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Abstract: Acrolein (CH2=CH-CHO), an unsaturated aldehyde produced from spermine, is one of the
major contributors to oxidative stress. Acrolein has been found to be more toxic than reactive oxygen
species (H2O2 and •OH), and it can be easily conjugated with proteins, bringing about changes in
nature of the proteins. Acrolein is detoxified by glutathione in cells and was found to be mainly
produced from spermine through isolating two cell lines of acrolein-resistant Neuro2a cells. The
molecular characteristics of acrolein toxicity and tissue damage elicited by acrolein were investigated.
It was found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH); cytoskeleton proteins such
as vimentin, actin, α- and β-tubulin proteins; and apolipoprotein B-100 (ApoB100) in LDL are strongly
damaged by acrolein conjugation. In contrast, activities of matrix metalloproteinase-9 (MMP-9) and
proheparanase (proHPSE) are enhanced, and antibody-recognizing abilities of immunoglobulins are
modified by acrolein conjugation, resulting in aggravation of diseases. The functional changes of
these proteins by acrolein have been elucidated at the molecular level. The findings confirmed that
acrolein is the major contributor causing tissue damage in the elderly.

Keywords: acrolein; glutathione; oxidative stress; reactive oxygen species; spermine; spermine
oxidase; tissue damage

1. Introduction

Reactive oxygen species (ROS) such as superoxide anions (O2
-), hydrogen peroxides

(H2O2), and hydroxyl radicals (•OH), have been thought of as the main causes of tissue and
cell damage in the elderly [1–3]. When spermine [NH2(CH2)3NH(CH2)4NH(CH2)3NH2],
one of the polyamines which are essential for cell growth and viability [4,5], is metabolized
by spermine oxidase, both acrolein (CH2=CH-CHO) and hydrogen peroxide (H2O2) are
produced. The toxicity of acrolein and H2O2 was compared using a cell culture system,
and acrolein was much more toxic than H2O2, a major compound of ROS, i.e., cell growth
of mouse mammary carcinoma FM3A cells [6] was completely inhibited by 15 µM acrolein
and 0.2 mM H2O2 [7,8].

Accordingly, it was examined whether acrolein is involved in the severity of brain
infarction [9], dementia [10,11], renal failure [12], Sjögren’s syndrome [13], Parkinson’s
disease [14–16], spinal cord injury [17], and diabetic nephropathy [18]. It was found that
acrolein is strongly involved in the tissue damage of these diseases. During stroke, the
level of the protein-conjugated acrolein (PC-Acro) in plasma increased, and the multiplied
value of PC-Acro and polyamine oxidases (PAO; acrolein-producing enzymes consisting
of spermine oxidase (SMOX) and acetylpolyamine oxidase (PAOX)) was nearly parallel
with the size of brain infarction [9]. Production of acrolein in brain tissue was increased in
aged mice due to an increase in spermine oxidase activity [19]. Furthermore, small brain
infarction without obvious symptoms was identified with approximately 84% sensitivity
and specificity by measuring PC-Acro together with interleuklin-6 (IL-6) and C-reactive
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protein (CRP) in plasma in clinical studies [20]. Through effective health care after measure-
ment of these three biomarkers, the number of people with cerebral infarction gradually
decreased during 7 years of evaluation [21]. Therefore, molecular mechanisms of cell and
tissue damage by acrolein were investigated at the level of proteins because the SH group
is most strongly impacted by acrolein [22,23]. In this review, we focused on the molecular
characteristics of the toxicity of acrolein.

