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Abstract: Cystic fibrosis is a monogenic disease with a multisystemic phenotype, ranging from pre-
disposition to chronic lung infection and inflammation to reduced bone mass. The exact mechanisms
unbalancing the maintenance of an optimal bone mass in cystic fibrosis patients remain unknown.
Multiple factors may contribute to severe bone mass reduction that, in turn, have devastating con-
sequences in the patients’ quality of life and longevity. Here, we will review the existing evidence
linking the CFTR dysfunction and cell-intrinsic bone defects. Additionally, we will also address how
the proinflammatory environment due to CFTR dysfunction in immune cells and chronic infection
impairs the maintenance of an adequate bone mass in CF patients.
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1. Introduction

Cystic fibrosis is a monogenetic autosomal recessive disorder with systemic and
heterogeneous involvement [1]. The disease was first identified in 1938 [2]; then, the
median life expectancy was a few months [3]. However, the implementation of newborn
screening programs, the creation of reference centers to follow and treat cystic fibrosis
patients, the elaboration of protocols to treat and eradicate chronic infection, and the
improvement in the nutritional support, amongst other factors, increased the lifespan of
cystic fibrosis patients to ~50 years old [1]. The improved longevity of cystic fibrosis patients
creates new challenges, namely the understanding and treatment of several comorbidities
such as cystic fibrosis bone disease [4].

Cystic fibrosis is most common in Northern Europe descendants but has been diag-
nosed worldwide [5], with increasing incidence in Asia and Africa [6,7]. According to the
most recent patients registry reports, there are 52,246 patients in Europe and 31,411 in North
America [8,9]. The disease is caused by mutations in the cystic fibrosis transmembrane con-
ductance receptor (CFTR) [1,10,11], an ATP-binding cassette that also functions as a chloride
and bicarbonate channel [12,13]. To date, over 2000 CFTR variations have been identified,
but most of them are either very rare or have uncertain clinical significance [14,15]. The
most frequent disease-causing mutation in European cystic fibrosis patients is the Phe508del
(F508del). Individuals of other ethnicities are less likely to have this mutation, which has
important therapeutic implications [16]. Mutations in CFTR with clinical phenotypes have
a wide range of functional consequences and conceptually have been categorized in six
classes (Figure 1). Whilst the severity of the clinical presentation correlates with the severity
of the functional defect in CFTR (ranging from folding errors to complete lack of CFTR),
several mutations associate with several functional deficiencies, exhibiting features of more
than one mutation class [1,15]. Besides the particular CFTR mutation, the presence of
different modifier genes and complex alleles in the same individual may also account for
the differences in the disease severity and clinical manifestations [10].
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the particular CFTR mutation, the presence of different modifier genes and complex 
alleles in the same individual may also account for the differences in the disease severity 
and clinical manifestations [10]. 

 
Figure 1. Classification and effects of CFTR mutations and approved CFTR function-restoring 
pharmacological interventions. Class I mutations result in the premature termination of CFTR 
transcription and in the absence of a functional CFTR. Class II mutations lead to the misfolding of 
CFTR protein and aberrant trafficking of the protein. Class III mutations are gating mutations 
causing ineffective chloride/bicarbonate transport. Mutations belonging to class IV decrease the 
conduction of ions through the channel. Class III and IV mutations lead to normal levels of CFTR 
expressed at the cell surface but a reduced CFTR function. Splicing and missense mutations belong 
to class V and cause reduced CFTR synthesis. Class VI mutations reduce CFTR stability of the cell 
membrane due to increased CFTR recycling. Thus far, the CFTR modulators in the clinic target class 
II, class III and IV mutations. Image created using Biorender.com (www.biorender.com; access on 
22 November 2022). 

In the lung and upper airways, dysfunction of CFTR leads to the formation of thick 
mucopurulent secretions and impaired mucociliary clearance, predisposing individuals 
to the establishment of chronic lung infections, mostly by Staphylococcus aureus and 
Pseudomonas aeruginosa [17]. The vicious cycle of infection and inflammation causes 
structural lung disease, such as the development of bronchiectasis, and in the latter and 
more severe stages of disease, respiratory failure [18]. The implications of chronic 
inflammation/infection in bone homeostasis will be discussed in Section 5.1. 

