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Abstract: Drug-induced liver injury (DILI) is the principal reason for failure in developing drug
candidates. It is the most common reason to withdraw from the market after a drug has been approved
for clinical use. In this context, data from animal models, liver function tests, and chemical properties
could complement each other to understand DILI events better and prevent them. Since the chemical
space concept improves decision-making drug design related to the prediction of structure–property
relationships, side effects, and polypharmacology drug activity (uniquely mentioning the most recent
advances), it is an attractive approach to combining different phenomena influencing DILI events
(e.g., individual “chemical spaces”) and exploring all events simultaneously in an integrated analysis
of the DILI-relevant chemical space. However, currently, no systematic methods allow the fusion of a
collection of different chemical spaces to collect different types of data on a unique chemical space
representation, namely “consensus chemical space.” This study is the first report that implements
data fusion to consider different criteria simultaneously to facilitate the analysis of DILI-related events.
In particular, the study highlights the importance of analyzing together in vitro and chemical data
(e.g., topology, bond order, atom types, presence of rings, ring sizes, and aromaticity of compounds
encoded on RDKit fingerprints). These properties could be aimed at improving the understanding of
DILI events.

Keywords: clustering; chemoinformatics; consensus chemical space; data fusion; drug design; drug-
induced liver injury; multi-objective optimization; unsupervised learning

1. Introduction

Drug-induced liver injury (DILI) is one of the most frequent reasons to stop the drug
candidate optimization process (around 67% of these optimizations have been stopped for
this issue), and it is the most common feature related to post-marketing withdrawals [1].
For this reason, a current challenge is to enhance the understanding of DILI events. In this
context, the current non-multidisciplinary approaches to studying hepatotoxic activity have
not been exploiting and combining the large diversity of information (in silico, in vitro,
in vivo, and clinical data) available to study this endpoint [2,3].

Recent studies have demonstrated that combining different data types increased the
description of DILI events. For example, He et al. demonstrated that the combination of
physicochemical and topological descriptors improved the accuracy of predictive DILI
models [4]. Thakkar et al. remarked that the compounds associated with DILI events
could be classified using mainly anatomical (e.g., drugs used against the nervous system,
anti-infectives for systemic use, antineoplastic immunomodulating agents, alimentary tract,
and metabolism agents) and therapeutical features (e.g., drugs that act as antidepressants,
anti-inflammatory, antirheumatic, and antiviral products) [5]. Furthermore, a recent review
by Vall et al. described the potential of artificial intelligence (AI) methods to predict liver
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injuries, emphasizing that the combination of chemical structures, gene expression, in vitro
(e.g., hepatic cytochrome inhibition), in vivo, and imaging assays could be used to decode
the side effects of drugs [6]. These recent findings encourage the development of novel
methodologies to study a large diversity of data to predict DILI events. The next logical
question is, what kind of data and what type of data combinations could help to improve
the description of DILI-associated compounds?

In drug design and development, chemical space visualization methods are resources
in data mining and information extraction from constantly increasing datasets. Indeed,
chemical space visualization is an approach for rationalizing and interpreting experimental
and calculated data [7]. Chemical space concept is defined as “an M-dimensional cartesian
space in which compounds are located by a set of M physicochemical and/or chemoinfor-
matic descriptors” [8]. Thus, chemical space allows the simultaneous study of different
data types, such as structural, chemical, physicochemical, biological, clinical, and/or post-
market data, to name a few examples. Since the chemical space depends directly on the
descriptors used to define the M-dimensional cartesian space, it is important to mention
that it is possible for the coexistence of parallel (or alternative) chemical spaces for the
same set of molecules, namely, a multiverse chemical space. In addition, it is possible to
combine the alternative chemical spaces to create a single “consensus” chemical space [9].
The chemical space application has demonstrated improvement in drug design, making
decisions related to the prediction of structure–properties relationships (SPR), side effects,
and polypharmacology drug activity, to mention a few of the most recent advances [10].

