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Abstract: Machine learning-based models have been widely used in the early drug-design pipeline.
To validate these models, cross-validation strategies have been employed, including those using
clustering of molecules in terms of their chemical structures. However, the poor clustering of
compounds will compromise such validation, especially on test molecules dissimilar to those in the
training set. This study aims at finding the best way to cluster the molecules screened by the National
Cancer Institute (NCI)-60 project by comparing hierarchical, Taylor–Butina, and uniform manifold
approximation and projection (UMAP) clustering methods. The best-performing algorithm can then
be used to generate clusters for model validation strategies. This study also aims at measuring the
impact of removing outlier molecules prior to the clustering step. Clustering results are evaluated
using three well-known clustering quality metrics. In addition, we compute an average similarity
matrix to assess the quality of each cluster. The results show variation in clustering quality from
method to method. The clusters obtained by the hierarchical and Taylor–Butina methods are more
computationally expensive to use in cross-validation strategies, and both cluster the molecules poorly.
In contrast, the UMAP method provides the best quality, and therefore we recommend it to analyze
this highly valuable dataset.

Keywords: NCI-60 panel; small molecules; clustering; model validation

1. Introduction

In the past decades, artificial intelligence (AI) has been used to develop predictive
models with a wide range of applications in biomedicine and healthcare [1]. In particular,
machine learning (ML)—a subarea of AI—has become an important component in early
drug discovery, for instance, by developing quantitative structure–activity relationship
(QSAR) models [2]. The use of ML-based models in drug discovery has been possible due
to the availability of preclinical data that can be reused to build and validate predictive
models. Such is the case of the National Cancer Institute (NCI-60) human tumor cell
lines screen, which since 1990 has been used by the cancer research community to find
compounds with potential anticancer activity [3].

Although ML-based models have been extensively used, several challenges remain to
be overcome along the drug-design pipeline, one of them related to model performance
on unseen compounds. Indeed, many articles fail to account for the nearly inevitable
reduction in predictive ability that may occur when something that is a useful predictor
in one data set is not as useful in another dataset [4]. Models that perform well on an
independent data set can be achieved using model validation strategies such as bootstrap
or k-fold cross-validation (CV) [4]. More demanding model validation strategies include
asymmetric validation embedding (AVE) [5], leave-dissimilar-target-out (LDTO) CV [6],
leave-one-cell-line-out (LOCO) CV, leave-one-tissue-out (LOTO) CV, leave-one-compound-
cluster-out (LOCCO) CV [7], and those using other similarity metrics between training
and test data instances [8]. These complex model-validation methods pose additional
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challenges [9], particularly the LOCCO CV approach, which inherits the challenges of any
clustering method.

Clustering methods are widely explored unsupervised ML-based algorithms whose
aim is to discover the underlying structure or patterns existing in a given dataset. The clus-
tering of biological entities, such as small molecules, can be performed using different ap-
proaches, including hierarchical clustering (HC), distribution-based clustering, and density-
based clustering [10]. For example, several clustering algorithms, including hierarchical,
Taylor–Butina, and UMAP clustering, have been compared on 29 data sets with between
100 and 5000 small molecules [11]. In addition, hierarchical clustering has been used to
cluster molecules from the PubChem database [12], and Taylor–Butina clustering has been
used to cluster molecules from the MolPort database [13].

A clustering analysis in a virtual chemical database can be used to quantify the
diversity of compounds, which is relevant in several areas of chemistry such as in high-
throughput screening (HTS) [14] and in QSAR-based virtual screening predictions [13].
In addition, the resulting clustering of compounds could lead to a comprehensive un-
derstanding of the underlying mechanism of action (MOA) of the drugs [15]. However,
clustering chemical compounds also poses a challenge in terms of their representation.
This is because chemical compounds can be represented in different ways, which can
result in different clustering outcomes. It is possible for two compounds with different
molecular structures to have comparable molecular descriptors or fingerprints, leading
to them being clustered together using those representations. Similarly, two compounds
with similar molecular structures may have different molecular descriptors or fingerprints,
resulting in them being clustered separately using those representations. Structural fin-
gerprints, such as the 1024-bit Morgan fingerprint, offer several advantages over other
molecular representations for clustering tasks. For instance, they are computationally
efficient and can be easily applied to large datasets. Moreover, Morgan fingerprints are
robust to small variations in the molecular structure, making them a useful tool in virtual
screening, where slight modifications to the molecular structure may occur due to synthetic
or computational alterations.

In this study, we aim to evaluate and compare three different methods for clustering
the NCI-60 molecules to determine the best-performing algorithm that can be used to
generate clusters for model validation, ensuring that the resulting clusters are optimal for
use in LOCCO-CV strategies or other model validation strategies. For this, we compare the
hierarchical, Taylor–Butina, and UMAP clustering algorithms while tuning their essential
hyperparameters. Additionally, we provide a definition of outlier molecules that aligns
with the clustering problem we are addressing, allowing us to optimize outlier computation.
By applying this definition, we investigate the impact of removing outlier molecules from
the NCI-60 panel before clustering. To evaluate the clustering performance, we compute
the silhouette coefficient, the Calinski–Harabaz score, and the Davies–Bouldin score for
each method. Finally, alongside the clustering metrics, we compute a similarity matrix to
achieve a better understanding of the molecules per cluster. The results show that, overall,
removing outlier molecules results in better clustering. Moreover, the results show that
UMAP clustering outperforms hierarchical and Taylor–Butina clustering.

2. Materials and Methods

The methodology of this study comprises three stages: data representation, clustering,
and clustering evaluation. These stages are summarized in Figure 1 and are explained
in detail in the following subsections. An important part of this study is to evaluate the
impact of removing outlier molecules from the data set. Therefore, this study analyzes
two scenarios per clustering method. In the first scenario, all of the unique molecules
were clustered. In the second scenario, outlier molecules were removed before clustering.
The outlier detection method is explained in Section 3.1.

