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Abstract: The whole genome sequencing of tumor samples identifies thousands of somatic mutations.
However, the function of these genes or mutations in regulating cancer progression remains unclear.
We previously performed exome sequencing in patients with colorectal cancer, and identified one
splicing mutation in C9orf9. The subsequent target sequencing of C9orf9 gene based on a validation
cohort of 50 samples also found two function mutations, indicating that the loss of wild-type C9orf9
may participate in the tumorigenesis of colorectal cancer. In this research, we aimed to further
confirm the function of C9orf9 in the CRC phenotype. Our Q-PCR analysis of the tumor and matched
normal samples found that C9orf9 was downregulated in the CRC samples. Function assays revealed
that C9orf9 exerts its tumor suppressor role mainly on cancer cell migration and invasion, and
its loss was essential for certain tumor-microenvironment signals to induce EMT and metastasis
in vivo. RNA-sequencing showed that stable-expressing C9orf9 can inhibit the expression of several
metastasis-related genes and pathways, including vascular endothelial growth factor A (VEGFA),
one of the essential endothelial cell mitogens which plays a critical role in normal physiological and
tumor angiogenesis. Overall, our results showed that the loss of C9orf9 contributes to the malignant
phenotype of CRC. C9orf9 may serve as a novel metastasis repressor for CRC.
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1. Introduction

Colorectal cancer (CRC) is the third most common cancers and the second leading
cause of cancer-related death worldwide, and its incidence rate has been rising in the past
few years [1]. Driver gene mutations and epigenetic alterations play essential roles in
CRC initiation and metastasis [2]. Metastasis is a major cause that contributes to the high
mortality rate of CRC, and a deeper understanding of the molecular basis of metastasis is
of great clinical significance. Genome-wide screening using next-generation-sequencing
(NGS) is a powerful approach with the potential to discover the genetic atlas of cancer
genomes [3]. Specifically, efforts have been made to identify metastasis-related genes that
are responsible for inhibiting the metastasis but not suppressing the growth of primary
tumors, such as E-cadherin, NDRG1, and NME1 [4]. Nevertheless, the function of mutated
genes with a high penetrance have yet to be explored.

In our recent study, we performed the exome sequencing of unrelated CRC patients,
and identified loss-of-function (LoF) mutations in several putative tumor suppressor genes,
among which a splicing mutation of C9orf9 was observed in one CRC patient [5]. The
preliminary screening of five digestive tumor samples obtained from public data also
revealed that the loss of C9orf9 expression might be CRC-specific, indicating that C9orf9
could be a new candidate gene for CRC. The C9orf9 gene is located at the tumor suppressor
locus 9q34.1-2, and its mRNA level is significantly reduced in bladder cancer [6]. However,
the function of this uncharacterized protein in cancer has not been well illustrated. In
this study, to prove our hypothesis that C9orf9 acts as a tumor suppressor in CRC, we
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performed experiments both in vitro and in vivo. Our work confirmed that C9orf9 is
decreased in CRC patients and correlated with metastasis. The presence of wild-type
C9orf9 inhibited CRC progression partially via metabolism and EMT-related pathway
regulation. In summary, these findings provide new insights into the mechanism of C9orf9-
mediated CRC metastasis.

