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Abstract: Viral infections cause metabolic dysregulation in the infected organism. The present study
used metabolomics techniques and machine learning algorithms to retrospectively analyze the alter-
ations of a broad panel of metabolites in the serum and urine of a cohort of 126 patients hospitalized
with COVID-19. Results were compared with those of 50 healthy subjects and 45 COVID-19-negative
patients but with bacterial infectious diseases. Metabolites were analyzed by gas chromatography
coupled to quadrupole time-of-flight mass spectrometry. The main metabolites altered in the sera
of COVID-19 patients were those of pentose glucuronate interconversion, ascorbate and fructose
metabolism, nucleotide sugars, and nucleotide and amino acid metabolism. Alterations in serum
maltose, mannonic acid, xylitol, or glyceric acid metabolites segregated positive patients from the
control group with high diagnostic accuracy, while succinic acid segregated positive patients from
those with other disparate infectious diseases. Increased lauric acid concentrations were associated
with the severity of infection and death. Urine analyses could not discriminate between groups.
Targeted metabolomics and machine learning algorithms facilitated the exploration of the metabolic
alterations underlying COVID-19 infection, and to identify the potential biomarkers for the diagnosis
and prognosis of the disease.

Keywords: biomarkers; COVID-19; machine learning; metabolomics; SARS-CoV-2

1. Introduction

Despite the lower pathogenicity of the Omicron variant, and the advances in vac-
cination in Western societies, the COVID-19 pandemic remains a global threat [1]. The
total number of cases has risen from 300 million to more than 600 million worldwide
between January and September 2022, and deaths have increased from approximately
5.5 million to 6.5 million. In addition, large sections of the population have not yet been
vaccinated in low-income countries due to economic and logistical problems. Expert epi-
demiologists have the opinion that SARS-CoV-2 will continue to spread globally for many
years to come [2]. Therefore, the pursuit of lines of research includes the mechanisms-of-
action of SARS-CoV-2, the effects the infection has on the host’s metabolism, the search
for biomarkers for the diagnosis and prognosis of infection, as well as the monitoring of
disease evolution.

Viral infections cause major metabolic disturbances in the infected organism. Viruses
need the host’s metabolic machinery for the synthesis of their own nucleic acids, pro-
teins, lipids, and carbohydrates, and to obtain energy for viral replication [3]. In addition,
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they produce a strong viral immunological reaction, and may influence the gut host mi-
crobiome [4]. Metabolic dysregulation has been reported in patients infected with Zika,
Dengue, Chikungunya, respiratory syncytial virus, SARS-CoV-1, and SARS-CoV-2 [5–8].
Conversely, the presence of chronic diseases of metabolic origin can influence viral infection.
Indeed, patients with type II diabetes mellitus, cardiovascular disease, obesity, or cancer
are at increased risk of developing severe COVID-19 [9,10]. Metabolomic studies are being
widely used to seek a holistic understanding of pathological processes since it enables
simultaneous analyses of hundreds, or thousands, of analytes in very limited volumes of
the biological sample. The interpretation of the metabolic data generated through machine
learning algorithms provides insight into the disease. The most relevant metabolic alter-
ations are identified as are their interactions, as are the possible biomarkers and therapeutic
targets [11]. Studies comparing the plasma metabolome of COVID-19-positive patients
vs. healthy subjects have already been reported [12–14]. However, information on the
specificity of the observed metabolic changes is scarce. For example, few studies have ad-
dressed the question of whether variations in circulating levels of the identified species are
characteristic of COVID-19 infection or whether they may also be seen in other infectious,
or inflammatory, diseases [15].

The present study used semi-directed metabolomics techniques and machine learning
algorithms to analyze the concentrations of a broad panel of metabolites in the serum and
urine of patients with COVID-19. The results were compared with those of healthy subjects,
and patients with bacterial infectious diseases. Our aims were to evaluate the relationships
between the alterations measured with the severity of the disease and comorbidities and to
identify potential biomarkers.