It is important to note that the outlier detection method and clustering algorithms
were applied to the entire set of molecules in the NCI-60 panel and not on a per-cell line



Biomolecules 2023, 13, 498 3 of 19

basis. Although the clustering output provides information on molecule NSC ID, SMILES
representations, and their assigned clusters, it is possible to map the clustering results to
each individual cell line.

Figure 1. Schematic representation of the development of ML-based models for clustering small
molecules. Chemical structures and their SMILES were retrieved from the NCI-60 dataset. SMILES
were subsequently preprocessed and used to calculate the MFPs (radius 2 and 1024 bits). The MFPs
were used to build and evaluate three clustering methods. Three clustering quality metrics were used
to evaluate the clustering performance of each developed model.

2.1. NCI-60 Dataset

The NCI-60 panel utilizes 60 different human tumor cell lines to identify and char-
acterize novel compounds with growth inhibition or killing of tumor cell lines [3]. These
60 different human tumor cell lines comprise 9 cancer types: leukemia; melanoma; and
cancers of the lung, colon, brain, ovary, breast, prostate, and kidney. All of the compounds
that are screened have been initially tested in a one-dose assay on the full NCI-60 panel.
Compounds showing significant growth inhibition at this assay are then evaluated against
the NCI-60 panel in a 5-dose assay [16]. Each compound submitted to the NCI-60 panel for
testing and evaluation is identified with a unique registration number called the National
Service Center (NSC) ID.

Data quality is crucial in the development of AI/ML models during drug discovery.
Therefore, data cleansing is necessary to ensure high-quality data is used to generate these
models. To achieve this, we follow the preprocessing stage described by [17]. At the
data-representation stage, each molecule is represented by a 1024-bit Morgan fingerprint
(MFP) [18] with a radius of 2, which indicates the presence or absence of a particular
substructure in the molecule. We chose this fingerprint for several reasons. Firstly, previous
research has shown that the choice of fingerprint and metric has little effect on downstream
predictions, such as target prediction based on molecular similarity [19]. Furthermore, our
choice led to practically the best performance with respect to other fingerprints and metrics,
suggesting that it is a near-optimal choice. In [20], the authors showed that the (extended-
connectivity) fingerprints of radius 2 and 3 are among the best-performing fingerprints
when ranking diverse structures by similarity. Previous research has shown that structural
(or rule-based) fingerprints, such as E3FP, Morgan, or topological, should be considered for
similarity-based clustering [21]. Finally, the 1024-bit MFP size has been successfully used in
retrospective studies [22], for potency prediction [23], similarity searching, and bioactivity
classification [24]. Therefore, in this study, the 1024-bit MFPs will be used as features to
build the clustering models.

After the preprocessing stage, there remain around 2.7 M data points (50,555 small
molecules screened against 60 cancer cell lines), which represent a matrix completeness
of 89.25%. Figure 2 shows the distribution of the small molecules per cell line. We also
analyze the Tanimoto similarity distribution of these small molecules (Figure 3a).
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Figure 2. Number of tested molecules per NCI-60 cell line. On average, 45,124 small molecules are
screened against each of the 60 cell lines from the NCI-60 panel. Each barplot represents the number
of unique molecules (vertical axis) retrieved per cell line (horizontal axis) after the preprocessing stage.

(a) (b)

Figure 3. Distribution of the chemical similarity of molecules. (a) Before the outlier detection method
(all 50,555 molecules); (b) after the outlier detection method, where 32,971 non-outlier molecules
are retrieved at an outlier cutoff of 0.5. Each point in the corresponding boxplot is a molecule with
its similarity to its closest molecule (other than itself). In total, 50% of molecules, either all of the
molecules or non-outlier molecules, have their most similar molecule with similarity values less than
0.6 and 0.7, respectively.

2.2. Clustering Methods

Hierarchical clustering consists in building a binary merge tree, starting from the
molecules stored at the leaves and merging them until reaching the root of the tree that
contains all the molecules of the dataset [25]. The linkage criteria determine the metric
used for the merge strategy, for example, single linkage, complete linkage, or Ward linkage.
In the context of clustering chemical structure databases, the Ward linkage is commonly
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used [26], which minimizes the sum of squared differences within all clusters. The graphical
representation of the binary merge tree representing the resulting hierarchical clustering
is called a dendrogram. The python implementation of this algorithm uses the RDkit
library [27], where the first step is to calculate the similarity for each pair of molecules.
Then, a distance matrix containing 1 − similarity for each pairwise similarity value is
created. This distance matrix is the model input (Figure 1). Finally, the linkage criteria used
in this study is the Ward linkage.

Taylor–Butina clustering is an algorithm based on exclusion spheres at a given Tan-
imoto level [28]. The way the clusters are built allows all of the molecules belonging to
each cluster to have a Tanimoto value above or equal to the similarity cutoff used. At each
iteration, the molecules are visited and labeled, either as a cluster centroid or as a cluster
member. A disadvantage of this algorithm is that at the end of the clustering, molecules that
have not been labeled are considered as singletons, even if they have neighbors. The reason
is that their neighbors have been attracted by a better centroid. With this approach, we
benefit from fast clustering since in each iteration only unlabeled molecules are compared,
and we avoid the formation of highly heterogeneous clusters [28]. The python implementa-
tion of the Taylor–Butina algorithm employs the RDkit [27] library. The distance matrix
is calculated in the same way as in hierarchical clustering (Figure 1); then, based on the
similarity cutoff given, each molecule is assigned to a cluster id.