2. Results
2.1. Deep Sequencing Identified Novel Somatic Mutations of C9orf9 in CRC Samples

In our published exome profile, we identified a splice site mutation (Chr9:135754402,
G > A) of C9orf9 in one CRC sample (initial exome sequencing sample, In-3) [5]. To
avoid obtaining a false positive result, we amplified the corresponding regions of tumor
tissue and matched normal control using a PCR assay and carried out Sanger sequencing
(Figure 1). To identify novel function mutations, we carried out the target sequencing of the
C9orf9 coding region in a validation group of 50 pairs of CRC samples and detected a novel
splicing mutation (ISV2 + 1G > A) in the Ex-6 patient and a missense mutation (c.25C > T)
in the Ex-36 patient (Table 1). Using Cancer Variant Predictor, a panel of functional analysis
through Hidden Markov Models (fathmm) [7], we analyzed three mutations to predict the
oncogenic status (disease-driver or neutral) of the somatic point mutations. The oncogenic
score for ISV1 + 1G > A, ISV2 + 1G > A, and c. 25C > T were 0.725, 0.975, and 0.619,
respectively, indicating that these mutations leading to the loss of wild-type of C9orf9 may
affect the oncogenesis of CRC.
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Figure 1. Exome sequencing and deep sequencing identified three somatic mutations in C9orf9
gene. In-3: patient from initial exome sequencing; Ex-6, Ex-36, patients from extended validation
cohort. Somatic mutations were visualized and analyzed by SnapGene v4.2.

Table 1. Novel somatic mutation of C9orf9 in CRC samples.

Sample Mut. Type Exon/Intron Location Base Change Effect Oncogenic Score

In-3 Splicing mutation Intron 1 chr9:135754402 ISV1 + 1G > A splicing 0.725

Ex-6 Splicing mutation Intron 2 chr9:135762959 ISV2 + 1G > A splicing 0.975

Ex-36 Missense Exon 2 chr9:135758002 c.25C > T p.Arg9Cys 0.619

2.2. The Expression Analysis of C9orf9 in Digestive Tumor Samples

A previous study reported that frequent deletions on 9q34.1-2 were detected in blad-
der transitional cell carcinoma, and C9orf9 mRNA level was significantly reduced [6].
Here, utilizing TCGA and GTEx data, we examined the C9orf9 expression pattern in five
digestive tract system cancer types, including colon and rectum cancer, esophageal cancer,
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gastric cancer, liver cancer, and pancreatic cancer. We found that C9orf9 was significantly
decreased in colon and rectum cancer (p < 0.05, Figure 2A) but not in the other tumor
types. Furthermore, we detected decreased level of C9orf9 in both the TCGA CRC patients
(n = 32) and our validation cohort (n = 28) (Figure 2B). Next, we analyzed the expression
data together with the clinical data of the TCGA samples in order to further determine
whether C9orf9 is correlated with CRC progression. We found that C9orf9 expression is
highly correlated with the copy number variation (Figure 2C). The χ2 test showed C9orf9
mRNA level is significantly correlated with the patients’ lymphatic invasion but not with
age, gender, the tissue site, or presence of colon polyps. We also observed that patients
with disease of an advanced stage showed relatively lower expression of C9orf9, although
it was not statistically significant (p = 0.148, Table 2). We then performed an analysis
comparing the primary tumor and metastatic samples from the GSE41258 dataset, and
confirmed that C9orf9 expression was downregulated in patients with metastatic CRC
(p < 0.01, Figure 2D). Taken together, abnormal C9orf9 expression may be associated with
the malignant progression of CRC.
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Figure 2. Gene expression analysis of C9orf9 in multiple samples of digestive tumor patients. (A).
Analysis of C9orf9 expression in five digestive tumors from TCGA and GTEx samples. * p < 0.05. T:
tumor (red), N: normal (grey). (B). C9orf9 expression level in tumor and matched normal tissues
from TCGA and local validation cohort. ** p < 0.01, *** p < 0.001. (C). Correlation between copy
number variation (CNV) and C9orf9 expression level in TCGA cohort. **** p < 0.0001. (D). C9orf9 is
downregulated in metastatic tumor samples of CRC, data from GSE41258. ** p < 0.01.
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Table 2. Correlation of C9orf9 expression to clinical variables of TCGA CRC samples.

Variables Cases
C9orf9 Expression

χ2 p Value
High Low

Age (years)
>65 380 186 194

0.416 0.519≤65 258 133 125

Gender
Male 337 164 173

0.574 0.448Female 298 154 144

Tissue site
Colon 471 237 234 0.073 0.787

Rectum 167 82 85

Colon polyps present
Yes 96 44 52 0.463 0.496
No 218 109 109

Lymphatic invasion
Yes 231 102 129 4.241 0.039 *
No 342 181 161

Stage
I + II 312 167 145 2.092 0.148

III + IV 151 70 81
* denotes p < 0.05.