2. Materials and Methods
2.1. Study Design and Participants

We conducted a post hoc retrospective cohort study in 126 patients hospitalized for
COVID-19 between March and October 2020 in Hospital Universitari de Sant Joan. The
inclusion criteria were: ≥18 years of age and to have a positive PCR result for COVID-19
obtained within 24 h before the samples for the study were drawn. The exclusion criteria
were: having a life expectancy ≤ 24 h, impaired liver function, or pregnancy. We also
tested samples from 45 COVID-19-negative patients hospitalized for bacterial infections.
These samples, collected before the pandemic, belonged to a previous prospective study
in patients with urinary catheter-related infections [16]. For the purposes of the present
study, we selected a subgroup with an age and sex distribution to match, as closely as
possible, the COVID-19-positive patients. As a control group, we analyzed samples from
50 healthy volunteers who had no clinical or biochemical evidence of diabetes, cancer,
renal failure, liver disease, or neurological disorders [17]. A serum sample was obtained
from all participants and a urine sample from COVID-19-positive and COVID-19-negative
patients. Urine from healthy volunteers was not available. All samples were stored in
our Biobank at −80 ◦C until the time of analyses. We recorded clinical and demographic
data (Table S1) and calculated the McCabe score as an index of disease severity [18], and
the Charlson index to categorize patients’ comorbidities [19]. This study was approved
by the Comitè d’Etica i Investigació en Medicaments (Institutional Review Committee) of
the Institut d’Investigació Sanitària Pere Virgili (CEIM Resolution 040/2018, modified on
16 April 2020).

2.2. Targeted Metabolomics

In all serum and urine samples, we measured the concentrations of molecules involved
in the metabolism of amino acids, carbohydrates, cofactors, lipids, nucleotides, secondary
metabolites, and xenobiotics. Briefly, samples were derivatized and analyzed on an Agilent
7890A gas chromatograph (Agilent Technologies, Santa Clara, CA, USA) coupled with an
electron impact source to a 7200-quadrupole time-of-flight mass spectrometer equipped
with a 7693 auto-sampler module and a J&W Scientific HP-5MS column (30 m × 0.25 mm,
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0.25 µm; Agilent Technologies), as previously reported in detail [20]. The quantitative
method developed was first validated in different human, animal, and cell conditions
and in various biological samples (plasma, liver, adipose tissue, etc.). Therefore, the
developed methodology accurately quantifies multiple metabolites involved in amino
acids, carbohydrates, lipids, and nucleotide metabolism pathways. Data from serum and
urine metabolites are expressed as µM and ISRR/mmol creatinine, respectively.

2.3. Statistical Analyses

The statistical significance of changes in metabolite concentrations was determined by
the Wilcoxon rank-sum test followed by appropriate false-discovery rate (FDR q < 0.05)
correction by the Benjamini-Hochberg method. All data from bar plots are shown as means
and standard deviations. Some data are depicted with volcano plots and illustrate the
representation of all measured metabolites, showing the mean log2 (fold change). A p-value
below 0.05 was considered statistically significant. The Jupyter Notebook (version 6.0.1)
was used to create volcano plots, while dimensionality reduction techniques developed
machine learning classifier algorithms to stratify the study groups.

2.4. Dimensionality Reduction and Heatmap Analysis

Linear discriminant analysis (LDA) was used as a supervised method to reduce the
dimension of the metabolomic dataset to focus on the different characteristics between
groups. Moreover, heatmaps were employed to visualize the significant alterations between
groups.

2.5. Machine Learning Analysis

Metabolomic structured and labeled datasets were analyzed with a gradient boost
machine (GBM) classifier algorithm to find metabolites with the capacity to stratify among
groups. Algorithm development and hyperparameter tuning were first evaluated with
the training dataset (75% of the dataset). The hyperparameters “n_estimators [50, 100,
500, 1000]”, “max_features [‘auto’, ‘sqrt’, ‘log2′]”, “max_depth [None, 1, 3, 5, 10, 20]”,
“subsample [0.5, 1]”, and “learning_rate [0.001, 0.01, 0.1]” were evaluated to find the
optimal values for each argument and dataset (serum (COVID-19 vs. Control, COVID-19
vs. NoCOVID-19, NoCOVID-19 vs. Control), and urine (COVID-19 vs. NoCOVID-19)).
Then, the model was automatically retrained with the best hyperparameters values and
stored. Finally, the model was tested in the test dataset (25% of the dataset).