Besides the effects on respiratory function, cystic fibrosis presents with endocrine 
alterations such as exocrine pancreatic insufficiency and cystic fibrosis-related diabetes. 
In pancreatic ducts, CFTR secretes chloride and bicarbonate, alkalinizing the ductal fluid, 
neutralizing peptic acid and optimizing pH for enzymatic digestion [19]. In the absence 
of CFTR function, ductal obstruction and epithelial damage, inflammation, fibrosis and 
fatty infiltration lead to an increase in pancreatic destruction [20]. In the most severe CFTR 
mutations, namely class I–IV and VI, these alterations begin in the uterus. Thus, pancreatic 
exocrine disease is a condition present at birth in almost all cystic fibrosis newborns. The 
small percentage of babies with cystic fibrosis that are pancreatic sufficient transition to 
insufficiency over time [20]. Pancreatic exocrine insufficiency is associated with 
malabsorption and liposoluble vitamin deficiency. Thus, lifelong pancreatic enzyme 

Figure 1. Classification and effects of CFTR mutations and approved CFTR function-restoring
pharmacological interventions. Class I mutations result in the premature termination of CFTR
transcription and in the absence of a functional CFTR. Class II mutations lead to the misfolding of
CFTR protein and aberrant trafficking of the protein. Class III mutations are gating mutations causing
ineffective chloride/bicarbonate transport. Mutations belonging to class IV decrease the conduction
of ions through the channel. Class III and IV mutations lead to normal levels of CFTR expressed at
the cell surface but a reduced CFTR function. Splicing and missense mutations belong to class V and
cause reduced CFTR synthesis. Class VI mutations reduce CFTR stability of the cell membrane due to
increased CFTR recycling. Thus far, the CFTR modulators in the clinic target class II, class III and IV
mutations. Image created using Biorender.com (www.biorender.com; access on 22 November 2022).

In the lung and upper airways, dysfunction of CFTR leads to the formation of thick mu-
copurulent secretions and impaired mucociliary clearance, predisposing individuals to the
establishment of chronic lung infections, mostly by Staphylococcus aureus and Pseudomonas
aeruginosa [17]. The vicious cycle of infection and inflammation causes structural lung
disease, such as the development of bronchiectasis, and in the latter and more severe stages
of disease, respiratory failure [18]. The implications of chronic inflammation/infection in
bone homeostasis will be discussed in Section 5.1.

Besides the effects on respiratory function, cystic fibrosis presents with endocrine
alterations such as exocrine pancreatic insufficiency and cystic fibrosis-related diabetes.
In pancreatic ducts, CFTR secretes chloride and bicarbonate, alkalinizing the ductal fluid,
neutralizing peptic acid and optimizing pH for enzymatic digestion [19]. In the absence
of CFTR function, ductal obstruction and epithelial damage, inflammation, fibrosis and
fatty infiltration lead to an increase in pancreatic destruction [20]. In the most severe
CFTR mutations, namely class I–IV and VI, these alterations begin in the uterus. Thus,
pancreatic exocrine disease is a condition present at birth in almost all cystic fibrosis
newborns. The small percentage of babies with cystic fibrosis that are pancreatic sufficient
transition to insufficiency over time [20]. Pancreatic exocrine insufficiency is associated
with malabsorption and liposoluble vitamin deficiency. Thus, lifelong pancreatic enzyme
replacement and vitamins A, D, E and K supplementations are implemented in cystic
fibrosis individuals with pancreatic exocrine disease [20]. The deficiency in vitamin D
and its relationship with low bone mass is discussed below. Overtime, the pancreatic
destruction leads to the loss of islet cells and the development of insulin deficiency and
glucose intolerance. This condition is referred to as cystic fibrosis-related diabetes, and
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shares features with type 1 and type 2 diabetes mellitus [21]). The development of cystic
fibrosis-related diabetes and insufficient insulin production might be relevant for reduced
bone mass and will be discussed in Section 5.2.

