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Abstract: Mounting evidence in the literature indicates an important role of endogenous and exoge-
nous melatonin in driving physiological and molecular adaptations in livestock. Melatonin has been
extensively studied in seasonally polyestrous animals whereby supplementation studies have been
used to adjust circannual rhythms in herds of animals under abnormal photoperiodic conditions.
Livestock undergo multiple metabolic and physiological adaptation processes throughout their
production cycle which can result in decreased immune response leading to chronic illness, weight
loss, or decreased production efficiency; however, melatonin’s antioxidant capacity and immunostim-
ulatory properties could alleviate these effects. The cardiovascular system responds to melatonin
and depending on receptor type and localization, melatonin can vasodilate or vasoconstrict several
systemic arteries, thereby controlling whole animal nutrient partitioning via vascular resistance.
Increased incidences of non-communicable diseases in populations exposed to circadian disruption
have uncovered novel pathways of neurohormones, such as melatonin, influence health, and disease.
Perturbations in immune function can negatively impact the growth and development of livestock
which has been examined following melatonin supplementation. Specifically, melatonin can influ-
ence nutrient uptake, circulating nutrient profiles, and endocrine profiles controlling economically
important livestock growth and development. This review focuses on the physiological, cellular, and
molecular implications of melatonin on the health and disease of domesticated food animals.

Keywords: antioxidant; circadian rhythms; immune function; cardiovascular effects; endocrinology;
skeletal muscle; growth and development; microbiome

1. Introduction, Photoperiod, and Synthesis Pathway

Following the discovery of melatonin in 1958 [1], most research efforts focused on
understanding the role of melatonin in the reproductive physiology of photosensitive
seasonal breeding animals [2–4]. Melatonin is known to be elevated at nighttime, which
is considered a highly conserved trait among vertebrate animals playing a significant
role in circadian rhythms and seasonality of reproduction. For example, the duration of
melatonin secretion is different between short days (autumn and winter) and long days
(spring and summer) allowing an adaptive response to changes in environmental factors,
such as temperature and food availability [5]. Nevertheless, there is existing variability in
physiological melatonin concentrations across species (Table 1).

Some domesticated livestock species are short day breeders (sheep, goats, and white-
tailed deer) or long day breeders (horses and hamsters) where females experience periods
of seasonal anestrus and males experience alterations in testicular weight. However, the
domestication of cattle and swine has resulted in the complete loss of seasonal reproduction
classifying these species as continuous breeders [5,6]. Multiple studies utilizing ewes and
mares have aimed to manipulate light intensity and treat animals with melatonin [4,7–9]
to advance the breeding season and induce cyclicity. The pharmacological advantage
of melatonin advancing the breeding season relies upon the conversion of information
from the photic environment indicating the duration of day and night and translating it
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to a chemical signaling [10]. Throughout the decades, the role of melatonin in seasonal
breeding has been extensively reviewed [11–13], while recently, other important properties
of melatonin in relation to mammals’ health and diseases have become of particular interest.
Therefore, the current review article will outline the use of melatonin as a therapeutic to
modify antioxidant capacity, cardiovascular function, endocrine metabolism, and immune
function in various livestock species.

The photoperiodic stimulation of melatonin synthesis is initiated with the transmission
of environmental cues from photoreceptive cells in the retina to the suprachiasmatic nuclei
(SCN) in the hypothalamus. The SCN is located dorsal to the optic chiasm and is considered
the master biological clock regulating physiological and behavioral processes based on a
24 h cycle allowing organisms to anticipate their physiological needs [14]. Exclusively dur-
ing the dark cycle, norepinephrine is released from the sympathetic postsynaptic fibers into
the pineal gland. The norepinephrine binds to β-adrenergic receptors in the pinealocytes
activating the cascade of events that leads to melatonin synthesis [12]. The melatonin pre-
cursor, tryptophan, is hydroxylated by tryptophan hydroxylase into 5-hydroxytryptophan
and further decarboxylated into serotonin (5-hydroxytryptamine) [15]. Serotonin is in-
creased during the day; nevertheless, during the night there is a 70- to 100-fold increase
in the activity of arylalkyl amine N-acetyltransferase (AANAT) which converts serotonin
into N-acetyl serotonin (N-acetyl 5-hydroxytryptamine) in the pineal gland [16]. Lastly,
hydroxyindole-O-methyltransferase (HIOMT), which has limited circadian fluctuations,
converts N-acetyl serotonin into melatonin (N-acetyl 5-methoxytryptamine). Even though
AANAT is considered the “melatonin rhythm enzyme” controlling its daily rhythm ac-
tivity [10], HIOMT activity is the rate-limiting step in melatonin synthesis [17]. Due to
melatonin’s lipophilic properties, it is immediately released into the bloodstream after
synthesis. Extrapineal tissues and cells such as the retina, stomach, skin, ovaries, and
lymphocytes have been shown to have the capacity to synthesize melatonin [18–20]; never-
theless, this melatonin does not contribute to the bloodstream pool, rather it is utilized by
those same tissues as an antioxidant [21].