2. Characteristics of Two Cell Lines of Acrolein-Toxicity-Decreasing Neuro2a Cells

To examine how acrolein is detoxified in cells, mouse neuroblastoma Neuro2a cells
were mutagenized with 0.1% ethylethanesulfonate and cultured in medium containing
acrolein, which was gradually increased from 10 to 35 µM over 5 months. Two cell
lines of acrolein-toxicity-decreasing, i.e., acrolein-resistant, Neuro2a cells were obtained
(Figure 1) [24,25]. In the acrolein-toxicity-decreasing Neuro2a-1 (Neuro2a-ATD1) cells,
the level of glutathione increased because two enzymes for glutathione synthesis (γ-
glutamylcysteine ligase catalytic unit (GCLC) and glutathione synthetase GSHS)) were
transcriptionally upregulated. Phosphorylation of c-Jun N-terminal kinase and that of c-Jun
and NF-κB, which is involved in increased transcription, were both enhanced. It was con-
firmed that acrolein is detoxified by glutathione in these cells. The results strongly support
the idea that one of the major functions of glutathione is the detoxication of acrolein, which
is one of the major toxic compounds in cells.
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synthetic enzymes. **, p < 0.01. (D). Cell viability of Neuro2a-ATD2. (E). Decrease in proteins of 
PAOX and SMOX in Neuro2a-ATD2. (F). Decrease in transcription factors involved in transcription 
of PAOX and SMOX in Neuro2a-ATD2. Adapted with permission from Refs. [24,25]. 2012 and 2016 
Elsevier. 

It is thought that acrolein is produced from unsaturated fatty acids [26]. However, it 
was found that acrolein is mainly produced from acrolein [27]. Acrolein is produced from 
spermine by two pathways. Firstly, spermine is oxidized to 3-aminopropanal, hydrogen 
peroxide, and spermidine by spermine oxidase (SMOX). Acrolein is readily produced 
from 3-aminopropanal non-enzymatically. Secondly, spermine is converted to N1-

Figure 1. Characteristics of two cell lines of acrolein-toxicity-decreasing Neuro2a cells. (A). Cell
viability of Neuro2a-ATD1. (B). Level of glutathione. (C). Protein and mRNA levels of glutathione
synthetic enzymes. **, p < 0.01. (D). Cell viability of Neuro2a-ATD2. (E). Decrease in proteins of PAOX
and SMOX in Neuro2a-ATD2. (F). Decrease in transcription factors involved in transcription of PAOX
and SMOX in Neuro2a-ATD2. Adapted with permission from Refs. [24,25]. 2012 and 2016 Elsevier.
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It is thought that acrolein is produced from unsaturated fatty acids [26]. However, it
was found that acrolein is mainly produced from spermine [27]. Acrolein is produced from
spermine by two pathways. Firstly, spermine is oxidized to 3-aminopropanal, hydrogen
peroxide, and spermidine by spermine oxidase (SMOX). Acrolein is readily produced from
3-aminopropanal non-enzymatically. Secondly, spermine is converted to N1-acetylspermine
by spermidine/spermine N1-acetyltransferase (SAT1). Then, N1-acetylspermine is con-
verted to 3-acetamidepropanal by acetylpolyamine oxidase (PAOX). Subsequently, acrolein
is ineffectively produced from 3-acetamidepropanal non-enzymatically.

In the second cell line ATD2, both SMOX and PAOX decreased transcriptionally.
Transcription factors FosB in AP-1 and C/EBPβ decreased in ATD2 cells, indicating that
acrolein is mainly produced from spermine but not from unsaturated fatty acids.

3. Identification of Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) as
an Acrolein-Conjugated Protein

We identified acrolein-conjugated proteins by gel electrophoresis in the S100 fraction
of FM3A cells [6] treated with 40 µM acrolein for 9 h (Figure 2A). It was found that an
approximately 37 kDa protein clearly decreased in acrolein-treated cells, suggesting that
the acrolein-conjugated 37 kDa protein shifted to the P100 fraction or was hydrolyzed by
proteases. The protein was identified as GAPDH by determining the peptide sequences
by LC-MS/MS [28]. Amino acid residues conjugated with acrolein were determined after
trypsin and endoproteinase Asp-N digestion and identified as Cys-150 at the active site
and Cys-282 of GAPDH [29].

To determine whether acrolein-conjugated GAPDH is involved in cell damage, pcDNA-
GAPDH was transfected into Neuro2a cells. In GAPDH-cDNA-transfected cells, the half
maximal inhibitory concentration (IC50) of acrolein increased from 2.7 to 4.3 µM, indicating
that inactivation of GAPDH by acrolein is strongly involved in cell growth [28].