The uniform manifold approximation and projection (UMAP) is a non-linear dimen-
sionality reduction algorithm that seeks to learn the manifold structure of the data and
find a low-dimensional embedding while preserving the essential topological structure
of that manifold [29]. While UMAP has been used for dimensionality reduction [30], it
has also been used for clustering [11]. UMAP has four basic parameters to control the
impact on the resulting embedding. These are n_neighbors, which controls how UMAP
balances local versus global structure in the data; min_dist, which controls how tightly
UMAP is allowed to pack points together; n_components, which allows the user to deter-
mine the dimensionality of the reduced dimension space we will be embedding the data
into; and metric, which controls how distance is computed in the ambient space of the
input data. After the dimensionality reduction is completed, this new representation of the
molecules is clustered using the AgglomerativeClustering function from the Scikit-learn
library [31].

2.3. Clustering Evaluation

The last step is the evaluation of the clustering algorithms. In this study, we consider
three unsupervised metrics to evaluate the clustering quality results, the silhouette co-
efficient, the Calinski–Harabasz score, and the Davies–Bouldin score. These metrics are
available in the Scikit-learn library [31].

To calculate the silhouette coefficient [32], we first calculate the mean intra-cluster
distance ai for each molecule i in the cluster CI as follows:

ai =
1

|CI | − 1 ∑
j∈CI ,i 6=j

d(i, j), (1)

where d(i, j) is the distance between molecules i and j in the cluster CI . Next, we calculate
the mean inter-cluster distance bi for each molecule i to some cluster CJ as follows:

bi = min
J 6=I

1
|CJ | ∑

j∈CJ

d(i, j), (2)

where d(i, j) is the distance between the molecule i to all molecules in CJ , with CJ 6= CI .
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Then, the silhouette coefficient is defined for each molecule using the mean intra-
cluster distance ai and the mean inter-cluster distance bi as:

SC(i) =
bi − ai

max(ai, bi)
. (3)

In summary, the silhouette coefficient is calculated using the mean distance between a
given molecule and all other molecules in the same cluster (ai), and the mean distance be-
tween a given molecule and all other molecules in the next nearest-cluster (bi) [15]. The SC
function implemented in the Scikit-learn library returns the mean silhouette coefficient
over all molecules. The best value is 1, and the worst value is −1. Values near 0 indicate
overlapping clusters. Negative values generally indicate that a molecule has been assigned
to the wrong cluster as a different cluster is more similar.

The Calinski–Harabasz score [33], also known as the variance ratio criterion, is defined
as the ratio of the sum of inter-clusters dispersion and of within-cluster dispersion for
all clusters, where dispersion is defined as the sum of distances squared. This score is
calculated for k clusters as follows:

CH =
tr(Bk)

tr(Wk)
× nE − k

k− 1
, (4)

where the tr(Bk) is the trace of the between-cluster dispersion matrix, and tr(Wk) is the
trace of the within-cluster dispersion matrix, defined by:

Wk =
k

∑
q=1

∑
x∈Cq

(x− cq)(x− cq)
T , (5)

Bk =
k

∑
q=1

nq(cq − cE)(cq − cE)
T , (6)

with Cq the set of points in cluster q, cq the center of cluster q, cE the center of cluster E,
and nq the number of points in cluster q. A higher Calinski–Harabasz score relates to a
model with better-defined clusters.

Finally, the Davies–Bouldin score [34] is defined as the average similarity measure of
each cluster Ci with its most similar cluster Cj:

DB =
1
k

k

∑
i=1

max
i 6=j

Rij, (7)

where Rij is defined as:

Rij =
si + sj

dij
, (8)

and si is the average distance between each molecule of cluster and the centroid of that
cluster, and dij is the distance between cluster centroids i and j. The minimum score is zero,
with lower values indicating better clustering.

We complement this evaluation by calculating a matrix with the average Tanimoto
similarity between the molecules of cluster i and those in cluster j. The average of these
similarity scores represents the position (i, j) of the final matrix. In the case of average
similarity between molecules from a cluster and itself (position (i, i)), the similarity was
calculated between two different molecules. This means that values in position (i, i) do
not include similarity scores of a molecule with itself. Note that the resulting matrix is a
symmetric matrix (the similarity scores between cluster i and cluster j are equal to similarity
scores between cluster j and cluster i); thus, for display purposes, the similarity matrix is
shown as a lower triangular matrix.
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3. Results
3.1. Outlier Detection

One of the aspects to consider when using ML-based algorithms, in particular those
used for clustering, is that many of them are sensitive to outliers and fluctuations in the
density of data points [35]. In this study, we defined an outlier as the molecule whose
Tanimoto similarity value to their most similar molecule is lower than or equal to a given
cutoff. Thus, an outlier molecule is different from any other molecule in the set at the
predefined outlier cutoff.

To remove outlier molecules, we first calculated the Tanimoto similarity for each pair
of molecules (1,277,878,735 pairs). Then, we retained the similarity value of each molecule
to its closest molecule (other than itself). In this way, we only have 50,555 similarity values.
We retain those molecules because all the other molecules will be even less similar. The next
step was to find the best outlier cutoff based on the three clustering quality metrics. We
used the hierarchical clustering (with Ward linkage = 3) as the baseline algorithm for this
experiment and evaluated the outlier cutoffs from 0.2 to 0.5, with a step size of 0.1.

Table 1 shows that as we increase the outlier cutoff, we obtain fewer clusters. This
may be because at each outlier cutoff we have fewer molecules to cluster, and they are
more similar to each other. Additionally, increasing the outlier cutoff generally leads to all
three metrics improving their results with respect to the previous outlier cutoff. Moreover,
the outlier cutoff of 0.5 seems to be the best tradeoff between the number of clusters and
their quality since the silhouette coefficient and the Davies–Bouldin score achieve better
values at this outlier cutoff. Therefore, the outlier cutoff of 0.5 was used for the following
experiments. Figure 3 shows the distribution of similarity values before and after the outlier
detection method.

Table 1. Hierarchical clustering (with Ward linkage = 3) to identify the best outlier cutoff. Increas-
ing the outlier cutoff, and thus removing more molecules, leads to better quality clustering according
to the three selected metrics. Comparison of outlier cutoffs based on the number of molecules removed
and the clustering metrics. The best value for each metric is highlighted in bold. For readability,
clustering quality results were rounded to either two or three decimal places.