Receiver operating characteristic (ROC) curves were employed to provide the perfor-
mance of the classification model, and the quality of the model prediction was estimated
by measuring the area under the ROC curve (AUROC). The Shapley Additive exPlanation
(SHAP) method was used to identify and select the variables with the higher predictive
values of each model. This method is a way of determining the contribution (termed SHAP
value) of each variable to model outputs. The variables are classified according to their
relative importance. We depicted the SHAP summary plots of the top 5 variables of the
chosen prediction model. In plots, the further the value of a variable deviates from zero,
the more impact it has on the model output. The scikit-learn package was used to develop
tools for predictive data analysis and the SHAP package to figure out the results of the
model. [21,22]. The used script is shown in Table S2.

3. Results
3.1. Comparisons between the Serum Metabolic Signatures of the Different Groups of Participants

The LDA was able to separate completely the metabolic signatures of COVID-19-
positive and negative patients from the control group, and of COVID-19-positive patients
from those with bacterial infections (Figure 1A). These results suggest that some metabolic
alterations can be specific to COVID-19. Figure 1B and Tables S3–S5 show the magnitude
of change in the different metabolic pathways. When patients (either positive or negative)
were compared with the control group, we observed an increase in the concentrations of
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metabolites related to carbohydrate metabolism pathways, such as pentose phosphate,
pentose and glucuronate interconversion, nucleotide sugars, and ascorbate and aldarate.
The metabolism of amino acids was also altered, with increasing or decreasing metabo-
lites involved in cysteine, methionine, alanine, aspartate, glycine, serine, phenylalanine,
tryptophane, tyrosine, valine, and leucine biosynthesis. Conversely, when we compared
COVID-19-positive patients against negative patients, we observed that positive patients
had higher concentrations of metabolites involved in the pentose and glucuronate pathway
and cysteine and methionine biosynthesis, while showing lower concentrations of metabo-
lites involved in glycolysis, tricarboxylic acid cycle together with purine, pyrimidine, and
phenylalanine biosynthesis.

3.2. Clinical Characteristics Associated with Changes in the Serum Metabolome

We studied the impact of comorbidities and factors related to disease severity on
the concentrations of metabolites in patients with COVID-19 (Figure 2). Patients with
cancer had lower levels of molecules associated with carbohydrate, amino acid, and
xenobiotic metabolism. Patients with type 2 diabetes mellitus showed lower levels of
S-adenosylhomocysteine. Moreover, we found that patients with chronic lung disease,
neurological diseases, and respiratory distress showed higher levels of metabolites involved
in the metabolism of amino acids and carbohydrates. Patients with cardiovascular disease
showed lower levels of metabolites associated with the metabolism of amino acids, carbohy-
drates, and lipids, and increased metabolites associated with the metabolism of nucleotides
and energy metabolism. Finally, we observed that patients admitted to the Intensive Care
Unit showed decreased levels of metabolites related to carbohydrate metabolisms, such as
d-xylitol, maltose, and fructose, and increased levels of metabolites involved in amino acid
and lipid metabolisms, such as glycine, betaine, and dodecanoic (lauric) acid. Patients who
died had higher concentrations of lauric acid than surviving patients.

3.3. Comparisons between the Urine Metabolic Signatures of COVID-19-Positive and
Negative Patients

LDA showed a high degree of overlap in the metabolic signatures of both groups
(Figure 3A). The main alterations were produced in the biosynthesis of secondary metabo-
lites and nucleotide metabolism, which decreased and increased, respectively, in positive
patients compared to the negative patients (Figure 3B). Other alterations included pen-
tose glucuronate interconversion, nucleotide sugars, ascorbate, and several amino acids
(Figure 3C and Table S6). Overall, the changes observed in urine reflected, to some ex-
tent, those found in serum, but the differences were much smaller and did not allow for
segregation between groups.