It has been reported that nitric oxide (NO) reacts with Cys-150 of GAPDH and inacti-
vates the enzyme, then inactivated GAPDH translocates to the nucleus with an E3 ubiquitin
ligase Siah. In the nucleus, the complex activates P300/CBP acetylase, and GAPDH is
acetylated. As a result, the cell undergoes apoptosis [30,31]. Therefore, it was determined
whether this is also the case for acrolein-conjugated GAPDH. Although GAPDH in control
cells existed mainly in the cytoplasm, GAPDH in cells treated with 8 µM acrolein for
6 h existed in both cytoplasm and nuclei (Figure 2B,C). Because nitrosylated GAPDH is
acetylated [30,31], it was determined whether acrolein-conjugated GAPDH is also acety-
lated by immunoprecipitation with anti-acetyl-lysine followed by Western blotting with
anti-GAPDH. The level of acetyllysine in GAPDH localized in nuclei increased in acrolein-
treated cells. The results confirmed that acrolein-conjugated GAPDH translocates to nuclei
and caused apoptosis. The percentages of TUNEL-positive cells were 1%, 39%, and 78%
after treatment with 0, 4, and 8 µM acrolein, respectively, for 24 h (Figure 2D). It became
clear that acrolein-conjugated GAPDH is acetylated and causes apoptosis similar to nitro-
sylated GAPDH [31]. Since GAPDH is an abundant and important enzyme in glycolysis,
inactivation of GAPDH is thought to be one mechanism that underlies cell toxicity caused
by acrolein. As for the acrolein conjugation at Cys-282, it was reported that the conjugation
assists aggregation [32].
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μM for 9 h in S100 fraction of FM3A cells by gel electrophoresis. (B). Nuclear localization of acrolein-
conjugated GAPDH in an acetylated form. FM3A cells were treated with 0 or 8 μM acrolein for 6 h, 
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lysine in each fraction were identified by Western blotting. C, cytoplasmic fraction; N, nuclear frac-
tion [28]. (C). Immunocytochemical detection of cells treated with 0, 4, and 8 μM acrolein for 6 h 
using GAPDH antibody and staining of DNA with propidium iodide. Images were merged using a 
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Adapted with permission from Ref. [28]. 2013 Elsevier. 

Figure 2. Identification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an acrolein-
conjugated protein. (A). Identification of GAPDH as a reduced protein by acrolein treatment at
40 µM for 9 h in S100 fraction of FM3A cells by gel electrophoresis. (B). Nuclear localization of
acrolein-conjugated GAPDH in an acetylated form. FM3A cells were treated with 0 or 8 µM acrolein
for 6 h, and cytoplasm and nuclei were isolated. GAPDH and immunoprecipitated GAPDH by
anti-acetyl-lysine in each fraction were identified by Western blotting. C, cytoplasmic fraction; N,
nuclear fraction [28]. (C). Immunocytochemical detection of cells treated with 0, 4, and 8 µM acrolein
for 6 h using GAPDH antibody and staining of DNA with propidium iodide. Images were merged
using a confocal microscope. Bar indicates 20 µm. (D). The percentage of TUNEL-positive cells was
indicated by counting approximately 500 cells. Values are means ± S. E. of triplicate determinations.
Adapted with permission from Ref. [28]. 2013 Elsevier.

4. Acrolein Conjugation with Cytoskeleton Proteins

It was tested which protein can be conjugated with 10 µM acrolein in the P100 fraction
of Neuro2a cells, and we found that a 57 kDa protein in P100 fraction is conjugated with
acrolein, and this protein was identified as vimentin through the determination of amino
acid sequences.

The cytoskeleton consists of 5–9 nm microfilament (actin), 8–12 nm intermediate fila-
ment (vimentin), and 25 nm microtubules (α- and β-tubulin proteins). Structural changes
of three cytoskeletal proteins by acrolein were examined in Neuro2a cells (Figure 3A).

The acrolein-conjugated amino acid residue of vimentin was identified as Cys-328,
which is the only cysteine in vimentin [33]. Time-dependent changes in cell shape of
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Neuro2a cells and distribution of vimentin in intermediate filaments were examined after
addition of 10 µM acrolein. Dendritic spine extension was observed before addition of
acrolein, but vimentin signal in dendritic spines decreased, and the projection became
shorter after 3 h treatment of acrolein. The dendritic spines almost disappeared after 6 h
treatment of acrolein, and cells shrunk after 24 h (Figure 3(Aa)).