In this regard, data fusion methods allow putting multiple data observations or calcu-
lations (descriptors) together to increase the consistency and confidence of the information
derived from the data [11]. Data fusion was developed initially to improve similarity
searching. Data fusion has demonstrated its utility to increase the description of drug
design models against different endpoints (e.g., properties, bioactivity, biological pathways,
-omics relationships, etc.) from a large data diversity such as structural, physicochemical,
spectrometry, bioactivity, transcriptomic, imaging, histological data, etc. [12–16].

The present work aims to improve understanding of DILI events through a novel
integration of data fusion concepts using chemical, physicochemical, and biological data,
to construct consensus chemical spaces and chemical multiverses.

2. Methodology
2.1. Dataset Construction and Curation

The dataset was constructed considering data deposited on two major public databases
(DrugBank [17] and ChEMBL v.30 [18]) and bibliographic data collected by X. Liu et al. [19]
and S. Thakkar et al. [5]. The construction of the dataset used in this work is described as
follows:

Liu et al. [19] and Thakkar et al. [5] classified a total of 2309 approved drugs for
clinical use according to the reported clinical data that associate each compound with
any DILI event. For example, if each compound has been associated (bibliographically)
with: fatal hepatic adverse drug reactions, liver failure, liver transplantation, jaundice,
bilirubin, liver enzyme increase, hepatomegaly, hepatitis, and/or hepatotoxicity. For this
study, compounds associated with almost one of these clinical side effects was considered
as “associated with DILI events”. Only 186 (~8%) of the approved drugs were associated
with DILI events according with this proposed classification based on clinical data [5,19].

From ChEMBL v.30, a total of 190,068 compounds were retrieved considering the fol-
lowing criteria: molecules tested against the hepatic cell lines HepG2 and Huh7 (ChEMBL
ID: 3307718 and 3307515, respectively) and/or the clinically important cytochromes CYP1A2,
CYP2A6, CYP2C9, CYP2D6, and CYP3A4 (ChEMBL ID: CHEMBL3356, CHEMBL5282,
CHEMBL3397, CHEMBL289, CHEMBL340, respectively).

The approved drugs associated with DILI events and the dataset with cell-based and
cytochrome activity data from ChEMBL were merged based on their canonical SMILES.
Only 471 compounds (~20% of 2309 approved drugs) are associated with cell-hepatotoxicity
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activity (HepG2 and/or Huh7) and/or cytochrome inhibition (CYP1A2, CYP2A6, CYP2C9,
CYP2D6, and/or CYP3A4). The KNIME software v. 4.7.0 [20] was used to assemble, merge,
and curate the datasets. The KNIME workflows are available in the Supplementary Material
section (file Multiverse_DataFusion_tSNE.knwf and Multiverse_DataFusion_PCA.knwf).

2.2. Descriptor Calculation

Based on the published findings that suggest that the combination of chemical, physico-
chemical, and structural/topological descriptors improves the classification of DILI-related
compounds [4,6], these types of descriptors were calculated in this work.

To describe the chemical and physicochemical context of the dataset, DataWarrior
v. 5.5.0 software [21] was used to calculate the number of H-donor bonds, number of H-
acceptor bonds, number of rotatable bonds, molecular weight, cLogP, and topological
surface area (TPSA) for each compound on the dataset. Additionally, three types of
structural/topological descriptors, e.g., Molecular ACCes System (MACCS—166 bits)
Keys, RDKit (2048 bits), and ECFP4 (1024 bits) fingerprints were computed using the
RDKit [22] module implemented by Python programming language.

2.3. Chemical Space Construction

From the dataset with 471 compounds associated with DILI events (available in
the Supplementary Material: “DB_ConsensusChemSpace_DILI.csv”), hepatotoxicity cell
activity and cytochrome inhibition data were analyzed in their different chemical space
representations based on chemical, physicochemical, structural, and in vitro (bioactivity)
profile: cytochrome and hepatotoxic cell activity. The implementation of different chemical
representations to analyze chemical spaces has been recently termed multiverse chemical
space analysis [9].

Before combining all bi-dimensional representations of chemical spaces, each repre-
sentation was constructed using KNIME software v. 4.3.4 and the module “t-SNE” which is
widely used to reduce high-dimensional data to two dimensions [23]. In t-SNE, the parame-
ters were: 1000 iterations, 0.5 theta value, and 30 perplexity values to generate t-SNE 1 and
t-SNE 2 coordinates (see file “Multiverse_DataFusion_tSNE.knwf” in the Supplementary
Material section).