Melatonin’s antioxidant capacity is a property of great interest for improving health
and preventing diseases in livestock. Interestingly, it has been speculated that melatonin
evolved more than 2.5 billion years ago in response to increasing atmospheric oxygen con-
centrations where bacterial phagocytosis ended in the evolution of organisms containing
organelles, such as mitochondria [22]. This group of researchers further suggests that all
multicellular organisms can produce melatonin in the mitochondria [22] to defend against
reactive oxygen species (ROS). Livestock undergo multiple metabolic and physiological
adaptation processes throughout their production cycle. In addition, they can be exposed
to unfavorable conditions that lead to excess production of ROS. Melatonin can directly
reduce ROS from mitochondrial respiratory chain electron leakage [21] and help to preserve
antioxidative enzymes’ functional integrity [23]. This antioxidant property of melatonin
deserves further exploration in relation to alterations in the cardiovascular system. Paulis
and Simko [24] proposed that melatonin can increase blood flow through two possible
mechanisms: (a) indirectly by acting as an antioxidant to decrease vascular oxidative stress
or (b) directly by binding to endothelial melatonin receptors. In addition, Pogan et al. [25]
proposed that melatonin binds to the melatonin receptor 2 in the endothelial cells, causing
an increase in cytosolic Ca2+, which activates the nitric oxide synthase and stimulates the
nitric oxide production, leading to vasodilation [26]. Thereby, melatonin supplementation
to livestock may cause vasoconstriction or vasodilation, altering blood flow and affecting
nutrient partitioning depending on the animal’s production status. Outside of melatonin’s
actions in the central nervous system, such as binding sites in the SCN, researchers have ob-
served vascular smooth muscle cell binding sites in rodent cerebral and caudal arteries [27].
Earlier reports identified vasodilation properties of supraphysiological concentrations of
melatonin in rabbit basilar arteries [28]. However, at lower concentrations melatonin was
shown to potentiate norepinephrine-induced vasoconstriction in rat caudal arteries [29].
Interestingly, porcine pulmonary and coronary arteries have been reported to respond
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to melatonin even though melatonin binding sites were not observed in the vessels [30].
Specifically, melatonin induced a concentration-dependent relaxation of porcine pulmonary
arteries, while melatonin potentiated vasoconstriction of both porcine and human coronary
arteries. Further studies have proposed that melatonin inhibits nitric oxide signaling in
porcine coronary arteries and this could be mediated via melatonin receptor 2 [31].

Table 1. Summary of melatonin concentrations across specie.

Specie Sample Daytime (pg/mL) Nighttime (pg/mL) Method Reference

Human (Homo sapiens) Plasma 1.5–4.9 19.4–42.6 GC-MS [32]
Swine (Sus domesticus) Plasma 30–40 35–65 RIA [33]
Swine (Sus domesticus) Serum 42.9 38.4 RIA [34]
Chicken (Gallus domesticus) Plasma 53 201 RIA [35]
Chicken (Gallus domesticus) Plasma 67.4–117.9 325–379 RIA [36]
Sheep (Ovis aries) Serum 10–30 100–300 RIA [37]
Sheep (Ovis aries) Serum 15.7–36.9 60.7–239.2 ELISA [38]
Horse (Equus caballus) Plasma 0–10 10–45 RIA [39]
Horse (Cycling mare in March) Serum 11.6 13.2 RIA [40]
Horse (Noncycling mare in March) Serum 8.9 8.2 RIA [40]
Cow (Bos taurus) Plasma 5 90 RIA [41]
Cow (Fall) Plasma 13.9 27.8 ELISA [42]
Cow (Summer) Plasma 12.8 24.73 ELISA [42]