It was also found that Cys-207, -257, and -285 and Lys-118 in actin were modified
with acrolein. Changes of actin in Neuro2a cells cultured with 10 µM acrolein were also
significantly similar to vimentin (Figure 3(Ab)). In addition, both vimentin and actin were
degraded rapidly after acrolein conjugation [33].

Microtubules have been reported to be important for several aspects of normal brain
function [34,35]. Therefore, we examined whether α- and β-tubulin proteins were also
damaged by acrolein following brain infarction in the model mice with photochemically in-
duced thrombosis (PIT). Since an increase in acrolein-conjugated α- and β-tubulin proteins
was clearly observed, amino acid residues conjugated with acrolein were determined [36].
Those were Cys-25, -294, -347, and -376 in α-tubulin and Cys-12, -129, -211, -239, -303,
and -354 in β-tubulin. Among them, two cysteine residues of α-tubulin (Cys-347 and
-376) and four residues of β-tubulin (Cys-12, -129, -239, and -354) have been reported to
exist at the interaction site of α- and β-tubulin proteins [37]. As a result, dendritic spine
extension consisting of microtubules was greatly diminished in acrolein-treated Neuro2a
cells (Figure 3(Ac)) and infarct brain tissue (Figure 3B).
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was stained with anti-vimentin antibody (a), and microfilament (actin) was stained using Alexa
Fluor 488 conjugated phalloidin (b). Microtubules (β-tubulin) were stained using anti-β-tubulin
antibody (c). Bar = 10 µm. (B). A mouse brain was taken out at 24 h after induction of ischemia, and
microtubules were stained using anti-β-tubulin antibody. Bar = 100 µm. Reprinted with permission
from Ref. [33]. 2020 John Wiley and Sons and Ref. [36]. 2019 Elsevier.

These results indicate that acrolein causes functional defects in brain signaling through
conjugations with the above three kinds of cytoskeleton proteins. The degree of the decrease
in these proteins was in the order of vimentin > β-tubulin > actin in the brains of PIT model
mice [33].

5. Acrolein Conjugation with Apolipoprotein B-100 (ApoB100) in Low-Density
Lipoprotein (LDL)

Cerebral infarction is thought to be mainly caused by atherosclerosis, which initially
arises from the foam-cell formation of macrophages [38]. For foam-cell formation, incorpo-
ration of oxidized low-density lipoprotein (LDL) into macrophages was thought to be the
first event [39]. However, it was found that acrolein-conjugated LDL (Acro-LDL) is more
readily taken up by macrophages, rather than oxidized LDL, through the SR-A1 scavenger
receptor (Figure 4A) [40]. Foam-cell formation actually occurred through the uptake of
Acro-LDL and brought about the accumulation of cholesteryl ester (CE) in lipid droplets.

Acrolein-conjugated amino acid residues in ApoB100 of LDL were identified by LC-
MS/MS using Acro-LDL treated with 20 µM acrolein for 7 days. Among 4563 amino
acid residues, 4061 residues of ApoB100 could be identified using peptides treated with
trypsin and endoproteinase Asp-N. Among them, nine amino acid residues were acrolein-
conjugated (Figure 4B,C). Four N-terminal amino acid residues (Cys-212 and Lys-327, -742,
and -949) located at the SR-A1 recognition site were conjugated with acrolein (Figure 4C) [41].
It has been reported that negative charges are important for the binding reaction between
LDL and macrophages [42]. Thus, acrolein conjugation with lysine residues is thought to
decrease the positive charges and facilitate the interaction between Acro-LDL and SR-A1.
The results indicate that acrolein can be a principal cause of atherosclerosis.
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Figure 4. Preferential accumulation of acrolein-conjugated LDL in macrophages and identification of
acrolein-conjugated amino acids in ApoB100. (A) Acro-LDL, OxLDL, and LDL were accumulated
dose-dependently in THP-1 macrophages. ** p < 0.01 vs. OxLDL and †† p < 0.01 vs. LDL. Schematic
model of Acro-LDL particle (B) and 3D structure of peptide 19-998 of ApoB100 (C). Adapted with
permission from Ref. [43]. 2009 Springer Nature. Acrolein-conjugated amino acids are shown.
Adapted with permission from Refs. [40,41]. 2013 and 2021 Elsevier.