Outlier
Cutoff Molecules Removed # Clusters Silhouette

Coefficient
Calinski–Harabasz

Score
Davies–Bouldin

Score

0.2 151 6 −0.011 5.10 87.72
0.3 2096 6 −0.013 4.65 79.91
0.4 8994 5 −0.006 5.45 84.81
0.5 17,584 4 −0.007 5.32 67.15

3.2. Hierarchical Clustering

To perform hierarchical clustering of molecules we have to specify the Ward linkage
cutoff to be used. We evaluated the impact of different cutoffs on the three selected
clustering quality metrics, as well as on the number of clusters obtained. The Ward linkage
cutoffs explored ranged from 0.5 to 3.0, with a step size of 0.5. These cutoffs were applied
to either all molecules or non-outlier molecules and are reported in Table 2. By using the
Ward linkage as the merging criterion, we are requesting that at each step the hierarchical
clustering algorithm has to find the pair of clusters that leads to the minimum increase in
total intra-cluster variance after merging. Table 2 shows that stricter (smaller) Ward linkage
cutoffs result in a larger number of clusters.

Regarding the clustering quality metrics, the silhouette coefficient suggests that some
molecules have been assigned to the wrong cluster as negative values are obtained at each
cutoff. The Calinski–Harabasz score suggests that better-defined clusters are obtained
at higher cutoff values, 2.5 and 3.0 for instance. In contrast, the Davies–Bouldin score
suggests that better-defined clusters are obtained at smaller cutoff values but at the cost



Biomolecules 2023, 13, 498 8 of 19

of a larger number of clusters. This behavior is repeated for all molecules as well as for
non-outlier molecules.

Considering that the main purpose of this clustering problem is to use the clusters for
ML model validation, the results in Table 2 suggest that a cutoff value between 2.0 and
3.0 generates a number of clusters that is less computationally expensive to use in a cross-
validation strategy. In particular, the Ward linkage cutoff of 3.0 achieves the best clustering
quality results, and it improves between all molecules and non-outlier molecules. Indeed,
at this cutoff the silhouette coefficient improves by 50%, the Calinski–Harabasz score
improves by 10%, and the Davies–Bouldin score improves by 13% when using non-outlier
molecules. Therefore, we chose the Ward linkage cutoff of 3.0 for the following experiments.

Table 2. Clustering quality depending on cutoff and outlier removal. Overall, an improvement in
each of the clustering quality metrics is observed when outlier molecules are removed. Clustering
quality metrics were calculated for each Ward linkage cutoff evaluated in hierarchical clustering.
From top to bottom, each cutoff is stricter than the previous one. Here, 32,971 non-outlier molecules
were retrieved at an outlier cutoff of 0.5. The best value for each metric for either all molecules or
non-outlier molecules is highlighted in bold. For readability, clustering quality results were rounded
to either two or three decimal places.

All Molecules Non-Outlier Molecules

Ward Linkage
Cutoff # Clusters

Silhouette
Coeffi-
cient

Calinski–Harabasz
Score

Davies–Bouldin
Score # Clusters

Silhouette
Coeffi-
cient

Calinski–Harabasz
Score

Davies–Bouldin
Score

3.0 7 −0.014 4.84 77.19 4 −0.007 5.32 67.15
2.5 9 −0.014 4.01 80.19 7 −0.009 3.50 69.94
2.0 89 −0.022 1.77 28.63 88 −0.030 1.96 21.45
1.5 2565 −0.106 1.28 7.28 1766 −0.103 1.37 6.97
1.0 17,958 −0.257 1.05 2.59 11,436 −0.260 1.07 2.62
0.5 33,246 −0.305 1.01 1.43 20,723 −0.339 1.01 1.53

The next step was to analyze the number of molecules per cluster. Figure 4 shows the
dendrogram for both all 50,555 molecules and 32,971 non-outlier molecules. When all of
the molecules are clustered (Figure 4a), one cluster concentrates about 35% of the molecules
(17,691 molecules in cluster 2), whereas when non-outlier molecules are clustered (Figure 4b),
one cluster concentrates about 46% of the molecules (15,389 molecules in cluster 2). Even with
this high concentration of molecules in a single cluster, the remaining clusters have enough
information as the smallest clusters obtained in all molecules and non-outlier molecules
concentrate 3.5% and 10.5% of the molecules, respectively.

To complement the analysis of the clustering quality, we now calculate the average sim-
ilarity matrix for both all molecules and non-outlier molecules. This matrix was calculated
as explained in Section 2.3. In a good clustering result, molecules from different clusters
should have much lower similarity than molecules from the same cluster. In the average
similarity matrix, this means that the similarity values on the diagonal must always be
greater than the off-diagonal values. Figure 5 shows that molecules from the same cluster
are, on average, very similar to molecules from different clusters since the off-diagonal
values are mostly equal to the diagonal values, and in some cases even greater than the
diagonal values. This suggests a poor clustering of molecules by using hierarchical cluster-
ing (with Ward linkage = 3), even when outlier molecules are removed. This assumption is
consistent with the values of the clustering quality metrics reported in Table 2.
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(a)

(b)
Figure 4. Dendrogram representation of hierarchical clustering results. (a) Clustering of all
50,555 molecules results in 7 clusters at a Ward linkage cutoff of 3. (b) Clustering of 32,971 non-outlier
molecules results in 4 clusters at a Ward linkage cutoff of 3. For each plot, the horizontal axis shows
the number of molecules per cluster, and the vertical axis shows the Ward linkage between any two
clusters. Outlier molecules were removed using an outlier cutoff of 0.5 (see Section 3.1 for more
details about outlier detection). The average cluster size is 7229 molecules (std = 5517) when all
molecules are clustered and 8243 molecules (std = 5460) when non-outlier molecules are clustered.