2. Circadian Rhythms, Environmental Factors, and Body Temperature

Melatonin, along with the clock gene network, is known to regulate circadian
rhythms in response to environmental factors. Nevertheless, the regulation of circadian
rhythms is complex when the SCN, circadian molecular clock, and melatonin are inte-
grated into the mammalian system. Even though multiple peripheral tissues exhibit
semiautonomous clocks, the SCN neural circuit is the master circadian pacemaker in
mammals [43]. In the SCN neurons, the circadian molecular clock operates based on a
transcription and translation oscillatory feedback loop [44], regulating the expression
of transcription factors and proteins that control rate-limiting steps in metabolic path-
ways [45]. Briefly, the CLOCK and BMAL1 proteins heterodimerize (CLOCK:BMAL1)
and bind to the E-box enhancer within the nucleus, activating the transcription of the
CRY and PER proteins [14] which dimerize in the cytoplasm and create a complex that
causes negative feedback in the nuclear CLOCK:BMAL1 repressing its own transcrip-
tion [46]. Interestingly, in the chicken pineal gland, the CLOCK:BMAL1 heterodimer
binds to the E box elements in the AANAT gene promoter, enhancing the transcription of
AANAT in a circadian rhythm manner [47]. This implies that the daily rhythm in mela-
tonin production is regulated by the transcription of clock genes and the penultimate
enzyme (AANAT) in melatonin synthesis [47].

Circadian rhythms could be altered in response to changes in environmental factors
such as photoperiod, stress, food availability, and ambient temperature. Interestingly, it
has been reported that melatonin modulates hair growth in various species controlling
seasonal molting [48,49]. In vitro, 300 ng/L of melatonin increased growth in cashmere
goat hair follicles [48]. The hormonal balance between prolactin and melatonin is essential
for seasonal and hair growth modulation. Furthermore, alterations in hair follicle dynamics
could result in animals retaining their winter hair coats during the summertime which
would be detrimental to these animals, exacerbating the effect of heat stress [50].

There is evidence that cattle exhibit a distinguished circadian rhythm in body tem-
perature which fluctuates by season and reproductive stages [51,52]. In humans, the core
body temperature reaches its lowest point at 03:00 to 06:00 a.m., completely opposite of
the observed increase in melatonin synthesis [53]. These data impelled researchers to
investigate the hypothermic properties of melatonin, which could be of great benefit to
animal agriculture since livestock are annually exposed to heat stress conditions. Mela-
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tonin supplementation was shown to reduce core body temperature during daytime in
humans; a drop of 0.30 ◦C was observed when supplemented with 5 mg of melatonin [54].
More recently, Contreras-Correa et al. [42] reported that 20 mg/d of dietary melatonin
decreased vaginal temperature in pregnant heifers during the summertime. Nevertheless,
Samuel et al. [55] reported no differences in rectal temperature in late gestational cows
after supplementing with melatonin implants during summer. Since the skin is rich in
arteriovenous anastomoses, the regulation of blood flow is critical to heat loss and body
temperature regulation [53]. Moreover, pregnant animals with increased body temperature
exhibit a reduction in uterine blood flow and increased peripheral blood flow, allowing
blood distribution to facilitate heat dissipation [56]. Maternal hyperthermia in pregnant
mice has been shown to increase embryonic death via an increase in oxidative stress, while
melatonin injections alleviated this effect by maintaining a neutral redox status [57]. Cattle
grazing endophyte-infected fescue exhibit decreased plasma melatonin [58,59], rough hair
coats, and vasoconstriction to peripheral tissues, limiting heat dissipation and increasing
body temperature [50,60]. Based on these findings, it is suggested to further investigate the
role of melatonin and its usage as a therapeutic in domesticated farm animals experiencing
cardiovascular diseases and hyperthermia.