3.4. Machine Learning Potential Identified in COVID-19 Biomarkers in Serum, but Not in Urine

The GBM algorithm identified maltose, glyceric acid, mannonic acid, xylitol, and
erythronic acid as the metabolites with the highest capacity to discriminate COVID-19-
positive patients from the control group (Figure 4A). These parameters were increased
in positive patients except for glyceric acid, which was decreased. In contrast, when we
compared COVID-19-negative patients with the control group, we found that the top
five metabolites were phosphoric, mannonic, galacturonic, erythronic, and malic acids,
all of which increased in COVID-19-negative patients, except for phosphoric acid, which
decreased (Figure 4B). The algorithm was also employed to identify metabolites able to
discriminate between COVID-19-positive and negative patients, and found that serum
succinate had high diagnostic accuracy and ability to segregate both groups (Figure 4C).
This parameter was decreased in COVID-19 patients. In contrast, none of the urinary
parameters was able to distinguish between positive and negative patients (Figure 4D).
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Figure 1. Serum metabolic signature in COVID-19-positive, negative patients and healthy volunteers.
(A) Linear discriminant analysis showed a complete separation between groups. (B) Representation
of the measured metabolites, showing the mean log2 (fold change). These graphs indicate, on the
abscissa, the log2-fold change of the different metabolites between the two groups being compared.
The magnitude of change and the p-value are taken into account to construct the graphs. For example,
a positive log2-fold change of 2 indicates a 4-fold increase in a given variable in one group versus
another. Serum data were transformed to molar percentage, and then the false-discovery rate (FDR
q < 0.05) was calculated. Each metabolite was represented in sky-blue (significant decrease), blue
(significant increase), and white (non-significant) dots. p-values < 0.05 were considered significant
(Wilcoxon rank-sum test). OXPHOS: oxidative phosphorylation; TCA: tricarboxylic acid cycle.
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Figure 2. Influence of clinical characteristics on serum metabolome in COVID-19-positive patients. 
Volcano plots of clinical characteristics where significant metabolites were found are identified, and 
colored according to metabolite categories: Metabolism of amino acids, carbohydrates, energy, li-
pids, nucleotides, and xenobiotics. Serum data were transformed to molar percentage, and then the 
false-discovery rate (FDR q < 0.05) was calculated. p values < 0.05 were considered significant 

Figure 2. Influence of clinical characteristics on serum metabolome in COVID-19-positive patients.
Volcano plots of clinical characteristics where significant metabolites were found are identified,
and colored according to metabolite categories: Metabolism of amino acids, carbohydrates, energy,
lipids, nucleotides, and xenobiotics. Serum data were transformed to molar percentage, and then
the false-discovery rate (FDR q < 0.05) was calculated. p values < 0.05 were considered significant
(Wilcoxon-rank sum test). CKD: chronic kidney disease; CLUD: chronic lung disease; CND: chronic
neurological disease; CVD: cardiovascular disease; T2DM: type 2 diabetes mellitus; ICU: intensive
care unit.
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Figure 3. Urinary metabolic signature in COVID-19-positive and negative patients. (A) Linear dis-
criminant analysis showed a considerable degree of overlapping between groups. (B) Variations in 
the metabolite group levels in COVID-19-positive and negative patients. (C) Representation of all 
measured metabolites, showing the mean log2 (fold change). These graphs indicate on the abscissa 
axis the log2-fold change of the different metabolites between the two groups being are compared. 
The magnitude of change and the p-value are taken into account to construct the graphs. For exam-
ple, a positive log2-fold change of 2 indicates a 4-fold increase in a given variable in one group 
versus another. Urine data were transformed to molar percentage, and then the false-discovery rate 
(FDR q < 0.05) was calculated. Each metabolite was represented in sky-blue (significant decrease), 
blue (significant increase), and white (non-significant) dots. p-values < 0.05 were considered signif-
icant (Wilcoxon rank-sum test). Bar plots represent means and standard deviations. TCA: tricarbox-
ylic acid cycle. 

  

Figure 3. Urinary metabolic signature in COVID-19-positive and negative patients. (A) Linear
discriminant analysis showed a considerable degree of overlapping between groups. (B) Variations
in the metabolite group levels in COVID-19-positive and negative patients. (C) Representation of all
measured metabolites, showing the mean log2 (fold change). These graphs indicate on the abscissa
axis the log2-fold change of the different metabolites between the two groups being are compared.
The magnitude of change and the p-value are taken into account to construct the graphs. For example,
a positive log2-fold change of 2 indicates a 4-fold increase in a given variable in one group versus
another. Urine data were transformed to molar percentage, and then the false-discovery rate (FDR
q < 0.05) was calculated. Each metabolite was represented in sky-blue (significant decrease), blue
(significant increase), and white (non-significant) dots. p-values < 0.05 were considered significant
(Wilcoxon rank-sum test). Bar plots represent means and standard deviations. TCA: tricarboxylic
acid cycle.
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Figure 4. Machine learning shows the utility of serum, but not urine, in the diagnosis of COVID-19.
SHapley Additive exPlanations (SHAP). Summary plots of the gradient boosting machine shows the
top 5 metabolites discriminating between the different categories (left panels). The model accuracy
was estimated by receiver operating characteristics plots, and the areas under the curve (AUROC)
were calculated (right panels). The type of variation (increase or decrease) is shown in heatmaps
(bottom panels). (A) Serum metabolites, COVID-19-positive patients vs. control group. (B) Serum
metabolites, COVID-19-negative patients vs. control group. (C) Serum metabolites, COVID-19-
positive vs. negative patients. (D) Urinary metabolites, COVID-19-positive vs. negative patients.
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4. Discussion