The sequencing of CFTR in 1989 [22] was a turning point for the understanding of
the disease pathophysiology, and for the search of a potential full-cure therapy. Gene
therapy and heterologous or gene-corrected autologous stem cell transplantation have been
proposed but with little clinical success [23,24]. Yet, a dramatic change in the therapeutical
approach and in the hope of a full cure came with the development of CFTR modulators.
These enclose several classes of small molecules that bind to CFTR, enhancing or even
restoring the function of specific cystic fibrosis-causing mutants [25–30]. CFTR modulators
were fast tracked for drug development and regulatory approval, with a timeframe of
six years since the ivacaftor discovery and approval for treatment [26]. The European
Medicines Agency (EMA) and the US Food and Drug Administration (FDA) have thus
far licensed four products: ivacaftor (Kalydeco®, Boston, MA, USA) in monotherapy; the
combination of ivacaftor with lumacaftor (Orkambi®, Boston, MA, USA) or with texacaftor
(Symdeko®, Boston, MA, USA; Symkevi®, Dublin, Ireland); and the triple combination of
ivacaftor with elexacaftor and tezacaftor (Trikafta®, Boston, MA, USA; Kaftrio®, Dublin,
Ireland) [31]. These therapeutical options have improved the respiratory function and
nutritional status of cystic fibrosis patients, overall enhancing quality of life without major
safety concerns [32,33]. Of note, a recent study followed thirteen cystic fibrosis patients on
ivacaftor/lumacaftor treatment and eight patients on ivacaftor/tezacaftor treatment and
found that the circulating levels of pro-inflammatory cytokines such as TNFα decreased
significantly with the treatment, indicating that combinations of CFTR modulators have
potent anti-inflammatory proprieties [34]. Furthermore, some studies have demonstrated
that ivacaftor enhanced the antimicrobial capacity of immune cells in cystic fibrosis patients
treated with this CFTR modulator [35–37]). The understanding of how CFTR modulator
therapy impacts extrapulmonary manifestations of cystic fibrosis will have the upmost
importance for better understanding the pathophysiology of these manifestations and the
search for directed and effective therapeutics against them [38]. The potential impact of
CFTR modulators in cystic fibrosis-related bone disease will be discussed in Section 6.

2. Cystic Fibrosis-Related Bone Disease

Cystic fibrosis bone disease, accompanied by a severe bone mass reduction, is a com-
mon but not well understood complication in these patients, with devastating consequences
to their quality of life and longevity. Bone loss in cystic fibrosis is multifactorial, and not
very well understood. Indeed, the genetically determined CFTR malfunction coupled with
the pro-inflammatory status, steroid therapy, amongst others factors, may all contribute to
the dysregulation in the bone tissue (Figure 2).

The first report of reduced bone mass in patients with cystic fibrosis was in 1979 [39].
From then on, the prevalence of low bone mass in several cohorts of cystic fibrosis patients
has been thoroughly studied, ranging from 20 to 35% [40–45]. Yet, the pathophysiology of
the disease continues to be mostly unknown. Despite improved clinical management in
terms of pulmonary function and vitamin D status, a significant and constant number of
cystic fibrosis patients have reduced mineral density [46], emphasizing the importance of
dedicated cystic fibrosis bone disease management.

Physical activity, good exercise tolerance and nutritional status correlate with increased
bone mineral density [47,48]. Early studies associated suboptimal vitamin D levels with
cystic fibrosis bone disease [39,49], namely in individuals with end-stage lung disease [50].
However, the correction of vitamin D did not improve abnormalities in calcium, bone
turnover markers [51], and bone mineral density [52]. Moreover, cystic fibrosis patients
that underwenta lung transplant remained at risk of skeletal fragility [53], perhaps due to
prolonged treatment with oral corticosteroids in the post-transplantation period.
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Figure 2. Cystic fibrosis bone disease is a multifactorial disease due to chronic organ involvement,
the direct impact of CFTR dysfunction and long-term therapeutical approaches. Scheme was created
using Biorender.com (www.biorender.com; access on 22 November 2022).

Age and Bone Mass in Cystic Fibrosis

Cystic fibrosis bone disease has been mostly diagnosed in adult patients, but several
studies indicate that bone defects appear early in life. Indeed, children with cystic fibrosis
already have bone alterations [54–58] which increase with age [59]. The progressive bone
loss [48] in cystic fibrosis patients correlates with reduced lung function [60–62], recurrent
pulmonary exacerbations [63], inflammation [64] and reduced muscle strength [65]. Yet,
these correlations and a reduced bone mineral density are not always identified in all cystic
fibrosis populations [45], suggesting that other factors may also play a role in the develop-
ment of bone loss in these patients [66]. Importantly, the development of osteoporosis in
cystic fibrosis patients occurs with a deteriorating clinical status [67].

