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Across life sciences, the steadily and rapidly increasing amount of data provide
new opportunities for advancing knowledge and represent a key driver of emerging
technological advancements. These data, some of which are available in the public domain,
can be generated in different settings, for instance by experimental work or by computations.
Therefore, it is crucial to make the best possible use of this plethora of information to
improve decision-making. In light of this, there is increasing interest in computational
methods to take advantage of this volume of data, including data mining and visualization
methods, artificial intelligence and machine learning algorithms [1–3]. The aim of this
Special Issue is to showcase recent applications of in silico approaches, making use of data
from different domains, to support different aspects of drug design and discovery. This
Issue includes five research articles and a review.

The article by Chávez-Hernández et al. reported an innovative chemoinformatic
protocol for de novo design of a virtual compound library of putative HIV-1 protease
inhibitors [4]. The library was enumerated by using natural product fragments extracted
from the COCONUT database [5], currently the largest collection of natural products. The
obtained compounds showed reasonable synthetic feasibility and ADME-Tox properties,
similar to some FDA-approved HIV-1 protease inhibitors. The authors envisaged the
chemical synthesis and experimental screening of selected compounds as a future research
direction. Interestingly, the chemoinformatic platform can be generalized and can also be
adapted to different therapeutic targets.

Nasser et al. proposed a novel strategy for the identification of relevant patterns in
molecules by using an autoencoder (AE) [6]. An AE is a deep learning (DL) architecture
based on three main components: an input layer to be fed with input data, hidden layer(s)
and an output (decoding) layer. The main advantage of AEs is the ability to handle low-
dimensional feature representation from the inputs while preserving significant underlying
features, in this case for molecular dimensionality reduction. The method essentially aimed
to enhance the similarity search by eliminating unnecessary and redundant molecular
features. The overall performances were judged using different metrics, including the
Tanimoto similarity, adapted similarity measure of text processing and quantum-based
similarity method.

Zajec et al. applied a structure-based virtual screening to discover inhibitors able
to target an allosteric binding site on the C-terminal domain (CTD) of Hsp90 [7]. This is
a relevant target for the development of anticancer agents, since it is overexpressed in many
cancers, thereby promoting carcinogenesis by correctly folding oncogenic proteins such
as c-Raf, Her2, Akt, HIF1 and CDK. One of the selected hit compounds, TVS-23, showed
antiproliferative activity with an IC50 value of 26.4 ± 1.1 µM in the MCF-7 breast cancer
cell line. This compound was optimized through the design and synthesis of structural
analogues. Among them, 7l turned out to be the most potent, with IC50 = 1.4 ± 0.4 µM in
MCF-7 and IC50 = 2.8 ± 0.4 µM in SK-N-MC Ewing sarcoma cell lines. The structures of
the Hsp90-TVS23 and Hsp90-7l complexes underwent extensive molecular dynamics (MD)
simulations of 1000 ns and the resulting trajectories were used for pharmacophore feature
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analysis, yielding a total of 5000 structure-based pharmacophore models. This analysis
allowed the rationalization of the structural basis of the enhanced potency of 7l with respect
to TVS-23.

Spinozzi et al. developed a freely available web service, SiCoDEA (Single and Com-
bined Drug Effect Analysis), for the estimation of the potential synergistic, antagonistic or
additive effects of drug combinations [8]. The platform is based on the software R, with
the underlying models providing a combination index (CI) indicating synergy (CI < 1),
antagonism (CI > 1) and additivity (CI = 1). The authors reported an exemplary application
for the analysis of acute myeloid leukemia (AML) cells harboring the nucleophosmin
(NPM1) mutation, which is the most frequent form of AML in adult patients. In particular,
they evaluated the anti-proliferative effect of Homoharringtonine (HHT, also named Omac-
etaxine mepesuccinate) and ABT-199 (Venetoclax) on AML cell lines, indicating that such
a combination has a synergistic effect in the mutated AML cell line.

The work by Guzelj et al. described the first modulators of nucleotide-binding
oligomerization domain-containing protein 2 (NOD2) identified by virtual screening [9].
NOD2 plays an important role in the development of innate and adaptive immunity because
it recognizes bacterial peptidoglycan fragments. Of note, the immune response mediated
by NOD2 has also been associated with atherosclerosis. The structure-based design of
NOD2 modulators has been limited by the absence of a structure of NOD2 in complex with
a ligand. Therefore, the authors first obtained a homology model of human NOD2 using
the NOD2 structure from rabbits as a template. Then, a hybrid docking–pharmacophore
modelling strategy was implemented, in which the docked poses of previously reported
NOD2 ligands were used to generate pharmacophoric hypotheses. This procedure allowed
the identification of two compounds, 1 and 3, displaying inhibitory effects on NOD2-
activation signaling triggered by MDP and SG8, two potent NOD2 agonists belonging to
the muropeptide and desmuramylpeptide structural classes. However, additional assays
would be required to confirm that the observed effects are due to a direct interaction of
these compounds with NOD2 or with downstream signaling proteins.

The review by Pereira and Vale discussed potential repurposing opportunities for
the HIV protease inhibitor saquinavir [10]. First, they extensively described saquinavir’s
mechanism of action, pharmacokinetic properties and metabolism. Then, the authors
discussed some reports of saquinavir’s inhibitory activity on SARS-CoV-2 proteins, such
as the main protease (3CLpro) or RNA-dependent RNA polymerase (RdRp), but most
of the results were obtained in silico. Finally, they discussed several studies in which
saquinavir was reported to inhibit cell invasion, to enhance radiosensitivity and also to
induce cytotoxicity and apoptosis in different types of cancer, both in vitro and in vivo.
However, saquinavir never advanced to clinical trials for cancer treatments.

In conclusion, the contributions collected within this Special Issue highlight the central
role of data, which represent the foundation of every model. Data quality, availability and
management are, in fact, essential for accurate and reliable predictions. Therefore, we can
foresee that the implementation of best practices for data handling will play an increasingly
important role in maximizing the value of data and expediting innovation in the future.
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