3. Immune System

Melatonin is an immunostimulatory, anti-apoptotic, antioxidant, amino acid-derived
hormone that modulates immune responses, specifically by enhancing the Th-1 immune
pathway [61]. Melatonin’s primary physiological function of regulating the circadian
rhythm translates into secondary immune functions including, but not limited to, upreg-
ulating cytokine production [62], increasing T cell proliferation [63], stimulating NK cell
activity [64], increasing antigen presence [63], and increasing the CD4 to CD8 immune cell
ratio [65]. Therapeutic melatonin supplementation in livestock species is a novel area of
research, with many publications focused solely on improving reproductive performance.
However, within human medicine, melatonin has been shown to have positive effects when
treating stress or trauma-induced immunodepression [66,67]. Thus, exploring melatonin’s
potential immunotherapeutic role within livestock species is needed, especially related to
stress-induced immunosuppression throughout the production cycle.

In 1986, Maestroni et al. [66,68] inhibited melatonin synthesis in mice by keeping
them under constant light or administering β-adrenergic blockers; as a result, these mice
exhibited a suppressed immune response when exposed to antigens. This response was
characterized by an inability to mount a primary antibody response, decreased immune
cells within the thymus and spleen, and a depressed proliferative response of lymphocytes.
However, when mice were administered melatonin, all these immunosuppressive effects
were reversed [68]. Further exploration of melatonin’s immunostimulatory roles revealed
an intricate relationship. Specifically, melatonin modulates the cellular and cytokine profile
in both the innate and humoral immune response [69].

3.1. Innate Immune Response

The innate immune system is the body’s first line of defense. The skin and mucosal
membranes form a physical barrier against foreign pathogens. Additionally, chemical
environment, microbial competition, enzymatic activity, and movement within the gastroin-
testinal lumen have similar effects to prevent pathogen invasion. However, if pathogens
evade these external defenses, immunocompetent cells begin to produce proteins, cytokines,
and chemokines to initiate an inflammatory response [70]. Melatonin can affect cytokine
production in immunocompetent cells, resulting in an altered immune response [71]. Specif-
ically, melatonin influences hematopoiesis via neuroendocrine regulation to increase natural
killer (NK) and monocyte production within the bone marrow by increasing the production
of granulocyte and macrophage cell lineage [72]. Thus, in the presence of melatonin, there is
a natural increase in cell’s innate immune components, leading to the immunostimulatory
effects observed [69].
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Melatonin’s antioxidant properties are hypothesized to aid in macrophage phagocytic
activity [73]. The microbiocidal properties of macrophages are associated with excessive
nitric oxide (NO) production that can be harmful to the body [74]. However, melatonin
suppresses NO synthase, leading to decreased NO concentrations in macrophages and
increased phagocytic activity [75]. Melatonin’s influence on immune cell proliferation
and efficacy explains part of the immunostimulatory phenomenon observed, but mela-
tonin’s ability to alter cytokine proliferation and control adaptive immune response is
equally important.

3.2. Adaptive Immune Response

Melatonin influences immunocompetent cells to shift cytokine production to increase
IL-2, IFN-gamma, and IL-6 in CD4 cells [76]. In monocytes, melatonin increases IL-1,
IL-6, TNF-alpha, and IL-12 production [77]. An immune response is typically dictated
by the T cell that is activated and cytokines produced. Th-1 responses are activated to
target intracellular pathogens via a pro-inflammatory response [66]; this type of response is
extremely effective against pathogens but can lead to uncontrolled tissue damage [78]. Th-2
responses balance the Th-1 response by producing interleukins to increase eosinophilic
cells and anti-inflammatory responses [78]. Thus, melatonin’s ability to shift cytokine
production can drastically alter the Th-1 and Th-2 balance of the immune response.

Melatonin stimulates Th cells to secrete opioid peptides [62]. Nelson and Drazen [79]
hypothesized that this function of melatonin is derived from physiological adaptations
that must occur during winter months. Thus, as endogenous melatonin synthesis increases
during the winter months, the immunostimulatory effects of melatonin allow the organism
to better cope with physiological stressors [79]. Based on the cytokine profile, melatonin
favors the pro-inflammatory Th-1 immune response and decreased melatonin is correlated
with impaired Th-1 immune responses [80]. Together, there is clear evidence that melatonin
is a crucial component of a normally functioning immune system but the implications
within livestock species remain unclear and more research is needed for further elucidation.