2.3. C9orf9 Has a Limited Effect on Cell Growth

To elucidate the functional role of C9orf9, we carried out both gain- and loss-of-
function assays on two CRC cell lines, namely SW480 and LoVo cells. The knockdown
efficiency of the two C9orf9-siRNA was determined by Western blot (Figure S1). First, we
utilized the CCK-8 assay to study the cell proliferation, and the difference in C9orf9 overex-
pression or knockdown groups was not significant as compared to the controls (Figure 3A).
In LoVo and SW480 cells, the loss of C9orf9 could slightly promote the cell proliferation abil-
ity, although the difference in SW480 was not statistically significant (Figure 3B). Similarly,
flow cytometry showed that the gain of C9orf9 did not affect apoptosis, and the apoptosis
rate only decreased after knocking down C9orf9 in both cells (Figure 3C,D). In addition,
neither gain nor loss of C9orf9 affected cell cycle arrest (Figure S2). These data show that
the loss of C9orf9, but not gain of C9orf9, can slightly affect the cell growth capacity, but
the effect is limited.

2.4. C9orf9 Regulates Cell Migration and Invasion In Vitro and In Vivo

Next, we analyzed the effects of both the gain and loss of C9orf9 on CRC cell migration
and invasion. As shown in Figure 4A, B, utilizing a Transwell assay, C9orf9 weakened the
LoVo and SW480 cell migration ability as compared to the controls. Conversely, inhibition
of C9orf9 in both cells enhanced the migration capacity. To confirm the results, we also
performed another method, namely wound scratch assays (Figures S3 and S4). Specially,
the cell migration ability was markedly enhanced after knocking-down C9orf9 in both cells.
In addition, we used the Matrigel invasion assay to explore the effect of C9orf9 on cancer
cell invasion. The consistent result showed that a high level of C9orf9 can inhibit CRC cell
invasion (Figure 4A–D).
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Figure 3. C9orf9 has limit effect on cell growth. (A). Overexpression of C9orf9 in SW480 and LoVo
cells did not affect cell proliferation. (B). Knockdown of C9orf9 slightly promoted cell proliferation
in LoVo cells, but not in SW480. (C). Cell apoptosis analysis using Annexin/PI double staining in
LoVo and SW480 cells transfected with C9orf9 expression plasmid. (D). Cell apoptosis analysis using
Annexin/PI double staining in LoVo and SW480 cells transfected with C9orf9-specific siRNAs. Ns,
not significant, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 4. C9orf9 regulates LoVo and SW480 cell migration and invasion capacity. Transwell assays
(Matrigel-free) or Transwell invasion assays (coated with Matrigel) were performed, respectively, in
control and C9orf9-overexpression LoVo (A) and SW480 (B) cells. (C). Cell migration and invasion
assays in control and C9orf9-knockdown LoVo cells. (D). Cell migration and invasion assays in
control and C9orf9-knockdown SW480 cells. * p < 0.05, ** p < 0.01, *** p < 0.001.

To determine the tumor suppressor effect of C9orf9 on CRC metastasis in vivo, we
used the metastatic cell line LoVo to employ a tail vein injection metastasis model. We
constructed C9orf9 stable-expressing LoVo cells by lentivirus infection. A control saline,
LV-NC, and LV-C9orf9 were injected into nude mice through the tail vein. The luciferase
activity in the lungs of C9orf9 overexpression group was significantly lower than that of
the LV-NC group (Figure 5A,B). Compared with the NC group, there were fewer intra-
pulmonary metastases in the C9orf9 overexpression group (Figure 5C). Additionally, we
detected the downregulation of the metastasis-related markers N-cadherin and Vimentin
in the tumors from the LV-C9orf9 group (Figure 5D). Since our in vitro results showed
that the overexpression of C9orf9 did not change the proliferation or survival phenotype
(Figure 3A,C), this could be a major result of metastasis. The abovementioned data suggest
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that C9orf9 regulates the migration and invasion capacities of CRC cells both in vitro and
in vivo.
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the normal saline, LV-NC, and LV-C9orf9 groups. (D). mRNA level of metastasis-related marker
N-cadherin and Vimentin. ** p < 0.01, *** p < 0.001, **** p < 0.0001.