Cystic fibrosis bone disease predisposes individuals to low-impact fractures and
skeletal abnormalities [68,69], decreasing the patients’ quality of life and even increasing
the probability of a fatal outcome [70]. Moreover, cystic fibrosis bone disease is in some
centers a counterindication for lung transplantation [71].

3. Cystic Fibrosis-Induced Alterations in Bone Architecture and Turnover

Bone is a specialized type of connective tissue that is responsible for the locomotion and
protection of noble organs such as the brain, heart and lungs. Moreover, the skeletal system
also functions as a mineral and hormone reservoir. Skeletogenesis starts during embryonic
life through intramembranous or endochondral ossification (as reviewed in [72]). After
birth and throughout life, bone mass and shape are regenerated due to bone modeling and
remodeling. Throughout growth and aging, the bone shape adapts to variable mechanical
demands through bone resorption and formation on opposing cortical and trabecular
surfaces. This process refers to bone modeling, whereas the replacement of old or damaged
bone by new bone in the same surface is called bone remodeling [73]. Bone remodeling
or turnover is essential for an adequate maintenance of the bone mass throughout life
and depends on a tight balance between the activity of bone-resorbing osteoclasts and
bone-forming osteoblasts [74]. The imbalance in bone turnover is a natural consequence
of aging, but it is often aggravated by several pathological conditions, namely those with
an immunological etiology, such as HIV infection and rheumatoid arthritis [75]. Altered
bone turnover may cause alterations in the bone architecture and strength, leading to bone
microdamage that will be later translated into bone fragility [76]. Of note, reduced bone
mineral density is not always the functional readout of an altered bone turnover.
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Cystic fibrosis bone disease is not restricted to a reduced bone mineral density. Struc-
ture and strength deficits in the bone of cystic fibrosis patients have been reported, namely
at the cortical and trabecular levels [77], independently of the body mass index and size [78].
The bones of patients with cystic fibrosis with end-stage lung disease show reduced mass,
altered microarchitecture, imbalanced remodeling and increased microdamage [79]. A his-
tomorphometry analysis of the iliac bone of cystic fibrosis adults demonstrated an altered
bone turnover with reduced mineral apposition, indicating reduced osteoblast activity [80].
Another study relying on histomorphometry analysis of postmortem vertebral bodies
biopsy specimens demonstrated severe cortical and trabecular osteopenia with reduced
osteoblasts and increased osteoclasts numbers [81]. This phenotype was also observed in
mice deficient in CFTR [82]. Along these lines, an altered bone turnover with increased
bone resorption and decreased new bone formation has been detected in patients with
normal nutritional status and without acute pulmonary disease [83]. Indeed, reduced levels
of osteocalcin (a biomarker of osteoblast activity) were found in cystic fibrosis patients
with vertebral fractures [84]. In another study, besides reduced osteocalcin levels, an in-
creased receptor activator of the nuclear factor kappa-B ligand (RANKL)/Osteoprotegerin
(OPG) ratio was found [54]. In bone metabolism, RANKL is a cytokine produced mostly
by osteoblasts that binds to its receptor RANK expressed at the surface of osteoclasts
and their precursors, thus inducing osteoclast formation and activity. Simultaneously,
osteoblasts produce OPG, a decoy receptor for RANKL to control osteoclast differentia-
tion and activity. An increased RANKL/OPG ratio indicates that an increased amount
of RANKL is available for osteoclasts and consequently bone resorption is potentiated.
Furthermore, the observations of reduced bone mineral density in young cystic fibrosis
children with mild disease and normal nutritional status [85], as well as a reduction to half
of the bone density in cystic fibrosis individuals compared to their healthy counterparts
during childhood and puberty [86], point out that cystic fibrosis bone disease results from
a primary defect in bone homeostasis. Furthermore, the dysregulation in bone homeostasis
may be worsened by several periods of increased bone turnover and resorption during
infective exacerbations [87].

4. CFTR Disfunction in Bone Cells and Their Progenitors

CFTR is expressed by several cells in the organism, namely by hematopoietic progeni-
tors in the bone marrow and osteoclasts, as well as osteoblasts, osteocytes and chondrocytes
and their progenitors [88–91]. Therefore, altered CFTR function may compromise osteoblast
and osteoclast development and bone remodeling. The development of mouse models
with Cftr deletion or with the F508del mutation have been fundamental for experimentally
studying the role of CFTR in bone biology without confounders such as chronic lung infec-
tion and/or chronic malnutrition [82,92–96]. Furthermore, there is a correlation between
the F508del mutation and low bone mass in mice [94,97], in agreement with previous obser-
vations in humans [92,98,99]. The absence of CFTR in newborn pigs led to an altered bone
microstructure and chemical composition [100], and alterations in bone mineral density
and architecture were found in Cftr-deficient mice and rats in the absence of other overt
disease symptoms [93,101].