3.3. Immunostimulatory Melatonin in Livestock Production

Within livestock production, there are several unavoidable stressors animals will
encounter throughout the production lifecycle. Some examples of these stressors include
transportation stress, handling stress, environmental stress, herd dynamics, and sickness
(Figure 1). An increased concern with stressed animals is a decreased immune response
leading to chronic illness, weight loss, or decreased production efficiency, all of which
translate to economic loss. However, melatonin’s immunostimulatory properties could
alleviate the effects that stressors cause within livestock species.

In pregnant sheep, melatonin has been used as a vaccine adjuvant; researchers found
that melatonin administration significantly improved the immune responses to the vaccine
antigen [81]. Improving vaccine immune response and antibody production in prepartum
females can increase colostrum quality, resulting in healthier offspring; thus, this potential
use should be further explored. Interestingly, ewes implanted 40 days before lambing with
18 or 36 mg of melatonin exhibited increased IgG concentrations in the colostrum and de-
creased somatic cell count in the subsequent lactation compared to nonimplanted ewes [82].
In dairy cows, melatonin has been extensively studied to be used as a therapeutic to increase
reproductive success in cows experiencing heat stress [83,84]. Generally, melatonin has been
successful in reducing the number of days open and the repeat breeding syndrome within
heat-stressed dairy cows [83]. However, livestock studies using melatonin as a therapeutic
during routine stressors are limited. Based on human and rodent research, melatonin has
substantial potential to mitigate stress-induced immunodepression [62,67]. Thus, future
research evaluating melatonin supplementation during routine stressors (transportation,
handling, weaning, etc.) is needed to truly understand the positive impacts melatonin
could have on livestock production efficiency.
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Figure 1. Figure depicting how peripheral concentrations of melatonin impact the immune responses
throughout the body via systemic circadian rhythm regulation. Increased concentrations of melatonin
altered eubitoic microbial populations, increased immunocompetent cells (natural killer cells (NK),
monocytes, and T cells), and cytokine production (IL-1, IL-2, IL-6, IL12, TNF-alpha, and IFN-gamma),
decreased nitric oxide (NO) synthase production, resulting in decreased reactive oxygen species
(ROS), and increased pathogen-associated molecular patterns (PAMP) signaling via toll-like receptor
4 (TLR-4). The figure was created with BioRender.com (accessed on 29 January 2023).

4. Microbiome

Immune system modulations have specific and often intricate relationships with
microbial fluctuations throughout the body. These relationships have only begun to be
explored in both human and livestock species. The progression in sequencing depth,
metabolomic analysis, and bioinformatics allows researchers to understand not only which
bacteria are present, but also their metabolic capacity and roles within the biome. Thus,
exploring the relationship between animal immune status and microbial presence is an
emerging field within livestock. Melatonin is a known immunomodulator, but the extent
to which melatonin concentrations impact microbial populations throughout the body is
quite impressive.

4.1. Gut Microbiome

Through immune-modulatory mechanisms, melatonin has been shown to improve
microbial dysbiosis in humans [85]. Specifically, melatonin works through toll-like receptor
(TLR) 4, which is responsible for pathogen-associated molecular pattern (PAMP) signaling
primarily involving lipopolysaccharide (LPS) on gram-negative bacteria [86]. Interestingly,
melatonin demonstrated rhythmic concentrations within the GI tract of mice that are
400-fold greater than the pineal gland [87], which is reflective of the high expression of
melatonin receptors and enzymes for melatonin production [88]. Moreover, studies have
shown that gut microbes exhibit circadian rhythms and patterns similar to the host that can
affect microbes’ relative abundance, absolute abundance, and metabolomic function [89].
Melatonin regulates the biological clock in the host [90]; thus, it is clear the microbial
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circadian rhythm and function of the gut microbes are tied to melatonin. Together, this
evidence presents a strong case for melatonin to cause physiological changes within the
digestive tract.

