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Protein-driven biological processes play a fundamental role in biomedicine because
they are related to pathologies of enormous social impact, such as cancer, neuropathies,
and viral diseases, including the one at the origin of the recent COVID-19 pandemic [1].
Knowing the structure of the protein target is the first step in the rational design of inhibitors
or compounds with ad hoc modulating activity of the target protein function, to be used
as therapeutics. One of the several protein-targeting strategies utilized in the field of
neurotherapeutic drug discovery consists of the selective inhibition of gamma-aminobutyric
acid (GABA) transporter type 1 (GAT-1, Figure 1a), which leads to increased levels of the
inhibitory neurotransmitter GABA within synapses [2].
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Figure 1. (a) Three-dimensional view of the GABA reuptake transporter 1 (also known as GAT-1) in 
complex with tiagabine (1) (the structure can be freely visualized at https://www.rcsb.org/3d-
view/7SK2/1, accessed on 25 October 2023). (b) Structural representation of tiagabine, ((3R)-1-[4,4-
bis(3-methylthiophen-2-yl)but-3-enyl]piperidine-3-carboxylic acid, 1), clofarabine ((2R,3R,4S,5R)-5-
(6-amino-2-chloropurin-9-yl)-4-fluoro-2-(hydroxymethyl)oxolan-3-ol, 2), gemcitabine (4-amino-1-
[(2R,4R,5R)-3,3-difluoro-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one, 3), hy-
droxyurea (4), and triapine ([(E)-(3-aminopyridin-2-yl)methylideneamino]thiourea, 5). 

The study of the structure of the human GAT-1 in complex with the antiepileptic drug 
tiagabine (1, Figure 1b), and particularly of the main binding site for 1, is fundamental for 
the rational design of new neurodrugs acting as inhibitors of GABA transport [3,4]. Tar-
geting proteins is also a winning strategy in the antimicrobial drug discovery process. For 
example, inhibiting the enzyme nicotinamidase of Plasmodium falciparum could lead to po-
tential antimalarial effects and remarkably, since humans lack this enzyme, nicotin-
amidase inhibitors are expected to be safe drugs [5]. Ribonucleotide reductase (RR), a 
multi-subunit enzyme that catalyzes the formation of deoxyribonucleoside diphosphates 
from their ribonucleoside analogs, is an attractive therapeutic target for a number of pro-
liferative pathologies, including cancer, a pathology against which numerous synthetic 
molecules are being tested [6–9], since the expression levels of this enzyme are typically 
high during cell replication [10–12]. There are different inhibitors of human RR that are 
potential anticancer drugs including the nucleoside analog inhibitors of the large catalytic 
subunit RRM1, such as clofarabine (2, Figure 1b) and gemcitabine (3), as well as the inhib-
itors of the free radical housing small subunit RRM2, such as hydroxyurea (4) and triapine 
(5) [13–15]. Among the post-translational modifications of proteins, ADP-ribosylation of 
proteins is a post-translational modification involved in cancer and thus, enzymes in-
volved in monoADP-ribosylation/polyADP-ribosylation cycling are drug targets for can-
cer therapy [16]. The search for efficacious therapies for COVID-19 motivated the scientific 
community to investigate the interaction of natural compounds, such as the stilbene pol-
yphenols resveratrol (6) and polydatin (7, Figure 2), with the SARS-CoV-2 spike protein 
and its main receptor ACE2 (Figure 2a,b) [17–20]. 
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The study of the structure of the human GAT-1 in complex with the antiepileptic drug
tiagabine (1, Figure 1b), and particularly of the main binding site for 1, is fundamental
for the rational design of new neurodrugs acting as inhibitors of GABA transport [3,4].
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Targeting proteins is also a winning strategy in the antimicrobial drug discovery process.
For example, inhibiting the enzyme nicotinamidase of Plasmodium falciparum could lead
to potential antimalarial effects and remarkably, since humans lack this enzyme, nicoti-
namidase inhibitors are expected to be safe drugs [5]. Ribonucleotide reductase (RR), a
multi-subunit enzyme that catalyzes the formation of deoxyribonucleoside diphosphates
from their ribonucleoside analogs, is an attractive therapeutic target for a number of pro-
liferative pathologies, including cancer, a pathology against which numerous synthetic
molecules are being tested [6–9], since the expression levels of this enzyme are typically
high during cell replication [10–12]. There are different inhibitors of human RR that are
potential anticancer drugs including the nucleoside analog inhibitors of the large cat-
alytic subunit RRM1, such as clofarabine (2, Figure 1b) and gemcitabine (3), as well as
the inhibitors of the free radical housing small subunit RRM2, such as hydroxyurea (4)
and triapine (5) [13–15]. Among the post-translational modifications of proteins, ADP-
ribosylation of proteins is a post-translational modification involved in cancer and thus,
enzymes involved in monoADP-ribosylation/polyADP-ribosylation cycling are drug tar-
gets for cancer therapy [16]. The search for efficacious therapies for COVID-19 motivated
the scientific community to investigate the interaction of natural compounds, such as the
stilbene polyphenols resveratrol (6) and polydatin (7, Figure 2), with the SARS-CoV-2 spike
protein and its main receptor ACE2 (Figure 2a,b) [17–20].
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Figure 2. (a) The receptor binding domain of SARS-CoV-2 spike protein (violet) complexed with its 
receptor human ACE2 (green) (the structure is publicly available at https://www.rcsb.org/3d-
view/6VW1/1, accessed on 25 October 2023). (b) Structural representation of the polyphenol resvera-
trol (5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol, 6) and its glycosylated form polydatin 
((2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)ethenyl]phenoxy]-6-(hydroxyme-
thyl)oxane-3,4,5-triol, 7). 