6. Activation of Proheparanase (proHPSE) through Acrolein Conjugation

Severe inflammation of acute ischemic stroke is brought about by the breakage of the
blood–brain barrier (BBB) followed by the infiltration of monocytes and neutrophils into
the brain [44,45]. Thus, it is effective to protect the BBB after the onset of ischemic stroke
for the attenuation of post-ischemic inflammation. The endothelial glycocalyx, composed
of membrane-bound glycoproteins and proteoglycans that wrap the lumen of endothelial
cells, functions as a barrier against circulating cells. It consists of proteoglycans and sul-
fated glycosaminoglycans, including heparin sulfate and chondroitin sulfate. Hyaluronan,
nonsulfate glycosaminoglycans that exists in a free form, are also major components of
the endothelial glycocalyx [46]. The glycocalyx is degraded by heparanase (HPSE) [47,48].
HPSE (59 kDa) is matured from the precursor pre-proHPSE (68 kDa) via proHPSE (65 kDa).
Thus, if proHPSE is activated, the endothelial glycocalyx becomes inactive as a barrier
against circulating cells.

It was observed that levels of heparin sulfate and chondroitin sulfate decreased during
stroke, and that activities of hyaluronidase 1 and HPSE increased in brain tissue of PIT
model mice. Activity of HPSE in cerebral vessels increased after the onset of stroke
(Figure 5A), and the volume of infarction was greatly diminished by co-administration
of N-acetylcysteine (an acrolein scavenger) plus glycosaminoglycan oligosaccharides as
compared with N-acetylcysteine administration alone [49].

It was found that proHPSE is activated by acrolein as a result of acrolein conjugation
with Lys-107, -139, and -161, which are located at the surface of proHPSE (Figure 5B).
ProHPSE activity increased approximately 1.5-fold. Eleven other acrolein-conjugated lysine
residues did not influence the proHPSE activity. Since proHPSE localizes outside cells
through binding with heparan sulfate proteoglycans, the increase in the proHPSE activity
through acrolein conjugation was strongly involved in the aggravation of brain stroke [49].
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7. Activation Mechanism of Matrix Metalloproteinase-9 (MMP-9) by Acrolein in
Saliva of Patients with Primary Sjögren’s Syndrome

Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disorder mainly affecting
the salivary and lacrimal glands to cause dry mouth and eyes as a result of reduced secretion
from salivary and lacrimal grands because of destruction of these glands [50,51].

Matrix metalloproteinases (MMPs), particularly gelatinases (MMP-2 and MMP-9),
have been reported to be involved in tissue damage of pSS patients [52–54]. Thus, it was
examined whether the activity of MMP-9 derived from saliva or purified MMP-9 can be
stimulated by acrolein. The protein level of 92 kDa MMP-9 in saliva of pSS patients was
slightly higher (about 1.4-fold) than that in saliva of control subjects [55]. Activated forms
of 82 and 68 kDa MMP-9 [56,57] were not detected in saliva in control subjects or pSS
patients. The specific activity of MMP-9 in saliva of pSS patients was significantly higher
(about 2.4-fold) than that in saliva of control subjects, consistent with the idea that MMP-9
in pSS patients is activated by acrolein. Indeed, concentration-dependent activation of
MMP-9 by acrolein was confirmed using saliva of control subjects treated with 20–500 µM
acrolein at 37 ◦C for 3 h.