4.1. CFTR Dysfunction on Osteoblasts and Bone Formation

Osteoblasts are responsible for the secretion of the organic matrix composing the bone.
These cells have a mesenchymal origin and mature into osteocytes when they become
entrapped in the bone matrix. Cftr deletion hampers osteoblast differentiation [82,92–94].
Osteoblasts carrying the F508del mutation in CFTR exhibited a reduced expression of pro-
osteoblastogenic factors such as the mothers against decapentaplegic homolog 2 (SMAD2),
cyclooxygenase-2 (COX-2) as well as of OPG, but produced increased amounts of RANKL
compared with osteoblasts with a fully functional CFTR [94,102,103]. These results indicate
a possible defect in the activation of the Wnt/β-catenin signaling pathway that is funda-
mental for osteoblast maturation. Murine osteoblasts with F508del-CFTR demonstrated
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overactive nuclear factor kappa B (NF-kB) transcriptional activity, resulting in increased β-
catenin phosphorylation and reduced β-catenin expression, as well as an altered expression
of Wnt/β-catenin target genes [104]. Besides the Wnt/β-catenin signaling pathway, Wnt3a
and parathyroid hormone-stimulated canonical Wnt signaling was also defective in mice
lacking CFTR [96], as the lack of direct interaction between CFTR and dishevelled (Dsh)
proteins prevents the stabilization of Dsh and its further interaction with Dpr1 [105,106].
Reduced Wnt/β-catenin signaling in F508del-CFTR osteoblasts was corrected via genetic
or pharmacologic targeting of Keratin 8 [107], reinforcing that cystic fibrosis severity and
associated comorbidities depend on the presence of different modifier genes and complex
alleles [10]. Besides these molecular alterations, osteoblasts expressing F508del-CFTR se-
creted lower amounts of prostaglandin E2 (PGE2) and OPG [102,108]. Likewise, in lung
cells, the absence of a functional CFTR chloride channel activity reduced the production of
PGE2 [109]. PGE2 modulates Wnt/β-catenin signaling and induces osteoblast differentia-
tion, maturation and activity [110–112]. Therefore, the reduced levels of PGE2 may account
for the reduced bone formation. Besides the decreased OPG production, Tumor Necrosis
Factor α (TNFα) stimulation and pharmacological inhibition of CFTR function together in
osteoblasts in vitro decreased interleukin (IL) 8 secretion [108]. Higher circulating levels
of IL-8 correlate with decreased femoral bone mineral density [113]. Additionally, TNFα
and IL-17 further stimulate the production of RANKL via osteoblasts from cystic fibrosis
patients [114]. RANKL is crucial for osteoclasts survival and differentiation [74].

Overall, CFTR dysfunction leads to decreased osteoblast formation and maturation
(Figure 3).
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4.2. CFTR Dysfunction and Osteoclastogenesis

Osteoclasts are giant multinucleated cells that originate from hematopoietic stem
cells [74]. CFTR deficiency in mice was associated with increased numbers of osteoclasts
and consequently to increased bone degradation [96]. Increased numbers of osteoclast
progenitors were found in the peripheral blood of cystic fibrosis patients at the beginning
of infective exacerbations and decreased after antibiotic treatment and resolution of the
episode [115]. There are some conflicting results regarding the capacity for the osteoclast
differentiation of peripheral mononuclear cells from cystic fibrosis patients. In one study,
the formation of osteoclasts from circulating mononuclear cells was reduced [116], whereas
in another study, peripheral blood mononuclear cells from cystic fibrosis individuals
originated higher numbers of osteoclasts and bone resorption events when stimulated
in vitro with osteoclast lineage-instructing cytokines [115]. These contradictory results
could not be explained by the type of CFTR mutation present as both studies used cells
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from patients carrying at least one F508del allele, but perhaps differences in the patients
age, inflammatory status and/or genetic background may explain these discrepancies.