Famously, the spike protein is essential for SARS-CoV-2 entry into human cells, while 
ACE2, the angiotensin-converting enzyme found on the surface of respiratory epithelial 
cells and several other host cell types, is the main receptor for the spike protein. Thus, 
therapeutics including anti-COVID-19 drugs can be inhibitors or modulators of protein–
protein recognition. Protein binding is not only used to block a pathologic process at the 
molecular level, but can also be used for drug delivery applications; in this regard, serum 
albumin binding of synthetic molecules or metal complexes [21] was recently investigated 
to improve the transport of potential drugs in the human body [22–25]. Finally, tumor-
associated macrophages are known to exert different pro-tumoral functions, promoting 
not only proliferation, invasion, and angiogenesis, but also immune tolerance and thera-
peutic resistance. The proteins expressed on tumor-associated macrophages are consid-
ered attractive targets for anticancer therapy in strategies aimed at either inhibiting the 
pro-tumoral functions of these cells or reducing their levels [26–28]. In conclusion, protein-
driven biological processes are highly connected with disease and inhibiting or modulat-
ing protein functions with specific pathological implications can be an effective weapon 
in the search for new therapies for a diversity of pathologies that affect humans including 
those with the highest social impact such as COVID-19, cancer, infectious diseases, and 
neuropathies. 
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Figure 2. (a) The receptor binding domain of SARS-CoV-2 spike protein (violet) complexed
with its receptor human ACE2 (green) (the structure is publicly available at https://www.
rcsb.org/3d-view/6VW1/1, accessed on 25 October 2023). (b) Structural representation of the
polyphenol resveratrol (5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol, 6) and its glycosy-
lated form polydatin ((2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)ethenyl]phenoxy]-6-
(hydroxymethyl)oxane-3,4,5-triol, 7).

Famously, the spike protein is essential for SARS-CoV-2 entry into human cells, while
ACE2, the angiotensin-converting enzyme found on the surface of respiratory epithelial
cells and several other host cell types, is the main receptor for the spike protein. Thus, ther-
apeutics including anti-COVID-19 drugs can be inhibitors or modulators of protein–protein
recognition. Protein binding is not only used to block a pathologic process at the molecular
level, but can also be used for drug delivery applications; in this regard, serum albumin
binding of synthetic molecules or metal complexes [21] was recently investigated to im-
prove the transport of potential drugs in the human body [22–25]. Finally, tumor-associated
macrophages are known to exert different pro-tumoral functions, promoting not only prolif-
eration, invasion, and angiogenesis, but also immune tolerance and therapeutic resistance.
The proteins expressed on tumor-associated macrophages are considered attractive targets
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for anticancer therapy in strategies aimed at either inhibiting the pro-tumoral functions
of these cells or reducing their levels [26–28]. In conclusion, protein-driven biological
processes are highly connected with disease and inhibiting or modulating protein functions
with specific pathological implications can be an effective weapon in the search for new
therapies for a diversity of pathologies that affect humans including those with the highest
social impact such as COVID-19, cancer, infectious diseases, and neuropathies.
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