2.4. Assignment of Weights to Each Chemical Space

Before data fusion, it is important to establish the relative importance (weights) of each
variable (chemical space coordinates, i.e., t-SNE coordinates) to describe the studied data
(chemical structures associated with DILI reports). For this reason, we propose a simple
metric, quadrant weight (QW)—Equation (1), that allows uncovering specific regions on
the chemical spaces (2D plot coordinates) that are enriched with compounds associated
with DILI events:

QW = (−(A ∗ 100)/n) + (NA ∗ 100/n)/2 (1)

where “A” and “NA” represent the number of compounds associated or not with DILI
events in a specific quadrant of the chemical space plot, respectively; “n” is the total
number of compounds contained in the dataset. A positive QW value suggests that a region
of the chemical space (2D plot coordinates) is enriched with positive DILI compounds
(hepatotoxic). In contrast, negative QW values suggest that a region of the chemical space
is enriched with negative DILI compounds (non-hepatotoxic).

For this work, we define nine regions of each chemical space representation using
the minimum and maximum values of the t-SNE coordinates that contain positive DILI
compounds (this step is schematically explained in Figure 1). The criteria to delimit each
region are available in the Supplementary material (MetricOfDataFusion.xlsx). Finally, each
weight peer quadrant was multiplied by the coordinate (t-SNE 1 or 2) of each compound
contained in each chemical space representation.
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Figure 1. Schematic overview of chemical space construction, assignment of weights to each chemical
space, and data fusion protocols implemented in this work.

2.5. Data Fusion

Normalized value of weighted t-SNE coordinate (NWtSNE) was calculated to directly
compare the representation of the chemical spaces, i.e., based on in vitro data, chemical and
physicochemical properties, and fingerprints. Each of the two-dimensional coordinates,
t-SNE 1 and t-SNE 2, were calculated using Equation (2):

NWtSNE = ((WtSNE)− (MIN(WtSNE)))/(MAX(WtSNE)− MIN(WtSNE)) (2)

where “WtSNE” is the weighted t-SNE coordinate, and “MIN” and “MAX” are the mini-
mum and maximum WtSNE values, respectively.

Finally, the consensus t-SNE coordinates were generated by summing the normal-
ized coordinates of each chemical space representation of each compound. The automatic
workflow of this method was implemented in KNIME and it is available in the Supple-
mentary Material (Multiverse_DataFusion_tSNE.knwf). The interactive visualizations of
the chemical spaces were generated with DataWarrior software v.5.5.0., and are available
in the Supplementary Material (DB_ConsensusChemSpace_DILI.dwar) [21,24]. Figure 1
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illustrates graphically an overview of the methodology used in this work: chemical space
construction, assignment of weights to each chemical space, and data fusion protocol.

A strategy to evaluate if the clustering of associated and non-associated DILI com-
pounds is efficient is calculating the distance between each compound in each chemical
space representation. Namely, the shortest distances between DILI-associated compounds
indicate that the clustering method is more efficient. The largest distance in the clustering
between DILI-associated compounds indicates that the method is not capable of clustering
them. To this end, the Euclidean and Manhattan distances were calculated by each pair of
compounds on the dataset [25]. The distances were calculated using the “distance matrix
calculate” node in KNIME. The protocol is available in the Supplementary Material (Multi-
verse_DataFusion_tSNE.knwf). The mean distance between associated (or non-associated)
DILI compounds and their standard deviation was calculated and plotted.

3. Results

In this section, we discuss the chemical multiverse of compounds associated with DILI
reports, and a methodology to integrate chemical space data. Figure 2 shows the chemical
structures of representative compounds associated with DILI events. Interestingly, these
compounds exhibit a notable structural diversity with different chemical scaffolds, and
present different types of atoms (e.g., O, N, S, Cl, F, P, etc.) that confer different kinds of
properties.
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Figure 2. Chemical structures of representative compounds associated with DILI events. Figure 2. Chemical structures of representative compounds associated with DILI events.