2.5. C9orf9 Responds to Various Tumor Microenvironment Factors and Modulates Epithelial
Mesenchymal Transition in CRC Cells

An increasing wealth of evidence has linked epithelial mesenchymal transition (EMT)
with the malignant phenomenon of cancer metastasis. EMT is considered as a specific
cellular response to various microenvironments. Therefore, we aimed to determine whether
C9orf9 is involved in the microenvironment-factors-induced EMT. In the epithelial SW480
cells, C9orf9 could be inhibited by multiple previously reported EMT inducers, including
FGF, EGF, and IL-6 (Figure 6A), but not by TGF-β and IGF (Figure S5). The expression of
the epithelial marker E-cadherin decreased, while the mesenchymal markers N-cadherin
and Vimentin increased, indicating that the cytokine-induced EMT model is robust. We
also noticed that the addition of TGF-β or IGF did not change the mRNA level of C9orf9.

To determine the dynamic change in C9orf9 in microenvironment-induced EMT, we
utilized the Transwell assay to evaluate the migratory capacity in cytokine-induced wild-
type SW480 or C9orf9-stable-overexpressing SW480 cells. Consistently, the addition of FGF,
EGF, or IL-6 enhanced SW480 cell migration, while the overexpression of C9orf9 rescued
the malignant phenotype (Figure 6B). These data suggest that C9orf9 may play certain roles
in the EMT process.
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Figure 6. C9orf9 responds to and involves in FGF, EGF, and IL6 induced EMT. (A). Q-PCR analysis
of C9orf9 and EMT-related markers (E-cadherin, N-cadherin, Vimentin) in FGF (20 ng/mL), EGF
(20 ng/mL), and IL6 (50 ng/mL)-stimulated SW480 cells at 0, 12, and 24 h. (B) Transwell (Matrigel-
free) assays of LV-NC and LV-C9orf9 SW480 cells with or without cytokine stimulation. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001.

2.6. C9orf9 Regulates Metastasis-Related Genes and Pathways

To reveal the role of C9orf9 in CRC, we performed RNA-seq to identify the down-
stream genes and pathways regulated by C9orf9. Differentially expressed genes (DEGs)
between the LV-NC and LV-C9orf9 LoVo cells are shown in Figure 7A. In total, 69 genes
were up-regulated and 184 were down-regulated (|FC| ≥ 1.5, p < 0.05). Surprisingly,
we found that most DEGs were enriched in the metabolism pathway and oxidative phos-
phorylation (OXPHOS) pathway (Figure 7B). Considering that C9orf9 greatly influences
migration, invasion, and the EMT phenotype, we then focused on the metastasis-related
gene sets through Gene Set Enrichment Analysis (GSEA). The genes in the OXPHOS,
EMT, and hypoxia sets were significantly enriched and highly expressed in the control
groups (Nominal p < 0.05, Figure 7C). We selected significant DEGs for QPCR validation,
among which VEGFA (angiogenesis-related), TIMP1, CDH2 (EMT-related), and NDUFs
(OXPHOS-related) were consistent with the RNA-seq results.
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Consequently, together with the gene expression analysis, cell phenotype assays,
and RNA-seq analysis, we confirmed that C9orf9 plays a tumor suppressor role via the
regulation of metastasis-related signaling pathways.

3. Discussion

Exome sequencing is a cost-effective method that can detect rare mutations in a
high-throughput manner. The whole exome sequencing of cancer patients can help us
to understand the potential biological pathogenesis of certain cancers. Our recent work
revealed that loss-of-function mutation screening is a powerful strategy that can be em-
ployed to identify novel tumor suppressor genes, and we dissected the function of several
genes in the CRC model [5,8,9]. In this study, we reported that C9orf9 participates in the
progression of CRC. C9orf9 was first reported to be correlated with bladder cancer [6].
Boelens et al. also found that C9orf9 expression was down-regulated in squamous cell lung
cancer compared to normal epithelium in smokers [10]. However, to date, the mutation
and expression profile of C9orf9 in digestive tumors and its underlying function in cancer
have not been comprehensively investigated.