The identification of rhythmicity of the ruminant gut microbiome warrants further
research, but interestingly melatonin’s role within the gut microbiome could be linked to
salivary origins. Salivary melatonin has roles in regulating inflammatory processes, promot-
ing antioxidant responses, and rapid healing within oral wounds [91]. Moreover, salivary
melatonin concentrations follow a similar circadian rhythm to the pattern in ruminal fluid
and ruminal muscularis [92]. Thus, melatonin secreted into the saliva could be impacting
microbial communities throughout the gastrointestinal tract via circadian fluctuations. A
study within lactating Holstein cows (n = 6) demonstrated a circadian rhythm within the
rumen gut microbial populations and found that microbe relative abundance changed
with ruminal melatonin concentrations. Specifically, increased melatonin concentrations re-
sulted in increased relative abundance of the families Preovotellaceae and Muribaculaceae;
there was a decrease in the relative abundance of the families Succininivibrionaceae and
Veillonellaceae [92]. This is concurrent with previous research demonstrating melatonin’s
ability to negatively affect gram-negative bacteria via cytokine production and altered
metabolism [93]. Based on the results, Ouyang et al. [92] hypothesized that the oscillation
of melatonin concentrations within the gastrointestinal tract alters key metabolic pathways
that impact the dominant phyla (Firmicutes, Proteobacteria, and Bacteroidetes) within
the rumen.

4.2. Reproductive Tract Microbiome

There is limited literature on livestock evaluating the relationship between dietary
melatonin and the reproductive tract microbiome. However, within the singular published
study, 60 days of dietary melatonin supplementation altered the beta diversity of the
vaginal tract microbiome [94]. The authors contributed this observation to melatonin’s role
in altering uterine artery blood perfusion and potentially oxygen perfusion to the tissue
but, given melatonin’s innumerable roles within the immune system, there could be some
inadvertent immune responses within the reproductive tract resulting in compositional
changes [94].

4.3. Melatonin in Livestock Microbiomes

Taken together, melatonin cyclicity obviously impacts the microbiomes within the
host. In humans, melatonin’s therapeutic role in treating dysbiosis-associated conditions
such as inflammatory bowel disease, chronodisruption-induced dysbiosis, obesity, and
neurophsychiatric disorders is being explored [95]. Thus, the limited literature investigating
therapeutic melatonin in livestock to decrease microbiome dysbiosis and increase overall
efficiency is problematic; future research must focus on the secondary effects of melatonin
supplementation specifically related to immune and microbial modulations and how these
effects can be harnessed to increase overall production efficiency.