3.3. Taylor–Butina Clustering

One of the advantages of Taylor–Butina clustering is that molecules in the resulting
clusters will have a Tanimoto value greater than or equal to the established similarity cutoff.
In this study, we analyzed similarity cutoffs 0.35, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.97, and 0.99.
These cutoffs were applied to either all molecules or non-outlier molecules and evaluated
in terms of the three clustering quality metrics.

Table 3 shows that smaller similarity cutoffs result in a larger number of clusters.
As for the clustering quality metrics, the silhouette coefficient and the Davies–Bouldin score
suggest that better-defined clusters are obtained with smaller similarity cutoff values but at
the cost of a higher number of clusters. This trend is observed for all molecules as well as
for non-outlier molecules. The number of clusters should also be considered as it impacts
the number of cross-validations and hence the computational cost. Therefore, if we consider
the number of clusters then the Calinski–Harabasz score suggests that the similarity cutoff
of 0.9 is the best option. Overall, the three clustering quality metrics improve between all
molecules and non-outlier molecules.
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(a) (b)
Figure 5. Hierarchical clustering with Ward linkage = 3. (a) Clustering of all 50,555 molecules results
in 7 clusters. (b) The clustering of 32,971 non-outlier molecules results in 4 clusters. Outlier molecules
were removed using an outlier cutoff of 0.5 (see Section 3.1 for more details about outlier detection).
The matrix is calculated as the average Tanimoto similarity between the molecules of cluster i and
those in cluster j, and the average similarity between molecules of a cluster and itself (see Section 2.3
for more details on how this matrix is calculated). The matrices have been adjusted to the same scale
to facilitate clustering comparison between all molecules and non-outlier molecules. For readability,
similarity scores were rounded to three decimal places. The average similarity between a cluster
and itself (diagonal) is close to the average similarity between two different clusters (off-diagonal),
indicating poor clustering of both all molecules and non-outlier molecules.

Table 3. Better-defined clusters are obtained when using smaller similarity cutoff values, at the cost
of a larger number of clusters. Clustering quality metrics were calculated for each similarity cutoff
evaluated in the Taylor–Butina clustering. Non-outlier molecules were retrieved at an outlier cutoff
of 0.5. The best value for each metric for either all molecules or non-outlier molecules is highlighted
in bold. For readability, clustering quality results were rounded to either two or three decimal places.

All Molecules Non-Outlier Molecules

Similarity Cutoff # Clusters
Silhouette

Coeffi-
cient

Calinski–Harabasz
Score

Davies–Bouldin
Score # Clusters

Silhouette
Coeffi-
cient

Calinski–Harabasz
Score

Davies–Bouldin
Score

0.35 30,590 0.111 6.10 0.65 16,860 0.120 7.09 0.72
0.50 19,513 0.086 5.27 0.93 9077 0.092 7.06 1.06
0.60 12,797 0.029 4.95 1.20 5996 0.042 6.83 1.30
0.70 5872 −0.067 4.96 1.66 2984 −0.046 6.54 1.74
0.80 1074 −0.168 6.64 2.61 634 −0.155 7.38 2.63
0.90 64 −0.196 9.03 3.78 44 −0.201 7.48 3.83
0.95 21 −0.204 2.85 3.27 11 −0.203 2.25 2.73
0.97 12 −0.214 1.40 2.51 5 −0.202 0.76 1.96
0.99 4 −0.215 0.65 2.12 1 – – –

Since one of the drawbacks of the Taylor–Butina algorithm is the possibility of obtain-
ing clusters that are singletons, the next step in this analysis is to evaluate the number of
molecules per cluster. Based on results from Table 3, we choose the similarity cutoff of
0.9 to perform this experiment. Indeed, Table 4 shows that when all molecules are clustered,
17% of the clusters obtained are singletons. This value decreases to 10% in the non-outlier
molecules. Moreover, 90% of all molecules and 93% of the non-outlier molecules have been
assigned to a single cluster.

The last step in the clustering quality analysis is to calculate the average similarity
matrix for both all molecules and non-outlier molecules. To analyze these matrices, which
are calculated as the average within-cluster and between-cluster similarity, the sizes of
the clusters must be taken into account. Indeed, since both cases (all molecules and non-
outlier molecules) have singletons, it is not possible to calculate the average within-cluster
similarity, so these values are missing on the matrix diagonal. For the average between-
cluster similarity, it can be the similarity between two molecules. Overall, Figure 6 shows
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that molecules from different clusters have lower similarity than molecules from the same
cluster, notably for non-outlier molecules. However, these values may be biased by the
number of molecules per cluster.

Table 4. Descriptive statistics of the cluster sizes obtained by the Taylor–Butina algorithm. This al-
gorithm was applied to all molecules and non-outlier molecules, showing that singletons were
obtained in both cases. The similarity cutoff used to obtain the clusters in Taylor–Butina was set to
0.9 (see Table 3 for more details about the similarity cutoff selected). Non-outlier molecules were
retrieved at an outlier cutoff of 0.5.

All Molecules Non-Outlier Molecules

Number of clusters 64 44
mean 790 749

std 5703 4617
min 1 1
10% 1 1
17% 1 2
20% 2 2
25% 3 3
50% 7 13
75% 52 30
max 45,652 30,669

(a) (b)
Figure 6. Taylor-Butina clustering with similarity cutoff = 0.90. (a) Clustering of all 50,555 molecules
results in 64 clusters, and (b) clustering of 32,971 non-outlier molecules results in 44 clusters. Outlier
molecules were removed using an outlier cutoff of 0.5 (see Section 3.1 for more details about outlier
detection). The matrix is calculated as the average Tanimoto similarity between the molecules of
cluster i and those in cluster j, and the average similarity between molecules of a cluster and itself
(see Section 2.3 for more details on how this matrix is calculated). The matrices have been adjusted to
the same scale to facilitate clustering comparison between all molecules and non-outlier molecules.
The average similarity between one cluster and itself (diagonal) is substantially higher than the
average similarity between two different clusters (off-diagonal). However, these values may be
biased by the number of molecules per cluster.

