21l 0.000698 0.825
R9u 0.0195 7.72 × 10−10 R2l 0.000566 0.858
R2u 0.00868 0.00607 R14l −0.000326 0.918
R6u 0.00623 0.049 R19u 0.000321 0.919

R15u 0.00523 0.0985 EX_Xl 0.000298 0.925
R7u 0.00518 0.102 R14u −0.000279 0.93

R18u 0.00488 0.123 R3l −0.000196 0.951
R3u 0.00482 0.127 R20u −0.000193 0.951

R16u 0.00317 0.316 R20l −0.000162 0.959
R24u 0.00285 0.368 R26l 5.99 × 10−6 0.998
R17u 0.00269 0.395 R19l 1.72 × 10−6 1
R23u 0.00211 0.505

3.2. FBA-PRCC Can Identify Controlling Steps in the Flux-Based Network

For a more biologically relevant example, we calculated the sensitivity of the Lysine
production pathway in E. coli str. K-12 substr. W3110 (BiGG iEC1372_W3110). Using lower
bounds for reversible and boundary reactions and upper bounds for all reactions in the
model, we obtained a total of 3730 parameters. The objective coefficient was set to one for
the lysine exchange reaction EX_lys__L_e_u. We simulated over 262 K points to obtain
reliable values for the PRCC coefficients. Out of 3730 parameters, 55 were significant at
the 1% threshold, with 19 lower and 36 upper bounds (Supplementary Table S1). The
PRCC plot against the network distance from the objective reactions in Figure 2 shows that
the highest sensitivity coefficients correspond to the last three steps of lysine production,
including the exchange reaction, transport to extracellular compartment and transport to
periplasmic compartment.
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Figure 2. Network distance between vs. PRCC value. For each boundary value network, distance is
calculated as a number of reaction steps between the reaction controlled by the boundary value and the
objective reaction EX_lys__L_e_u. To avoid influence of hub molecules on the network distances, standard
currency metabolites, such as water, ATP, etc., were excluded from network before distance calculations.
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Figure 3 shows that the majority of reactions with positive PRCC values form the
backbone of the lysine biosynthesis pathway. Experimental analysis of lysine biosynthesis
in E. coli has shown that overexpression of diaminopimelate decarboxylase (lysA) and
aspartate kinase (lysC) increased lysine titers by 78.1% and 123.6%, respectively [36]. In our
model, this corresponds to reactions DAPDC and ASPK, respectively. The PRCC values
for the upper boundary of the irreversible DAPDC reaction are 0.12 (p-value < 1 × 10−16),
and for the reversible ASPK reaction, the PRCC coefficients for its upper and lower bounds
are 0.0037 (p-value 5.9%) and −0.004 (p-value 3.9%), respectively. Although FBA-PRCC
identifies the reactions important for lysine production and their contribution, the order
is different from the experimental data. For instance, DAPDC has a higher PRCC value
but a lower increase in lysine production. However, it is important to note that lysine
biosynthesis is highly regulated in the cell, as mentioned in [37] and in [36], and accurately
describing the regulatory relationships in FBA models is challenging.
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In this network, squares and circles represent the reactions and metabolites, respectively. The red
squares correspond to the reactions with sensitive upper-bound parameters, while the blue squares
correspond to the reactions with sensitive lower-bound parameters.

The majority of the 15 parameters that are negatively correlated with lysine production
correspond to redox balance by decreasing H+ production or by shifting NAD/NADH balance.

3.3. FBA-PRCC Is Computationally Efficient

Unlike the recently published Sobol variance-based sensitivity analysis for conducting
GSA in constraint-based models [23], the FBA-PRCC approach does not require devel-
opment of special low-level software. All its steps were implemented in Python and R
using standard Cobrapy software [24] for FBA calculations and R ‘sensitivity’ package [33].
Calculations of the PRCC values for each flux are independent, so we were using OIST
HPC computation clusters to run all these calculations in parallel. Sobol points generation,
application to the reaction boundaries, and optimization of objectives were performed in
chunks of 8192 per job. Calculations of the PRCC sensitivity coefficients were performed
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on 262,144 Sobol points in chunks of 10 features per job. The average execution time is
30 min per job for the Sobol point calculations and 7 h per job for the PRCC calculation.

4. Discussion

In this work, we have presented a new, fast, and parallelizable framework for esti-
mating the sensitivity coefficients of reaction boundaries in constraint-based models. We
demonstrated the performance of our framework using a 27-reaction toy model and the
whole-genome metabolic reconstruction of E. coli metabolism. This is the first time that
sensitivity coefficients have been calculated for all boundary values in the whole-genome
model. Previous analyses, such as those published in [23], have been focused on only a
small subset of exchange reactions.

One area where our approach could be particularly useful is in identifying new an-
tibacterial drug targets. We can do this by identifying reaction boundaries that negatively
correlate with biomass production and then finding inhibitors for these reactions. Addi-
tionally, we can model combinational therapy by analyzing the FBA-PRCC of perturbed
models where certain reactions are inhibited or blocked, similar to our analysis in our
previous work, Lebedeva et al. [25].

In the future, we plan to expand the application of our approach by exploring its
potential in engineering chimeric bacterial cells or microbial communities. To achieve
this, we plan to combine our FBA-PRCC method with our metagenomic analysis platform,
ASAR [38]. By doing this, we hope to uncover new insights into microbial metabolism and
how it can be manipulated for various applications.

Overall, we believe that our approach has the potential to be a powerful tool for both
fundamental research and practical applications in biotechnology and medicine.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biom13030500/s1, Text S1: PRCC calculation results for lysine production;
Model S1: toy model in the SBML format; Table S1: 55 parameters significant at the 1% level.
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