An alteration in CFTR function results in the activation of the NF-kB pathway and
the secretion of several cytokines such as chemokine (C-C motif) ligand 2 (CCL2) upon
bacterial infection or lipopolysaccharide stimulation [117–122]. Increased production of
CCL2 induces osteoclast differentiation and bone resorption [123]. Indeed, osteoclast
formation significantly correlated with the serum levels of TNFα, OPG, osteocalcin and
N-telopeptide (NTx), and osteoclast activity significantly correlated with serum IL-6 and
NTx [124]. Furthermore, monocytes from cystic fibrosis adults and pediatric patients
express higher levels of macrophage colony-stimulating factor (M-CSF) receptors and
show an increased propensity to differentiate into pro-inflammatory macrophages [125],
suggesting that the enhanced osteoclastogenesis in these patients may be potentiated by
recurrent inflammation or infection (Figure 4).
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using Biorender.com (www.biorender.com; access on 9 December 2022).

5. CFTR-Indirect Effects on Bone Health
5.1. Implications of Chronic Infection

Cystic fibrosis is associated with a hyperinflammatory state due to the conjuga-
tion of chronic lung infection, epithelial dysfunction and innate and adaptative immune
dysregulation [126,127]. Alveolar macrophages and neutrophils accumulate in the lungs of
cystic fibrosis patients [126]. Increased numbers of macrophages are found in the airways
of cystic fibrosis newborns [128,129], and the majority of these cells are derived from circu-
lating monocytes [130], suggesting an inflammatory bias in the lungs of these individuals.
This basal inflammation may trigger alterations in bone homeostasis. Chronic infection of
cystic fibrosis lungs perpetuates pro-inflammatory cytokine production, leading to elevated
levels of TNFα, IL-6 and IL-1β and reduced levels of IL-10 [131–133]. Indeed, increased
numbers of neutrophils and alveolar macrophages in the BAL fluid of Cftr-deficient mice at
basal conditions impaired the control of Pseudomonas aeruginosa infection due to increased
proinflammatory cytokine production such as TNFα, IL-1β and IL-6 [134]. Further sup-
porting the role of the immune response in cystic fibrosis bone disease is the observation
that the patients with a higher production of TNFα due to polymorphisms in TNFA and/or
TNFα and TNFβ (LT-a) genes showed a decreased bone density [135]. TNFα induces
osteoclast formation and bone resorption and impairs osteoblast formation [74,136,137].

The dysregulated pro-inflammatory response in the absence of CFTR is partially
corrected via the transplantation of hematopoietic cells with normal CFTR function [138],
suggesting that the pharmacological correction of CFTR functions may have several benefits
in both lung health and other cystic fibrosis-associated diseases.

www.biorender.com
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5.2. Dysregulation of Glucose Homeostasis

Cystic fibrosis-related diabetes is a manifestation that usually appears around the
second decade of life due to insulin deficiency [139]. Osteoblasts express insulin receptors
and in response to insulin signaling, downregulate the expression of OPG and upregulate
the production of osteocalcin [140,141]. Whereas the decrease in OPG increases the amount
of RANKL available to bind to and activate osteoclasts and bone resorption, the production
of osteocalcin has effects on whole-body glucose metabolism [142]. Undercarboxylated
osteocalcin is an osteoblast-specific osteocalcin isoform that stimulates insulin secretion by
pancreatic beta cells as well as increases insulin sensitivity in the liver, muscle and adipose
tissue [143]. Besides osteocalcin, osteoblasts also produce the neuropeptide Y (NPY) that
controls bone formation and also regulate glucose homeostasis. In the absence of the NPY
receptor at an early stage of osteoblast differentiation, the bone mass increased but insulin
secretion was reduced, leading to glucose intolerance [144].

In individuals without cystic fibrosis but with either type 1 or type 2 diabetes mellitus,
the risk of fragility fractures is due to low bone turnover and macro and microarchitecture
alterations [145]. Along these lines, a cohort of cystic fibrosis patients younger than eighteen
years old who had impaired glucose tolerance or had already developed diabetes showed
reduced bone mineral density and bone mineral content, indicating that poor glucose
control together with other well-recognized factors such as reduced lung function, may
impact bone homeostasis [146]. Furthermore, the patients with cystic fibrosis-related
diabetes showed reduced bone turnover compared to patients without cystic fibrosis-
related diabetes [147]. However, bone mineral density Z-scores were not different between
the two groups of cystic fibrosis patients [147].