3.4. UMAP Clustering

UMAP has four basic hyperparameters (n_neighbors, min_dist, n_components, and metric)
that control the dimensionality reduction result and one that controls the clustering (n_clusters).
In this study, MFPs are embedded in two dimensions (n_components = 2) and the Jaccard
metric is used to calculate the distance between MFPs. For the remaining hyperparameters
(n_neighbors, min_dist, and n_clusters), we implemented a two-step hyperparameter tuning
process to find their optimal values. In the first step, we fixed the number of clusters and tune
the values of the number of neighbors (n_neighbors) and the distance (min_dist). Based on the
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results obtained with hierarchical clustering, when all molecules are clustered, the number of
clusters was set to 7. The evaluation of this experiment was done in terms of the three clustering
quality metrics. Once these hyperparameters have been set, the second step of hyperparameter
tuning uses these values and focuses on finding the optimal number of clusters by using the
elbow method [36]. The elbow method fits the clustering model for a range of n_clusters values.
If the data are very clustered, the optimal number of clusters is given by the point of inflection
on the curve (i.e., the elbow); otherwise, the elbow will be unclear.

In the first step of the hyperparameter tuning process, we performed a grid search
to look for the best n_neighbors and min_dist hyperparameters. The values of n_neighbors
evaluated are 20, 30, 50, 100, 150, and 200, while for min_dist the values evaluated are
in the range of 0.0 to 0.9, with a step size of 0.1. Figure 7 shows the results of each of
the clustering quality metrics obtained at each hyperparameter combination. Overall, the
results suggest that using 100 or 200 neighbors UMAP is able to balance local versus global
structure in the molecules in a better way than with fewer neighbors. Additionally, at these
numbers of neighbors, the best min_dist is 0.0, which means molecules represented in the
embedded space are close to each other. Since the combination (100, 0.0) is the best in two
of the three clustering quality metrics, these values were used in the second step of the
hyperparameter tuning.

(a) (b) (c)
Figure 7. Increasing the number of neighbors leads to recovering better-defined clusters. In the first
step of the hyperparameter tuning process for UMAP clustering, a grid search was performed to find
the best combination of the number of neighbors (n_neighbors) and distance (min_dist). The number
of clusters used for this search was set to 7. Each combination of (min_dist, n_neighbors) values was
evaluated considering the clustering quality metrics (a) silhouette coefficient, (b) Calinski–Harabasz
score, and (c) Davies–Bouldin score. For each plot, the horizontal axis shows the distance values
(min_dist) evaluated, the vertical axis shows the corresponding metric values, and the color code
identifies the number of neighbors (n_neighbors) evaluated.

Given the values n_neighbors = 100 and min_dist = 0.0, we now look for the optimal
number of clusters to be used. Since our evaluation of clustering quality goes beyond the
three clustering metrics, we use the elbow method to narrow the search for the number of
clusters rather than to find the optimal number. Here, we explored the range of clusters
from 2 to 25. We also compared two scoring metrics to evaluate the clusters. These
scoring metrics are the distortion, defined by the sum of squared distances between each
observation and its closest centroid, and the silhouette metric, defined by the mean ratio of
intra-cluster and nearest-cluster distance.

Figure 8a suggests that the optimal number of clusters is 7 when using the distortion
score. However, Figure 8b suggests that our data are not highly clustered as the elbow is
not clearly defined when the Silhouette score is used. Instead, the method returns as the
optimal number of clusters the value at which the highest Silhouette score was obtained;
in this case, the suggested optimal number is 2 clusters. Since we are using the elbow
method to narrow the search for the optimal number of clusters, from Figure 8 we analyze
clusters 6, 7, and 8. In addition, to find out whether a larger number of clusters improves
the clustering results, we also explored the UMAP clustering when 20 groups are requested.
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These values were applied to either all molecules or non-outlier molecules and evaluated
in terms of the three clustering quality metrics.

(a) (b)
Figure 8. Elbow method to narrow the search for the optimal number of clusters when using UMAP
clustering. In the second step of the hyperparameter tuning process for UMAP clustering, the elbow
method was explored, covering a range of clusters from 2 to 25, and using (a) the distortion metric
and (b) the silhouette metric. For each plot, the horizontal axis shows the number of clusters (k)
evaluated, and the vertical axis shows the corresponding metric.

With the best combination of hyperparameters for UMAP found, we evaluated the
clustering results in terms of the clustering quality metrics obtained at each number of
clusters. Table 5 shows these results, where, in summary, all clustering quality metrics
suggest well-defined clusters. Even when all metrics reach their best value with different
numbers of clusters, the difference in the results with respect to the best value is small.
In fact, the difference of the best silhouette coefficient with respect to the other values is
between 3–6%; for the Calinski–Harabasz score, this difference ranges from 0.5% to 12%;
and for the Davies–Bouldin score the difference ranges from 2% to 4%. For non-outlier
molecules, the difference between the best and worst value for each of the clustering
metrics is between 4.5 and 11% for the silhouette coefficient, between 6 and 12% for the
Calinski–Harabasz score, and between 1 and 5.5% for the Davies–Bouldin score.

The next step was to analyze the number of molecules per cluster when 7 and 20 clus-
ters are requested. These two values were selected considering the optimal number of
clusters obtained with the elbow method (Figure 8a) and the results of the clustering
metrics (Table 5). Table 6 shows the descriptive statistics of the cluster sizes, for both all
50,555 molecules and 32,971 non-outlier molecules. In general, the size of the clusters
is well distributed (mean cluster size is close to median cluster size) for all molecules as
well as for non-outlier molecules. Moreover, each of the 7 clusters concentrates between
5 and 22% of all molecules, and between 4 and 24% of non-outlier molecules. However,
when 20 clusters are required, the smallest clusters in each case concentrate 1.19% and
0.96% of the molecules, respectively. This should be taken into account when performing
cross-validation since having few molecules could affect the model performance.