We observed striking differences between the metabolic signatures of healthy subjects,
COVID-19-positive patients, and COVID-19-negative patients. The main metabolic path-
ways altered in the sera of COVID-19 patients were pentose glucuronate interconversion,
ascorbate and fructose metabolism, nucleotide sugar pathway, as well as nucleotide and
amino acid metabolism. Further machine learning identified several individual parameters
that distinguished positive from negative COVID-19 patients, and control subjects. These
results suggest a profound alteration of pathways related to energy metabolism, and the
synthesis of nucleotides and amino acids. These pathways are closely related and have
numerous interactions between them (Figure 5).

Overall, our results suggest an activation of the glycolytic cascade and an increase in
glucose-6-phosphate concentrations; a metabolite that serves as a branching point between
glycolysis, pentose phosphate pathway, pentose and glucuronate interconversion [23].
Viral infections redirect the metabolism of host cells to promote the synthesis of new viral
particles. One of the key enzymes of viral replication is RNA-dependent RNA polymerase,
which acts through the nucleotide addition cycle composed of multiple functional states
involving conformational changes of both protein and nucleotides [24]. Viral transcription
obtains energy and substrates for the synthesis of structural particles from boosting aerobic
glycolysis and the pentose phosphate pathway [25]. The stimulation of aerobic glycolysis
leads to an increase in the activity of hexokinase, the rate-limiting enzyme of glycolysis,
and favoring the stimulation of the pentose phosphate pathway. The role of hexokinase is
to convert glucose into glucose-6-phosphate, which is subsequently oxidized by glucose-
6-phosphate dehydrogenase (G6PD) in the pentose phosphate pathway to synthesize
ribose-5-phosphate, required for nucleic acid synthesis, sugar phosphate precursors that
are necessary for the synthesis of amino acids, and NADPH (Figure 5) [26,27]. Many
viruses, including the influenza virus, hepatitis C virus, and HIV-1, can upregulate the
pentose phosphate pathway [28,29], and our results agree with the recent suggestion that
SARS-CoV-2 may do the same [30].
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Figure 5. Simplified scheme showing the alterations in the metabolic pathways studied when COVID-
19-positive patients are compared with the control group (A) and with COVID-19-negative patients
(B). Red color highlights uncreased metabolites, while blue color shows decreased metabolites. 3PG: 3-
phosphoglycerate; α-KG: α-Ketoglutarate; Cit: Citrate; E-4-P: Erythrose-4-phosphate; F1,6P: Fructose-
1,6-biphosphate; F6P: Fructose-6-phosphate; Fum: Fumarate; G3P: Gln: Glutamine; Glyceraldehyde-
3-phosphate; LA: Lactate; Mal: Malate; OAA: Oxaloacetate; PYR: Pyruvate; Ri-5-P: Ribulose-5-
phosphate; S-7-P: Sedoheptulose-7-phosphate; Suc: Succinate; X-5-P: Xylulose-5-phosphate.

Of all these metabolic pathways, the most clearly representative of COVID-19-positive
patients is that of pentose and glucuronate interconversion, which shows a great increase
relative to negative patients, and the control group. This is a detoxification pathway
in which d-glucuronic acid binds to hydroxyl or the amino groups of toxic substances
under the catalysis of UDP-glucuronosyltransferase to increase water solubility and allow
their release within bile, or urine [31]. Our results are novel in that very little has been
published on the alterations in this pathway in COVID-19 patients. However, recent studies
have linked an increase in the pentose glucuronate interconversion with alterations in the
microbiome of patients with mouth infections [32,33]. Further, pharmacological studies
have reported that the effects of some anti-inflammatory agents are mediated through the
modulation of this metabolic pathway in humans and experimental animals [34,35].