Figure 3A–E shows the multiverse chemical space (i.e., different chemical space rep-
resentations to the same dataset) of 471 compounds associated with DILI reports. Each
chemical space representation illustrates structural (e.g., MACCS keys), topological (e.g.,
RDKit, and ECFP4), chemical and physicochemical (e.g., drug-like properties), or in vitro
data of this dataset. The data points colored in red represent compounds associated with
DILI events (i.e., compounds associated with hepatotoxic signatures), in contrast with the
compounds represented with data points in blue (that have not been related to DILI issues).
Figure 3 illustrates an overview of the impact of each kind of descriptor on the clustering
of compounds associated with DILI events. For example, the poor clustering generated by
data from bidimensional structural descriptors (MACCS fingerprint—Figure 3A) suggests
that this information is not enough to cluster the compounds according to their DILI events.
In contrast, topological (tridimensional) descriptors (like RDKit) offer a better clustering
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of compounds associated with DILI events (red dots). Interestingly, the poor clustering
based on drug-like properties (Figure 3D) and in vitro data (Figure 3E) suggests that these
features (independently) do not guarantee the correct description of DILI events.
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Figure 3. Representation of the multiverse chemical space of 471 compounds associated with DILI
events. Each chemical space visualization was constructed by dimensional reduction (t-SNE coordi-
nates) of fingerprints (A) MACCS keys, (B) RDKit, (C) ECFP4, (D) chemical and physicochemical
properties, and (E) in vitro data. Each data point in the graph represents a chemical structure, and the
color of these points indicates if the chemical structure has been associated (red) or not (blue) with
DILI events. Representative compounds are labeled with the compound numbers as in Figure 1.

Figure 4 shows the consensus chemical space representation. This new chemical space
representation improves the visual identification of positive DILI compounds (red data
points). Each region of each consensus chemical space representation is constructed, as per
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Equations 1 and 2, to improve the separation of the positive and negative DILI compound
cases. Figure 4A shows the new t-SNE coordinates generated from the fusion of multiverse
chemical space data (e.g., structural, topological, chemical, physicochemical, and in vitro
data). Figure 4B shows the new coordinates generated from the fusion of structural (RDKit
fingerprint) and in vitro data.
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Figure 4. Consensus chemical space of 471 compounds associated with DILI reports. Each chemical
space was constructed using the assignment and normalization of the weights by each region of
the chemical space. (A) Consensus chemical space representation of reduced dimensions generated
from fingerprints, chemical/physicochemical properties, and in vitro data related to each compound
associated with DILI reports. (B) Consensus chemical space representation using the reduced
dimensions generated from RDKit fingerprint and in vitro data. (C,D) Consensus chemical space
representations showing only compounds associated with DILI events. Each point in the chemical
spaces represents a chemical structure. Data points are colored by if the chemical structure has been
associated with DILI events (red) or not (blue). Representative compounds are labeled with the
compound numbers as in Figure 1.

It is remarkable the clustering difference observed in the visualization of the chemical
spaces generated by only one type of data (Figure 3) as compared to the combined data
(Figure 4). Interestingly, the fusion of redundancy data (e.g., using different fingerprints to
represent the same molecule, Figure 4A) could not contribute to improving the clustering
of DILI compounds.

To remark on the improved clustering of the combined descriptors, the mean pairwise
distance of associated (red) and non-associated (blue) compounds with DILI events gener-
ated by each chemical space representation was calculated using Euclidean and Manhattan
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distances (see file “Ditances_ChemSpaces.xlsx” in the supplementary material section):
Remarkably, Euclidean distance allows the reduction of the distance of compounds associ-
ated with DILI events (red), especially using properties and in vitro data, in contrast with
Manhattan distance. Figure 5 indicates that the use of a single data type generates a higher
average pairwise distance (low clustering efficiency) of positive DILI compounds (from
8.3 to 20.3), and paired negative DILI compounds (from 17.1 to 25.1). This is in contrast
with the consensus chemical space representation (fused data) that exhibits lower mean
pairwise distance (high clustering efficiency) between positive DILI compounds (from 0.24
to 0.28) and negative DILI compounds (from 1.26 to 1.56).
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representations obtained with different descriptors. The 2D plots of the chemical space visualizations
are in Figures 2 and 3.