We identified two splicing mutations and one missense mutation in CRC patients, and
all mutations were predicted to be oncogenic. Genome wide/transcriptome sequencing
studies have shown that the regulation of splicing is complex and that it occurs in coop-
erative transcription and is influenced by chromatin status and mRNA modification [11].
Many of the molecular changes observed in cancer result from modifications in the splicing
process, including mutations in splicing body proteins, mutations in pre mRNA regulatory
sequences, and changes in the expression of splicing regulatory factors. These changes
may eventually lead to disorders in cell differentiation, survival, and invasion [12]. To fully
unravel the roles of C9orf9 splicing mutations in CRC, based on our research, further exper-
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iments are required to elucidate the underlying mechanism, including CRISPR/Cas9-based
point mutation in CRC cells.

Here, we analyzed the expression of C9orf9 in five digestive tumors using TCGA and
GTEx data. Significant differences were found only in colon and rectum cancer, and we
observed that the low expression of C9orf9 is correlated with metastasis and an advanced
tumor stage. These results indicated the tumor suppressor role of C9orf9 might be colon
tissue-specific. To further confirm our hypothesis that the loss of wild-type C9orf9 might be
involved in the pathogenesis of CRC, we performed systematic experiments both in vitro
and in vivo. Our results consistently revealed that C9orf9 functions mainly in cell migration,
metastasis, and EMT.

Metastasis is a hallmark of cancer. Cells from primary tumors invade other parts of the
body and form new tumors. It is the main cause of death among more than 90% of cancer
patients [13]. In CRC patients, metastasis mainly involves the liver and lung [14]. Some
studies have found that mutations in key driving genes (KRAS, p53, SMAD4) are related to
CRC metastasis [15]. Our results revealed that C9orf9 can not only inhibit cell migration and
invasion, but also modulate the EMT phenotype of CRC cells. Moreover, C9orf9 responds to
well-established EGF, FGF, and IL-6 induced EMT, indicating the loss of C9orf9 is involved
in the cytokine-signal-triggered EMT process. EMT is involved and plays a key role in
cancer cell metastasis, as it transforms epithelial cells into mesenchymal cells to promote
metastasis [16]. Through our RNA-seq data, we identified several angiogenesis, EMT, and
OXPHOS related genes. The angiogenesis marker VEGFA is significantly reduced when
overexpressing C9orf9, suggesting that C9orf9 could potentially oppose the HIF1-α/VEGF
pathways. VEGFA related signal transduction plays a crucial role in the migration of cancer
cells from their primary niche to their secondary sites [17]. Therefore, identifying the
mechanisms or drugs that inhibit VEGF related pathway members may provide a means of
reducing the incidence of distant metastasis. Although our RNA-seq results demonstrated
that the DEGs are not enriched in the canonical Wnt, PI3K, or MAPK pathways, they are
mainly enriched in metabolism-related pathways. It is well-known that cancer cells alter
their metabolic profiles during tumorigenesis and metastasis, thus displaying a tightly
regulated metabolic plasticity program [18]. Overall, our data emphasize the key role of
C9orf9 in CRC metastasis.

In summary, in the present study, we revealed that C9orf9 may act as a tumor sup-
pressor in regulating CRC EMT and metastasis. Our results shed light on the specific
mechanisms of CRC metastasis and treatment.

4. Materials and Methods
4.1. Patients and Ethics Statement

The tumor and matched normal tissue samples were collected from patients and
kindly provided by the Fourth Military Medical University (50 cases for deep sequencing,
and 28 cases for Q-PCR validation). All patients provided written informed consent, and
this study was approved by the Ethics Committee of Northwest University.