We sought to assess if there were differences in metabolite levels in COVID-19 patients
based on their comorbidities and their severity. In our opinion, the most relevant results
were those referring to the severity of the disease. Volcano plots showed that patients
who required intensive care and those who died had had higher serum concentrations of
lauric acid. Ingested lauric acid from oils is transformed by the human body into laurate-
monoglyceride that inactivates lipid-coated viruses by binding to the viral envelope, thereby
preventing the attachment and entry into the host cells [36,37]. Evidence has also been
reported suggesting that this compound disintegrates the viral envelope and kills the
virus [38]. Our results, therefore, may seem counterintuitive, since we have observed that
the most severe patients had higher concentrations of lauric acid. One possible explanation
is that this compound does not exert this virucidal function when it is not bound to
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glycerol. In this case, higher concentrations of free lauric acid could be associated with
lower concentrations of laurate-monoglyceride. Another explanation is that the levels
of lauric acid are increased to synthesize more laurate monoglyceride in order to try to
counteract the viral infection. In any case, this opens an interesting line of research on the
relationships between lauric acid and the severity of COVID-19. In addition, patients who
needed intensive care had lower xylitol concentrations than those who did not. Xylitol
is a product of pentose and glucoronate interconversion pathway and has inflammatory,
antiglycemic, antiviral, and antibacterial properties in lung infections [39]. Xylitol has
been reported to decrease the concentration of salts in the airway surface liquid lining
the interior of the lungs, improving antibody activity [40]. An in vitro study showed
that this compound has anti-inflammatory properties. Xylitol-treated macrophages had
10 times less adhesion capacity than control subjects and lower levels of cell adhesion
molecules; important because cell adhesion is a crucial step in the pulmonary inflammatory
response [41]. Reports have highlighted that the dietetic administration of xylitol reduces
the viral load in mice infected with the human respiratory syncytial virus [40] or the
influenza A virus infection [42].

In our study, the application of artificial intelligence algorithms helped distinguish the
individual metabolites that have the greatest ability to discriminate between the different
study groups and help identify potential biomarkers. An increase in maltose concentrations
was the alteration with the best ability to discriminate between patients with COVID-19
and the control group. A decrease in succinate was the metabolite with the best ability to
discriminate between positive and negative COVID-19 patients. Xylitol, glyceric, mannonic,
and erythronic acids had similar power of discrimination as maltose. These results are not
easy to explain. Maltose, mannonic, and erythronic acids are products of plant metabolism
and, although they are ingested in the diet, they are not synthesized in relevant amounts
by the human body. Perhaps the explanation of why these metabolites have altered
concentrations is related to the effects of infection on the gut microbiota. Indeed, the
existence of a gut-lung axis has been postulated, with implications in human pathology
that are reflected in changes in the circulating concentrations of metabolites [43]. Dysbiosis
in gut microbiota is associated with lung disorders and respiratory infections [44]. The
depletion of certain bacteria within the gut microbiota due to antibiotic intake influences
lung diseases [45] and conversely, changes in lung microbes influence the composition of
gut microbiota [46]. Several studies reported that changes in the serum levels of maltose,
mannose, succinic acid, and erythronic acid are associated with changes in gastrointestinal
microbiome [47–51]. Moreover, a recent multiomics study showed multiple gut microbe–
metabolite–cytokine interrelationships in COVID-19 [52]. It is worth noting that changes in
the microbiome have been associated with alterations in the levels of pentose glucuronate
interconversion metabolites [53–55].

Metabolomics studies play an important role in the investigation of the molecular
bases of non-communicable and infectious diseases and have revealed themselves as a
powerful tool in the study of COVID-19 to better understand the mode of action of the virus
and achieve more accurate treatments [56]. These methods have been used to investigate
the differences between mild and moderate COVID-19 patients, suggesting that a moderate
disease state may provide the most effective setting for therapeutic intervention [57]. In ad-
dition, studies by our research group [11] and by other authors [58] have used targeted and
untargeted metabolomics to analyze the plasma lipidome and metabolome in COVID-19
patients and healthy controls, identifying molecules related to infection and disease sever-
ity. On the other hand, metabolomics has been used to successfully construct diagnostic
models that predict COVID-19 infection risk and disease severity [59]. Finally, integrating
metabolomics into multiomics analyses has been able to provide a landscape for COVID-19
patients without comorbidities [60].
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5. Conclusions