Interestingly, using fused data, the distance between the non-associated DILI com-
pounds continues to be higher than the distance between associated-DILI compounds. This
fact suggests that the non-associated DILI compounds exhibit a higher intrinsic chemical
diversity.

Each representation offers a unique form to cluster each chemical structure (Figures 3 and 4).
However, consensus methods provide a mathematical framework to establish a weight for
each region on the different chemical space representations (generating a semi-unsupervised
approach to construct enriched chemical space representations, Figure 3). From a pharmaco-
logical view, these results remark on the importance of multidisciplinary approaches, using
chemical and biological data, to develop methodologies capable of efficiently describing
DILI events.

4. Discussion

There are multiple representations available to describe compounds and study the
structure–property relationships (SPR) of a dataset. The large variety of molecular descrip-
tors is linked to the subjectivity of the “molecular similarity” that is dependent on the
molecular representation [26]. Namely, the similarity of a pair of compounds depends
on the features used to compare them. In fact, a pair of compounds could be considered
similar if we use structural descriptors, but this does not guarantee that both compounds
have similar in vitro activity [27]. For this reason, it is crucial to evaluate the similarity
of the compounds and, in general, the SPR of datasets using different descriptors and
similarity metrics. The combined analysis of alternative representations (also known as
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data fusion) could reduce the information gap between the chemical structures vital in
drug development and biological knowledge. However, one of the most important issues
in data fusion is assigning adequate weights to each variable that is being combined (e.g.,
dimensions that define the compound’s chemical space) because different mathematical
approximations could be used to generate them [28]. In fact, there is no unique and “best”
manner to generate consensus chemical spaces. Namely, it is necessary to adapt the data fu-
sion approach to consider each dataset. This important point could lead to feature selection
for prospective studies, generating a good starting point for exploring large datasets.

There is a crescent interest in developing protocols capable of predicting DILI events.
However, these side effects are complicated to predict because they are associated with
(parallel) multiple pharmacological and toxicological events and become a typical problem
to address with multiple-parameter optimization. For example, existing reports demon-
strate the relationships between chemical structures and physicochemical properties with
DILI events, but at the same time, other authors show that ADME properties, cell-based
data, and other in vitro assays lead to the identification/prediction of DILI events. Namely,
the DILI events are a complex case study that requires using all available data to rationalize
(almost in part) and predict their occurrence during pre-clinical and clinical interventions.
Fortunately, the current multi-objective optimization methods could help address this issue
briefly [29].

Consensus chemical spaces are an approach to fuse and use different kinds of data
(e.g., descriptors that define the multidimensional vector space) to improve predicting a
specific, desired property. To this end, the main challenge is to choose from the several
methods available to combine high dimensionality of data using a robust mathematical
scheme.

Additionally, and as happens in any other predictive methodology, another major issue
to address is the limited access to data [30], considering that several results that are regarded
as of “no interest” for a particular study (at some point in time) are rarely published. This
fact creates a crescent gap in the available information related to compounds associated with
poor activity or side effects like DILI events. For example, as was mentioned in Section 2.1
of this manuscript, only 471 compounds have associated with “complete” information
related to their chemical, physicochemical, and biological data, namely, not all compounds
have in vitro data (cytochrome and cell-based inhibition data) to compare. In fact, this is
the main limitation of “data fusion” methodologies.

For prospective studies, it will be necessary to assess multiple methods to fuse data [31]
and use other high-dimensional reduction methods [32]. For example, in addition to using
tSNE methods (non-linear reductional dimension method) to represent the chemical space
of DILI compounds, it is possible to adapt other methods such as principal component
analysis (PCA—linear reductional dimension method, see supplementary material: Multiti-
verse_DataFusion_PCA.knwf) to describe the multiverse and consensus chemical spaces of
DILI compounds. However, the implementation of the PCA analysis to the DILI dataset
does not allow the clustering differentiation between associated and non-associated DILI
compounds. This could be explained by the low correlation between each descriptor (i.e.,
fingerprints, properties, and in vitro data). For the current dataset, the chemical space
representation of DILI compounds obtained from PCA does not show an improvement
using data fusion. For this reason, we highlight the importance of assessing different
reductional dimension methods according to specific datasets.