4.2. Deep Sequencing of C9orf9 Gene Coding Region

In 50 cases of deep sequencing, we used the QIAamp DNA FFPE Tissue Kit (QIAGEN,
Hilden, Germany) according to the instructions to extract both tumor and normal tissue
DNA. The exon and exon–intron junction regions of C9orf9 were subsequently amplified
using HiFi™ Hot Start (KAPA Biosystems, Cambridge, MA, USA) and Sanger sequenced
(the amplification and sequencing primers are listed in Table S1). Somatic mutations were
visualized and analyzed by SnapGene v4.2.

4.3. TCGA Data Access

From the UCSC Xena database, we downloaded the clinical and gene expression data
of five digestive tumor types. The expression data were normalized to log2(FPKM + 1).
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4.4. Cell Lines

Colon epithelial SW480 cells and metastatic LoVo cells were purchased from Procell
(Wuhan, China) and cultured in RPMI 1640 medium supplemented with 10% fetal bovine
serum (Gibco, Gaithersburg, MD, USA). Cells were cultured in an incubator at 37 ◦C,
5% CO2.

4.5. RNA Extraction and Quantitative Real Time PCR

Total RNA was extracted with TRIzol reagent (#9108, Takara, Osaka, Japan). The
mRNA was then reverse transcribed to cDNA according to the HiScript RT SuperMix
manual for qPCR (#R223, Vazyme, Nanjing, China). Quantitative real-time PCR was
performed with the ChamQ Universal SYBR qPCR Master Mix (#Q711, Vazyme, Nanjing,
China), and detected by QuantStudio 3 (Applied biosystems, Waltham, MA, USA). The
relative expression was normalized according to the formulas 2−∆∆Ct, and GAPDH was set
as an internal control. The specific primers for the target genes and reference are listed in
Table S2.

4.6. Western Blot

Protein extraction and quantification were carried out according to a previously de-
scribed protocol [9]. The antibodies used in this study were as follows: rabbit anti-C9orf9
(#HPA022243, Sigma-Aldrich, St. Louis, MO, USA), mouse anti-GAPDH (#YM3029, Im-
munoWay, Beijing, China), and corresponding secondary antibody (goat anti-rabbit #A3687,
goat anti-mouse #A3562, Sigma-Aldrich, St. Louis, MO, USA).

4.7. Plasmid and siRNA Transfection

The full-length CDS of C9orf9 was amplified using HEK293T cDNA and cloned into
the BamHI/SalI sites of the pEF-BOS-EX vector. A total of 2 ug of recombinant plasmid
was transfected in a 6-well plate with 4 uL of Lipofactmine3000 (ThermoFisher, Waltham,
MA, USA) at a cell confluency of 60–70%. To inhibit C9orf9 expression, two C9orf9-
specific siRNAs were synthesized and purified (Tsingke Biotechnology, Beijing, China).
The target sequences of siRNA are CAUCCUAGACUUAAUGAAA (C9orf9-siRNA#2) and
AGAGCUACAUGGAACACUA (C9orf9-siRNA#3), respectively. SW480 and LoVo Cells
were reverse transfected with HiPerFect transfection reagent (#301705, Qiagen, Hilden,
Germany) at a concentration of 30 nM according to the manuals.

4.8. Lentiviral Infection

For the stable overexpression of C9orf9, the full length CDS was inserted into a pLV17
vector (Luc tag). Lentiviral stocks were prepared in HEK-293T cells. The LoVo or SW480
cells were infected with 5 µg/mL polybrene mixed viral supernatant for 48 h. Then,
puromycin (2 µg/mL) was used to screen the cells with a stable overexpression of C9orf9.

4.9. Cell Proliferation Assay

Cell Counting Kit-8 (#Ck04, Dojindo Laboratories, Japan) was used to detect the cell
viability [19]. Briefly, a total of 5 × 103 SW480 cells or 3 × 103 LoVo cells were seeded onto
96-well plates with 5 replicates. At the indicated time, 10 µL of CCK-8 solution was added
to each well. After incubation for 3 h, the viable cells were measured at a wavelength of
450 nm.