The last step in the clustering quality analysis is to calculate the average similarity
matrix for both all molecules and non-outlier molecules. Overall, Figure 9 shows that
molecules from different clusters have lower similarity than molecules from the same
cluster, which indicates good clustering results. This is consistent with the clustering
quality metrics shown in Table 5. Moreover, the similarity values between a cluster and
itself (diagonal) improve when only non-outlier molecules are clustered. As for the number
of clusters, increasing this number (from 7 to 20) increases the similarity between a cluster
and itself from 0.16 to 0.22, for the upper bound.
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Table 5. Clustering quality metrics suggest well-defined clusters at each selected number of clusters.
Clustering quality metrics were calculated for each number of clusters evaluated in the UMAP
algorithm. Non-outlier molecules were retrieved at an outlier cutoff of 0.5. The best value for each
metric for either all molecules or non-outlier molecules is highlighted in bold. For readability,
clustering quality results were rounded to either two or three decimal places.

All Molecules Non-Outlier Molecules

Number
of

Clusters

Silhouette
Coeffi-
cient

Calinski
Harabasz

Score

Davies
Bouldin

Score

Silhouette
Coeffi-
cient

Calinski
Harabasz

Score

Davies
Bouldin

Score

6 0.306 30,410.88 0.90 0.318 20,683.06 0.85
7 0.325 32,621.97 0.87 0.295 21,420.86 0.89
8 0.314 34,263.14 0.86 0.302 22,194.48 0.90

20 0.315 34,464.21 0.88 0.333 23,609.54 0.86

Table 6. Descriptive statistics of the cluster sizes obtained by the UMAP clustering. This algorithm
was applied to all molecules and non-outlier molecules show that the size of the clusters is well
distributed in both cases. Non-outlier molecules were retrieved at an outlier cutoff of 0.5. The number
of clusters required was set to either 7 or 20 (see Table 5 for more details about the number of
clusters selected).

All Molecules Non-Outlier Molecules

# of clusters 7 20 7 20
mean 7222 2528 4710 1649

std 3575 1032 2149 846
min 2664 605 1811 318
25% 4444 1981 3241 884
50% 6960 2486 4684 1524
75% 10,522 3202 5961 2391
max 11,000 4364 8072 3058

3.5. Comparison of Clustering Algorithms

Finally, we compare the best clustering results obtained with each of the three methods
explored in this study. In the case of UMAP clustering, we compare the results when 7 and
20 clusters are required. This comparison is performed for all molecules as well as for
non-outlier molecules. Additionally, we include the run time (in minutes) taken by each
method. Table 7 summarizes the results of this comparison.

When all molecules are clustered, the UMAP model obtains the best results on all
metrics, whether using 7 or 20 clusters. Indeed, the silhouette coefficient improves be-
tween 0.339 and 0.521 units with respect to hierarchical and Taylor–Butina clustering.
With respect to the Calinski–Harabaz score, although there is no upper limit for this score,
the improvement is evident, with more than 34K units. As for the Davies–Bouldin score,
the improvement is between 3–76 units. Regarding the run time, the Taylor–Butina clus-
tering consumes 10x more time than the UMAP clustering, which is the fastest method.
Similar behavior occurs when non-outlier molecules are clustered. That is, the UMAP
clustering achieves the best results in terms of the three quality metrics as well as the
run time.
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(a) (b)

(c) (d)

Figure 9. UMAP clustering with n_neighbors = 100 and min_dist = 0.0. Clustering of (a) all
50,555 molecules into 7 clusters, (b) 32,971 non-outlier molecules into 7 clusters, (c) all
50,555 molecules into 20 clusters, and (d) 32,971 non-outlier molecules into 20 clusters. Outlier
molecules were removed using an outlier cutoff of 0.5 (see Section 3.1 for more details about outlier
detection). The matrix is calculated as the average Tanimoto similarity between the molecules of
cluster i and those in cluster j, and the average similarity between molecules of a cluster and itself
(see Section 2.3 for more details on how this matrix is calculated). The matrices have been adjusted to
the same scale to facilitate clustering comparison between all molecules and non-outlier molecules.
For readability, similarity scores were rounded to three decimal places when seven clusters were
requested. When 20 clusters were requested, the similarity scores are not displayed. The average
similarity between one cluster and itself (diagonal) is substantially higher than the average simi-
larity in different clusters (off-diagonal), indicating well-defined clusters in both all molecules and
non-outlier molecules.

In general, removing outlier molecules prior to clustering leads to an improvement
in hierarchical and UMAP clustering (with 20 clusters). In the case of the Taylor–Butina
clustering, there is no improvement by performing this step; in fact, the silhouette coefficient
decreases by 2.5%, the Calinski–Harabasz score decreases by 17%, and the Davies–Bouldin
score decreases by 1.3%. The absence of improvement in UMAP with seven clusters when
outliers are removed may be due to the fact that according to the elbow method (Figure 8a),
this is the optimal number of clusters, and therefore an improvement could be difficult
to achieve.
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Table 7. UMAP clustering outperforms results obtained by hierarchical and Taylor–Butina clustering.
Comparison of the clustering quality metrics for each clustering algorithm. Non-outlier molecules
were retrieved at an outlier cutoff of 0.5. The best value for each metric for either all molecules or
non-outlier molecules is highlighted in bold. For readability, clustering quality results were rounded
to either two or three decimal places.