5. Skeletal Muscle and Growth and Development

There has been recent progress made in our understanding of melatonin’s effects on
function, growth and development, and therapeutic benefits in diseases and dysfunction of
skeletal muscles. In C2C12 mouse myoblasts, 0.5 mM and 1 mM of melatonin increased
proliferation rates from 48 to 96 h [96]. While 0.5 mM of melatonin did not affect the tran-
script abundance of myogenic regulatory factors, 1 mM and 2 mM of melatonin decreased
myogenin (MyoG) and embryonic myosin heavy chain (eMyHC) [96]. Furthermore, 2 mM
of melatonin reduced the transcript abundance of all fusion factors assessed, while 1 mM
of melatonin only reduced some fusion factors [96]. Interestingly, 2 mM of melatonin
increased the rate of apoptosis [96]. These data indicate melatonin can promote the prolif-
eration of skeletal muscle cells, inhibit differentiation and fusion, and increase apoptosis
in a dose-dependent manner. In L6 mice myotubes treated with 100 ng/mL TNFα in
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culture, 100 nM of melatonin improved cell viability and reduced markers of apoptosis,
including p38-MAPK, JNK, and cleaved caspase-3 [97]. Early and old-aged mice receiving
10 mg/kg/d of melatonin in their feed had increased muscle weight, body weight, and
muscle-to-body weight ratio [98]. Furthermore, these mice had reduced internal damage,
collagenous tissue accumulation, and nuclei apoptosis in skeletal muscle fibers of the
gastrocnemius muscle [98]. Young, early, and old-aged mice receiving melatonin in this
study had increased whole-body anaerobic respiration, evidenced by increased lactate
production [98]. Hindlimb skeletal muscle blood flow was increased in mice receiving
100 mg/kd/d of melatonin in their drinking water [99]. Furthermore, these melatonin-
treated mice had improved insulin sensitivity and glucose utilization [99]. Similarly, rats
receiving 0.5 mg/kg/d of melatonin in their drinking water also had improved insulin sen-
sitivity and glucose utilization [100]. Blood glucose rhythmicity was diminished, and blood
glucose concentrations were decreased during daylight hours among melatonin receptor 1
and melatonin receptor 2 knockout mice [101]. These data indicate that melatonin can
improve skeletal muscle function, including glucose homeostasis and metabolism, which
can improve overall health and well-being in people with metabolic diseases or the elderly.
Similarly, these data allow for speculation that melatonin can improve growth and health
and wellbeing in livestock destined to become protein sources for human consumption.
Melatonin implants releasing 2 mg/kg/d in goats had no effect on carcass weight, dressing
percentage, longissimus dorsi cross-sectional area, essential amino acids, total amino acids,
or individual amino acids [102]. Additionally, there were no differences in muscle pH,
muscle water content, or meat color in the longissimus dorsi, biceps femoris, or gluteus muscles
in goats implanted with melatonin [102]. Furthermore, goats that received implants in
June had decreased protein content in all three muscles but only decreased ether extract
content in the gluteus muscle [102]. Interestingly, whole-muscle and whole-body growth
has been variable in melatonin studies; however, the therapeutic benefits at the cellular
level in skeletal muscle would likely reduce adverse health issues and create a beneficial
environment for skeletal muscle growth. Further research should investigate the efficacy of
melatonin implants to better understand release rates and its ability to enter circulation
from subcutaneous spaces. While significant gains have been made in our understanding
of melatonin’s role in skeletal muscle function, there is a need for more data; specifically,
evaluating melatonin’s impact on growth and development in skeletal muscle. These
studies allow us to speculate that melatonin could improve poor growth and development,
although it is likely dose dependent.

6. Amino Acids in Livestock Maternal Blood

Since melatonin is synthesized from tryptophan there is increasing interest in the
role of melatonin on circulating amino acids. There were no effects of melatonin on total
amino acid concentrations in the saphenous artery or uterine vein in mid-gestation nutrient-
restricted ewes receiving 5 mg of dietary melatonin daily [103]. Similarly, there were no
effects of melatonin on total branched-chain amino acids in these sheep [103]. Melatonin
rescued the effects of nutrient restriction in total amino acids but not essential amino
acids in late gestation cows receiving 20 mg of dietary melatonin daily in the fall [104]. In
these same cows, amino acids were evaluated by a transport system in which melatonin
also rescued the effects of nutrient restriction in System A, System N, and Anion amino
acids [104]. Furthermore, fall-supplemented melatonin exhibited similar rescue effects
in individual amino acids including valine, α-aminobutyric acid, aspartic acid, glutamic
acid, α-aminoadipic, acid lysine, tyrosine, and cystine in these cows [104]. Interestingly,
in another replicate in which cows received melatonin in the summer, melatonin rescued
the effects of nutrient restriction in System Br and System Bo amino acids [104]. However,
there were no effects of melatonin in total amino acids, essential amino acids, or individual
amino acids in summer-supplemented cows [104]. These data indicate that melatonin may
be an effective therapeutic for nutrient stress during gestation when considering altered
circulating amino acids. Furthermore, melatonin may be a more effective therapeutic in
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certain seasons. Seasonality research using melatonin is limited and should be expanded
upon to better understand the efficacy of melatonin as a therapeutic. Interestingly, the use
of melatonin as a therapeutic has quickly become a topic of research in several diseases,
while studies into its effect on amino acids and other metabolites remain lesser. In a
mouse breast cancer model, 40 mg/kg of body weight melatonin injections rescued the
effects of breast cancer on circulating amino acids [105]. Specifically, melatonin reduced
tryptophan, proline, ornithine, methionine, lysine, isoleucine, glutamate, and citrulline
while increasing aspartate, leucine, lysine, proline, serine, and valine in breast cancer
bearing mice [105]. These alterations in amino acids due to melatonin supplementation were
similar to concentrations in the control mice [105]. These data suggest melatonin may be
effective in regulating amino acids in breast cancer patients, which could allow for reduced
tumor growth by lessening the fuel source for cancer cells. Studies evaluating melatonin
as a therapeutic should consider investigating amino acids, as it may show improvement
when nutrients are inadequate or overly abundant during pregnancy or disease.