4.10. Flow Cytometry

Apoptosis was detected using an Annexin V/PI apoptosis assay kit (#A003, 7sea
biotech, Shanghai, China) according to the protocol. The early and late apoptotic cells were
analyzed using the FACSCalibur flow cytometer (BD Bioscience, San Jose, CA, USA). The
method used for the cell cycle assay was described previously [5].
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4.11. Migration and Invasion Assay

We applied the Transwell chambers (#3422, Corning, New York, NY, USA) to detect cell
migration capacity. An amount of 2 × 104 (LoVo) or 5 × 104 (SW480) treated or untreated
cells in a total volume of 100 µL serum-free medium were plated in the upper chamber,
while 700 µL of complete medium in the bottom chamber. The cells were then incubated
at 37 ◦C for 24 h (LoVo) or 48 h (SW480). The cells were fixed with 4% paraformaldehyde,
stained with 0.1% crystal violet, and rinsed with PBS. Similarly, we analyzed the invasion
capacity using Transwell coated with 50 µL of Matrigel (#356234, BD Bioscience, San Jose,
CA, USA). The migration/invasion capacities were analyzed by counting the number of
cells in five randomly picked fields, and three independent experiments were conducted. To
further confirm the results, a wound scratch test was also performed to assess the migration
ability, and detail method was described as previously [20].

4.12. Animal Model

Six-weeks old BALB/c nude mice were randomly divided into normal saline (n = 3),
LV-NC (n = 5), and LV-C9orf9 groups (n = 5). A total of 2.0 × 106 LoVo cells were sus-
pended in normal saline and injected through the tail vein. Every week, the mice were
intraperitoneally injected with d-luciferin (75 mg/kg) and photographed within 30 min
(Luminometer, Roper Scientific). After five weeks, the mice were sacrificed and the lungs
were stained with hematoxylin-eosin (HE). All the animal studies were approved by the
Animal Care Ethics Committee of Northwest University and performed in accordance with
the institutional guidelines.

4.13. Library Preparation and Transcriptome Sequencing

Total RNA was extracted using MiniBEST Universal RNA Extraction Kit (#9767, Takara,
Osaka, Japan). RNA concentration was evaluated by Qubit (Invitrogen, Carlsbad, CA,
USA). The polyA + mRNA was enriched by NEBNext Poly(A) mRNA Magnetic Isolation
Module (#E7490L, NEB, Ipswich, MA, USA). Then, the enriched mRNA was reverse
transcribed into cDNA with SMARTScribe Reverse Transcriptase (#639537, Clontech, Osaka,
Japan). The purified cDNA fragments were subjected to end repair, A-tailing, and Illumina
adaptor ligation. The products were size selected (200–500 bp) and PCR amplified for
Next-generation sequencing using Illumina Novaseq6000 by Gene Denovo Biotechnology
Co (Guangzhou, China).

4.14. Statistical Analyses

GraphPad Prism v8 (GraphPad Software, Inc.) was used for statistical analysis. All
experiments were repeated at least three times and the results were presented as the
mean ± SD. Statistical analyses were performed by Student′s t tests or ANOVA test. A
p value < 0.05 was considered statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13020312/s1, Figure S1: The knockdown efficiency of two
siRNA targeting C9orf9; Figure S2: Cell cycle analysis of C9orf9 overexpression (A) and knockdown
(B) in LoVo and SW480 cells; Figure S3: Wound scratch assay in C9orf9 overexpression (A) and
knockdown (B) LoVo cells; Figure S4: Wound scratch assay in C9orf9 overexpression (A) and
knockdown (B) SW480 cells; Figure S5: C9orf9 did not response to TGF-β (A) or IGF (B)-induced
EMT in SW480 cells; Table S1: Amplification and sequencing primers for C9orf9; Table S2: Q-PCR
primers used in this study.
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C9orf9 Chromosome 9 Open Reading Frame 9
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NGS Next Generation Sequencing
OXPHOS oxidative phosphorylation
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