All Molecules Non-Outlier Molecules

Clustering
Method

Number
of

Clusters

Silhouette
Coeffi-
cient

Calinski
Harabasz

Score

Davies
Bouldin

Score

Time
Took

Number
of

Clusters

Silhouette
Coeffi-
cient

Calinski
Harabasz

Score

Davies
Bouldin

Score

Time
Took
(min)

HC 7 −0.014 4.84 77.19 25 4 −0.007 5.32 67.15 3
TB 64 −0.196 9.03 3.78 40 44 −0.201 7.48 3.83 6

UMAP 7 0.325 32,621.97 0.87 11 7 0.295 21,420.86 0.89 2
UMAP 20 0.315 34,464.21 0.88 4 20 0.333 23,609.54 0.86 2

4. Discussion

The main aim of this study is to provide an optimal clustering of molecules from
the NCI-60 panel, which can be used to generate clusters for model validation. As model
validation is a technique to assess model generalization, high-quality clustering results
could improve the generalization of ML-based models. However, in studies using clustering
methods that derive clusters to be used in cross-validation (LOCCO-CV, for example),
the analysis of clustering quality is usually omitted and at best restricted to a single metric.
To provide a comprehensive comparison of the clustering results obtained by hierarchical,
Taylor–Butina, and UMAP clustering, in this study we show three well-known clustering
metrics, along with the similarity matrix. The latter provides information on the structure
of each cluster obtained.

The results show that the clustering quality metrics vary from method to method
(Tables 2, 3 and 5). Using different cutoffs in hierarchical and Taylor–Butina clustering
leads to results that are computationally expensive to use under a cross-validation strategy.
Even at cutoff values where there is a trade-off between the number of clusters obtained
and the quality of the clustering, according to the similarity matrix (Figures 5 and 6),
the molecules in different clusters are similar to each other. This inter-cluster similarity may
affect the model performance since similar molecules are present in the training set and the
test set. This highlights the importance of complementing the usual clustering metrics by
calculating the average similarity matrix.

In methods such as hierarchical or Taylor–Butina clustering, the number of clusters is
not an input but a consequence of the selected cutoff level. In the case of UMAP clustering,
the number of clusters must be provided by the user. Since this parameter can affect the
clustering quality, we address this problem by using the elbow method. However, instead
of using it to find the optimal number of clusters, we use it to narrow the search for this
number. The results suggest that we can generally get higher-quality clustering if we
request a higher number of clusters. However, we require a compromise between the
number of clusters and clustering quality as more clusters imply more cross-validations
and thus more expensive computation.

In addition to the optimal number of clusters, the elbow method also provides insights
into the clusterability of the data set (Figure 8). In this case, this analysis suggests that
the molecules in the NCI-60 panel are not very clustered as the inflection point of the
curve is not clearly observed (Figure 8b). This has a greater impact on hierarchical and
Taylor–Butina clustering, in addition to the similarity distribution of molecules (Figure 3),
since these methods also require a cutoff that determines the behavior of the clusters
(intra-cluster distance or similarity between molecules).

Hierarchical, Taylor–Butina, and UMAP clustering were also tested to evaluate if the
removal of outlier molecules improves clustering quality. We define outlier molecules
and evaluate the results according to the desired clustering. In this case, the results
demonstrate a benefit when non-outlier molecules are clustered using hierarchical and
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UMAP clustering. This is not the case for the Taylor–Butina clustering, where a decrease
in the metrics is observed (Table 7). This suggests that Taylor–Butina is not suitable for
clustering molecules having a distribution as shown in Figure 3 since in both scenarios
(all molecules or non-outlier molecules) we obtain clusters that concentrate most of the
molecules or singletons. While the adopted outlier detection method improves clustering,
we believe that a comprehensive search for an optimal method using high-quality packages
such as PyOD [37] is likely to result in further improvement.

In summary, there are many factors influencing clustering problems, particularly the
clustering of molecules. Models that are not properly validated are susceptible to reduced
performance in unseen compounds; therefore, poor clustering of molecules can lead to the
poor estimation of model generalizability. Since results showed different clustering quality
metrics with respect to the method used, special care must be taken in this task.

5. Conclusions

• In this paper, we provide a comparison of hierarchical, Taylor–Butina, and UMAP
clustering to find the best method to cluster NCI-60 molecules. We also evaluated the
impact of removing outlier molecules before clustering for each of these methods.

• Results suggest that the most effective way to cluster the NCI-60 molecules is by using
the UMAP algorithm either with 7 or 20 clusters depending on the clustering quality
metric selected. In addition, the choice of the number of clusters to be used must
be balanced with the computational cost that the user can afford since more clusters
imply more cross-validations.

• All three clustering methods have been tested on other datasets; however, we are not
aware of any previous studies that have clustered all or part of the molecules from the
NCI-60 panel nor of studies comparing results when outlier molecules are removed.

• High-quality clustering results could improve model generalization on unseen com-
pounds, which is important when the scope and use of the predictive model need to
be extended. Therefore, special care must be taken in the clusters to be used in model
validation, such as LOCCO-CV strategies.

• In this study, the 1024-bit Morgan fingerprint was utilized as a descriptor to charac-
terize the molecules in the NCI-60 panel. Although this is likely to be a near-optimal
choice given past comparative studies, future work could investigate other descriptors
to find out whether they improve the clustering of the NCI-60 molecules further.

• Another interesting topic for future work is to investigate how clustering is affected by
the inclusion of large proportions of assumed inactive molecules (decoys) generated
for each NCI-60 molecule with potent activity as it wis important that decoys are
contained in the same cluster as the active they were generated from [38].
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
ML Machine learning
QSAR Quantitative structure–activity relationships
AVE Asymmetric validation embedding
HTS High-throughput screening
CV Cross-validation
LDTO Leave-dissimilar-target-out
LOTO Leave-one-tissue-out
LOCCO Leave-one-compound-cluster-out
LOCO Leave-one-cell-line-out
MOA Mechanism of action
NCI National Cancer Institute
NSC National Service Center
MFP Morgan fingerprint
SMILES Simplified molecular-input line-entry system
UMAP Uniform manifold approximation and projection
HC Hierarchical clustering
TB Taylor–Butina
SC Silhouette coefficient
CH Calinski–Harabasz score
DB Davies–Bouldin score
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