These observations highlight an intricate crosstalk between bone mass and glucose
metabolism, suggesting that cystic fibrosis-related diabetes may be caused by factors other
than pancreatic destruction. Additionally, the temporal relationship between cystic fibrosis-
related diabetes and bone disease remains uncertain. Further studies will be required to
address the relationship between low bone mass and impaired glucose homeostasis.

6. CFTR Modulators and Their Potential Impact in Bone Health

Management of low bone mass in patients with cystic fibrosis relies on empirical
non-pharmacological measures to optimize bone health and pharmacological measures
such as bisphosphonates [148]. Bisphosphonates have been shown to increase bone mineral
density in adults and children with this condition [55,149]. CFTR modulators pose a new
therapeutic opportunity to these patients and have been associated with improvements
in lung function [150]. On one hand, Interferon γ-mediated responses in cystic fibrosis
monocytes were reduced after one week of treatment with ivacaftor [151]. On the other
hand, whole-blood transcriptomic analysis revealed that innate and adaptative immune
pathways persisted as overexpressed despite lumacaftor/ivacaftor treatment [152].

Even though it is still unclear whether the CFTR modulators ameliorate the disease-
associated inflammation, there are some insightful observations regarding CFTR modu-
lators and bone disease. Patients treated with ivacaftor showed an improvement in the
microarchitecture of cortical bone [153] and in bone mineral density [154]. Additionally,
TNFα and IL-17-induced RANKL production in osteoblast from cystic fibrosis patients was
reverted via treatment with a CFTR modulator [114,154]. Oral administration of miglustat,
a drug that improves F508del-CFTR function, improved bone mass and microarchitecture
in the lumbar spine and femur of F508del-CFTR mice [95]. Pharmacological modulation
of CFTR reduced the ratio of RANKL/OPG in osteoblasts with the delF508 mutation
in CFTR [155].

7. Challenges in the Management of Bone Health in Cystic Fibrosis

Early detection of cystic fibrosis bone disease allows us to prevent its impact on the
patients’ quality of life. For that purpose, the American Cystic Fibrosis Foundation and the
European Cystic Fibrosis Society recommend the frequent monitorization of bone mineral
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density via a bone density scan (DXA) in all individuals with the disease [156]. Bone
densitometry using DXA is a useful noninvasive method that allows for the assessment of
the fracture risk in these patients [157] but is costly and exposes the patients to X radiation.
Another caveat of DXA is the measurement of bone mineral density and the incapacity
to detect alterations in the bone microarchitecture. Furthermore, the coverage of bone
density screening via DXA is still low, as the median DXA screening rate of adults with
cystic fibrosis in the US was only 66% [158]. The missed screening may result in an under
diagnosis of cystic fibrosis bone disease, which may explain the decreased incidence of bone
disease reported in the 2019 CFFPR report [8]. There is a need to identify better biomarkers
and scores to stratify the patients in terms of the risk of bone disease and low impact
fractures [159]. Perhaps the monitorization of the inflammatory status may predict the risk
of low bone mass as the levels of C-reactive proteins negatively associated with the levels
of procollagen type 1 N-terminal propeptide (P1NP) [147]. Thus, the monitorization of the
inflammatory status in cystic fibrosis patients may be a tool to predict mineral bone mass.

8. Conclusions

Several factors contribute to alterations in the bone content and architecture in in-
dividuals with cystic fibrosis. The available data suggest that abnormal CFTR function
causes an intrinsic defect in osteoblastogenesis, hampering new bone formation and the
failure to reach an optimal bone mass peak and reduced bone turnover in cystic fibrosis
patients. The chronic inflammatory status of these patients together with periods of in-
fective exacerbations drives osteoclast formation and bone loss by further increasing the
RANKL/OPG ratio. The impact in bone mass may also be potentiated by dysregulated
glucose homeostasis and should be investigated in future studies.

The recently introduced CFTR modulators may be useful in decreasing the basal
inflammatory status of people with cystic fibrosis, improving bone mass in these patients.
Further studies are required to understand the impact of CFTR modulators in disease-
associated inflammation and bone disease and to identify/characterize the relationship
between chronic inflammation and reduced bone mass. Additionally, the development of
better bone health screening biomarkers will be important for early detection and for acting
on cystic fibrosis bone disease to prevent low-impact fractures and the consequent decay in
the patients’ health and quality of life.
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