Acrolein-conjugated amino acid residues were identified by LC-MS/MS using 92 kDa
MMP-9. Residues of 11 cysteine, 2 lysine, and 2 histidine were conjugated with acrolein.
Among them, it is thought that acrolein-conjugated Cys-99 in the propeptide domain is
involved in the activation of MMP-9, similar to the activation by S-nitrosylation by nitric
oxide (NO) at Cys-99 in MMP-7 [58]. A model of acrolein activation of MMP-9 is shown
in Figure 6A. Similar to the cysteine switch in MMP-7, an interaction between Cys-99 and
Zn2+ causing inactivation of MMP-9 is disturbed through acrolein conjugation with Cys-99,
and Zn2+ can function as a co-activator of MMP-9 through interaction with the catalytic
site. Although two His residues (His-405 and His-411) located at the active site were also
conjugated with acrolein, the degree of acrolein conjugation was smaller than that with
Cys-99. Accordingly, a significant inhibition of MMP-9 activity by acrolein conjugation
with His-405 and His-411 was not observed. The effect of 50 µM acrolein and 100 µM
histidine on purified MMP-9 activity is also shown in Figure 6B. Acrolein mainly increases
the kcat value of MMP-9 activity.
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Figure 6. Activation model of MMP-9 by acrolein and effect of acrolein on enzymatic activity of MMP-
9. (A). Activation model of MMP-9 by acrolein was created according to the cysteine switch model
of MMP-7 [57]. Green, propeptide domain; blue, fibronectin repeats; orange, active site including
Zn2+ binding site; brown, glycosyl domain; red, hemopexin domain. (B). The Km and kcat values of
acrolein-activated MMP-9 with or without histidine. MMP-9 was incubated with 50 µM acrolein
with or without 100 µM His at 37 ◦C for 3 h, and the MMP-9 activity was measured by changing
the substrate concentration. The Km and kcat values were calculated using a Lineweaver–Burk plot.
Adapted with permission from Ref. [55]. 2017 Elsevier. ** p < 0.01, *** p < 0.001.

8. Acrolein-Conjugated Immunoglobulin Increases Its Autoimmune Activity

It has been reported that autoantibodies against SSA (Ro) and SSB (La) proteins are
often present in sera of pSS patients [50,51]. Thus, we investigated whether acrolein is
involved in autoimmune activity. As shown in Figure 7A, the level of acrolein conjugation
with immunoglobulins in saliva of pSS patients was elevated (>5-fold) compared to that in
saliva of control subjects, although the immunoglobulin protein was only 1.5- to 2.0-fold
higher in saliva of pSS patients [13].

The site of acrolein conjugation in immunoglobulin was then determined. Saliva of 11
pSS patients was collected, and immunoglobulins were purified. The amino acid residues
conjugated with acrolein at the constant regions were λ (Lys-43), κ (Lys-75, Lys-80, His-81,
Lys-82 and Cys-86), α-2 (Cys-300), γ-1 (Cys-27 and Lys-30), and γ-3 (Cys-297 and Lys-300).
Twenty-four amino acid residues (20 cysteine and 4 lysine) conjugated with acrolein were
also identified at the variable region of immunoglobulins (Figure 7B).

It was then examined whether acrolein treatment of saliva of control subjects increases
the recognition ability for SSA (Ro) and SSB (La) proteins by incubating saliva with 25 and
50 µM acrolein for 48 h. As indicated in Figure 7C, acrolein significantly increased the
autoimmune activity for SSA (Ro) and SSB (La). The recognition activity against both SSA
(Ro) and SSB (La) proteins was increased approximately 1.5- to 2-fold by the treatment of
saliva with 50 µM acrolein for 48 h, suggesting that acrolein modifies the recognition ability
of immunoglobulins.

When amino acid residues at the variable region of immunoglobulins are conjugated
with acrolein, the recognition ability of immunoglobulins can be changed to recognize a
different antigen: i.e., proteins present in cells and tissues, such as SSA (Ro) and SSB (La).
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Figure 7. Increase in acrolein-conjugated immunoglobulins in pSS patients and determination
of amino acids conjugated with acrolein in immunoglobulins. (A). Levels of acrolein-conjugated
light and heavy chains of immunoglobulins in saliva from control and pSS subjects. (B). Acrolein-
conjugated amino acids shown in red in variable regions of immunoglobulins in saliva from 11 pSS
patients. (C). Effect of acrolein on recognition activities for Ro and La. Acrolein treatment at 37 ◦C for
48 h. ***, p < 0.001. Adapted with permission from Ref. [13]. 2015 Elsevier.