7. Endocrine and Receptor Pathways

The amplitude of melatonin secretion has been associated with steroid and
prostaglandin metabolism in rats and sheep. Progesterone production is stimulated in
luteal cell cultures treated with melatonin [106], while melatonin supplementation de-
creased prostaglandin F2 and E2 in endometrial and hypothalamic cultures [107,108]. In
addition, melatonin treatment in rats reduced uterine estrogen receptors and increased
uterine progesterone receptors, while concomitantly reducing uterine contractile response
to oxytocin compared with the controls [109]. In human breast cancer cell lines, melatonin
interacts with estrogen receptors as a selective estrogen receptor modulator, and it has been
implicated in reducing estrogen synthesis in steroidogenic tissues [110]. Along those same
lines, melatonin reduced the activity and expression of aromatase, responsible for synthesis,
and sulfatase, responsible for the bioavailability of estrogens. This increased activity of
estrogen sulfotransferase generates an estrogen sulfate with low biological activity and a
long half-life [110].

In pregnant cattle, dietary melatonin supplementation during the third trimester of
pregnancy decreased both estradiol-17beta and progesterone concentrations [111]. This
decrease in steroid concentrations could be related to metabolism, as treatment with physi-
ological concentrations of melatonin increased the enzymatic activity of cytochrome P450
1A. This enzyme participates in a number of metabolic pathways, including the conver-
sion of estradiol to 2-hydroxyestradiol metabolite, which can be further metabolized to
2-methoxyestradiol via the catechol-O-methyltransferase enzyme [112,113]. Interestingly,
deficiency in 2-methoxyestradiol production has been associated with pre-eclampsia-like
phenotypes in mice [114]; therefore, alterations in estradiol metabolism after melatonin ex-
posure could alter uteroplacental development during pregnancy. This melatonin-mediated
response may be related to the activation of the aryl hydrocarbon receptor, which binds
indole-containing chemicals directly, thereby increasing the expression of cytochrome P450
enzymes [115]. However, receptor-mediated pathways cannot be ruled out. In bovine
endometrial epithelial cells treated with increasing concentrations of estradiol, we observed
decreased melatonin receptor 1 expression, while treatment with progesterone increased
melatonin receptor 1 expression [111]. These results are important because uteroplacental
steroid and prostaglandin synthesis and metabolism are associated with nutrient transport
capacity and uterine blood flow [116,117]. In addition, estrogen has been implicated in
blocking adrenergic uterine arterial tone [118] and elevated melatonin may be implicated
in decreasing estrogen concentrations or estrogen sensitivity, which has direct implications
for controlling uterine blood flow during compromised pregnancies.

8. Conclusions and Future Directions

In summary, melatonin’s properties have been observed to impact cardiovascular,
immune function, growth and development, and endocrine pathways in livestock species.
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Altering antioxidant capacity contributes to melatonin-mediated physiological changes,
while melatonin receptor-mediated pathways have been proposed in sheep and cattle.
Disrupting photoperiod and altering endogenous melatonin secretion in livestock can
have profound effects on cardiovascular function, core body temperature, immune health,
and growth, which are all major components of the animal agriculture industry. Previous
research has focused on implicating melatonin in regulating reproductive performance
in livestock species; however, this review has shed light on innovative pathways that
need to be targeted in animal agriculture. Specifically, understanding how melatonin
or circadian disruption can impact the microbiome of economically important livestock
could lead to significant strategies to decrease morbidity and mortality during livestock
production. Furthermore, recent evidence linking melatonin to alterations in systemic
metabolites, such as amino acid concentrations and steroid hormone profiles, elucidates
novel mechanisms which can be harnessed to improve the efficient growth and develop-
ment of livestock species.
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