The DILI understanding is relevant to elucidating molecular mechanisms, identifying
novel biomarkers, and preventing drug side effects prior to pre-clinical and clinical inter-
ventions. The multiverse chemical space and the consensus chemical space representations
(using fused data) enrich the information that could generate useful knowledge. For exam-
ple, the drug design methods based on fused data could improve the next generation of
toxicological and post-marketing decision-making approaches.

The results illustrated in Figure 4 show that the RDKit fingerprint allows more efficient
clustering in contrast with other types of fingerprints and descriptors explored in this work.
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For example, ECFP4 is a circular fingerprint meaning that each atom on each molecule
could be described by the topology and bond order, considering only four atoms to distance.
In contrast, the RDKit fingerprint also considers atom types, the presence/absence of rings,
and aromatic systems. This observation highlights the importance of the intrinsic descriptor
encoded by the RDKit fingerprint (e.g., topology, bond order, atom types, presence of
rings, ring sizes, and aromaticity of each compound) that could be used to improve the
understanding of DILI events.

Figure 6 shows a classification of the 471 compounds associated with DILI according to
the type of chemical taxonomy. The analysis shows that major types of compounds exhibit
around 10% of chemical structures associated with DILI events. However, organohalogens,
phenylpropanoids, polyketides, organic acids, organosulfur, alkaloids, and organophos-
phorus compounds exhibit a rate higher than 10% of associated DILI compounds.
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associated with DILI reports were classified [33] according to their chemical taxonomy, and each
chemical taxonomy was associated with the number of cases associated (red) and no associated (blue)
with DILI events.

Additionally, the most frequent compounds associated with DILI events contain com-
plex ring systems, specific functional groups, and atoms (e.g., double bonds, carboxylic
acids, ketones, halogens, sulfur, phosphorus) that per se have been associated with hepatic
injuries [34–38] (see exemplary chemical structures in Figure 2). From a chemical perspec-
tive, these observations could lead to the early identification of compounds potentially
associated with DILI events.

From a pharmacological perspective, we remark on the importance of incorporating
data that predict the hepatic and microbiota biotransformation [39,40] of xenobiotics to
increase the early identification of potential associated DILI compounds. Acetaminophen
provides a typical example of the importance of studying biotransformation. This drug is
not hepatotoxic but its metabolites generate fulminant liver injuries [41,42].

Finally, we need to clarify that the present methodology represents a new alternative
to preparing and filtering useful data to develop predictive models (e.g., machine learning
models). However, there are multiple possibilities to fuse data, different kinds of criteria
to select the input information, and a large list of predictive models to obtain output data.
For all these reasons, this study does not pretend to resolve the DILI prediction problem,
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but aims to introduce a new approach to integrate different criteria towards decoding
hepatotoxicity of approved drugs (as mentioned in the title of this work).

5. Conclusions

DILI is the principal reason for failure in developing drug candidates. It is the most
common reason to withdraw from the market after a drug has been approved for clinical
use. However, the current approaches to predicting DILI have not allowed a complete
understanding of chemical and biological alerts to identify early compounds associated
with DILI events.

Drug design methodologies based on fused data could be the next generation of tools
used in rational design, especially to decode complex pharmacological issues such as DILI
events. Here, we introduce a combined analysis of DILI-related events using the concept of
consensus chemical space and the chemical multiverse, using chemical, physicochemical,
structural, biochemical, and biological data to improve the understanding of DILI events.
Our results, which suggest that the combination of chemical structural and biological data
improves the clustering of associated DILI compounds, pave the way to new opportunities
to develop predictive models (like machine and deep learning models) capable of predicting
DILI events in an early stage of the drug development process. It was also concluded that
organohalogens, phenylpropanoids, polyketides, organic acids, organosulfur, alkaloids,
and organophosphorus compounds are associated with a higher rate of DILI events. For
this reason, we suggest more exhaustive preliminary studies for these types of compounds
with the aim of reducing the cases associated with DILI events.
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