9. Involvement of Acrolein during Brain Infarction and Dementia

This review outlines how acrolein causes tissue toxicity at the molecular level and is
thus involved in diseases such as brain infarction and dementia. Photochemically induced
thrombosis (PIT) model mice were prepared as described previously [59]. The volume of the
infarction was determined by staining 2 mm-thick coronal slices with triphenyltetrazolium.
This stains the viable brain tissue red, whereas infarct tissue remains unstained. Under our
experimental conditions, the average volume of infarction at 24 h was 23 mm3. When N-
acetylcysteine (250 mg/kg), a strong acrolein scavenger [22], was injected intraperitoneally,
the average volume of infarction decreased from 23 to 16 mm3. PC-Acro at the locus
of infarction greatly decreased, and polyamine content was increased significantly by
the injection of N-acetylcysteine. Another acrolein scavenger, N-benzylhydroxylamine
(200 mg/kg), also decreased the volume of infarction [27]. In addition, administration of
N-benzylhydroxylamine decreased the volume of infarction 0 and 6 h after the onset of
infarction, whereas edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a scavenger of ROS,
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only decreased the volume of infarction administered at the onset of infarction. These results
indicate that acrolein is strongly involved in the tissue damage during brain infarction.

There are reports that silent brain infarction (SBI) increases the risk of subsequent
stroke [60]. It is, therefore, valuable to estimate SBI at the early period using biochemical
markers. We found that measurement of PC-Acro together with IL-6 and CRP makes
it possible to identify SBI with high sensitivity and specificity [20] and can decrease the
number of people with cerebral infarction [21] as mentioned in the introduction.

Dementia, including Alzheimer’s disease (AD), is another serious disease affecting
those at an advanced age, and its early detection is important for maintaining quality of
life (QOL). Thus, we searched novel biomarkers for dementia. We first found that both
protein-conjugated acrolein (PC-Acro) and Aβ40/42 in plasma increased in mild cognitive
impairment (MCI) and Alzheimer’s disease (AD) patients [10]. However, these markers
could not differentiate MCI patients from AD patients.

Next, biomarkers for dementia were searched in urine. It was found that amino acid
(lysine)-conjugated acrolein (AC-Acro) and taurine in urine decreased in MCI and AD
patients compared to control subjects, and the measurements of AC-Acro and taurine could
differentiate MCI and AD patients. When AC-Acro and taurine were evaluated together
with age using an artificial neural network model, median relative risk values for patients
with AD and MCI and control subjects were 0.96, 0.53, and 0.06, respectively [61]. Since
urine is relatively easy to collect, our findings provide a novel biomarker for dementia.
This biomarker probably contributes to the maintenance of QOL of the elderly.

We have also reported that acrolein is detoxified by glutathione [24]. Acrolein is
metabolized into 3-hydroxypropyl mercapturic acid (3-HPMA) after conjugation with
glutathione, and 3-HPMA is excreted into urine. The level of 3-HPMA in urine after brain
infarction also decreased significantly [62]. However, the measurement of 3-HPMA is not
so easy. If a simple method to measure 3-HPMA is developed, the evaluation of dementia
would become more accurate.

10. Concluding Remarks

Since acrolein is much more toxic than ROS, especially for proteins [22,27], molec-
ular characteristics of acrolein toxicity were investigated. The results indicate that the
activities of proteins including cysteine and lysine residues at the active site are regulated
by acrolein, either negatively or positively. However, these acrolein-conjugated proteins
always function negatively for cells and tissues (Figure 8). Since acrolein production from
spermine increases in the elderly, it is important to clarify the molecular characteristics of
acrolein toxicity to maintain good health. Although ROS are less toxic than acrolein, they
are involved in DNA and RNA damage. Thus, it is also important to clarify ROS toxicity at
the molecular level together with acrolein toxicity.
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Figure 8. Change of protein activities through acrolein conjugation. In eukaryotic cells, 85% of
spermine exists as an RNA–spermine complex in a non-covalent form [63]. When ribosomes are
attacked by hydroxyl radicals, one of the ROS, spermine, can be released from ribosomes in a free
form. Then, spermine is mainly oxidized to acrolein via 3-aminopropanal by spermine oxidase
(SMOX). Produced acrolein modifies proteins, either by activation or by inactivation, resulting in
aggravation of diseases.
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