Alterations in serum maltose, mannonic acid, xylitol, or glyceric acid segregate pos-
itive patients from the control group with high diagnostic accuracy, while succinic acid
segregates positive patients from those with infectious diseases of another origin. These
parameters, therefore, could be good markers for the diagnosis of COVID-19. Conversely,
an increase in the concentration of lauric acid could be a marker for the prognosis of
the disease. Since urine samples are relatively easy to obtain, laboratory measurements
could be made in order to identify urinary biomarkers. However, although the changes in
serum concentrations of metabolites are reflected in the urine, they are small and do not
provide us with effective indices for the nuanced evaluation of the disease. Semi-targeted
metabolomics interpreted using machine learning algorithms has allowed us to delve into
the metabolic alterations underlying COVID-19 and identify potential biomarkers for its
diagnosis and prognosis.
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COVID-19 positive and negative patients; Table S6: Urine metabolites from COVID-19 positive and
negative patients.

Author Contributions: Conceptualization, G.B.-G., S.I. and J.C.; methodology, G.B.-G., S.I., H.C.,
E.R.-T., A.J-F. and A.F.L.-A.; software, G.B.-G.; validation, S.I. and J.C.; formal analysis, G.B.-G. and
H.C.; investigation, G.B.-G., H.C., E.R.-T., A.J.-F. and A.F.L.-A.; resources, A.C., J.C. and J.J.; data
curation, G.B.-G. and S.I.; writing—original draft preparation, G.B.-G. and J.C.; writing—review
and editing, G.B.-G., S.I., H.C. and J.C.; visualization, G.B.-G., S.I. and J.C.; supervision, S.I. and J.C.;
project administration, S.I. and J.C.; funding acquisition, A.C., J.C. and J.J. All authors have read and
agreed to the published version of the manuscript.

Funding: This study and the APC of this article were supported by a grant from the FUNDACIÓ LA
MARATÓ DE TV3 (201807-10), Barcelona, Spain.

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki and approved by the Institutional Review Board of INSTITUT D’INVESTIGACIÓ
SANITÀRIA PERE VIRGILI (Resolution CEIM 040/2018 amended on 16 April 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data presented in this study are available from the corresponding
author upon reasonable request.

Acknowledgments: Editorial assistance was provided by Peter R. Turner.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Martins, M.; do Nascimento, G.M.; Nooruzzaman, M.; Yuan, F.; Chen, C.; Caserta, L.C.; Miller, A.D.; Whittaker, G.R.; Fang, Y.;

Diel, D.G. The Omicron variant BA.1.1 presents a lower pathogenicity than B.1 D614G and delta variants in a feline model of
SARS-CoV-2 infection. J. Virol. 2022, 96, e0096122. [CrossRef] [PubMed]

2. Phillips, N. The coronavirus is here to stay—Here’s what that means. Nature 2021, 590, 382–384. [CrossRef] [PubMed]
3. Camps, J.; Castañé, H.; Rodríguez-Tomàs, E.; Baiges-Gaya, G.; Hernández-Aguilera, A.; Arenas, M.; Iftimie, S.; Joven, J. On the

role of paraoxonase-1 and chemokine ligand 2 (C-C motif) in metabolic alterations linked to inflammation and disease. A 2021
update. Biomolecules 2021, 11, 971. [CrossRef] [PubMed]

4. Li, S.; Zhou, Y.; Yan, D.; Wan, Y. An update on the mutual impact between SARS-CoV-2 infection and gut microbiota. Viruses 2022,
14, 1774. [CrossRef] [PubMed]

5. Wu, Q.; Zhou, L.; Sun, X.; Yan, Z.; Hu, C.; Wu, J.; Xu, L.; Li, X.; Liu, H.; Yin, P.; et al. Altered lipid metabolism in recovered SARS
patients twelve years after infection. Sci. Rep. 2017, 7, 9110. [CrossRef]

https://www.mdpi.com/article/10.3390/biom13010163/s1
https://www.mdpi.com/article/10.3390/biom13010163/s1
http://doi.org/10.1128/jvi.00961-22
http://www.ncbi.nlm.nih.gov/pubmed/36000850
http://doi.org/10.1038/d41586-021-00396-2
http://www.ncbi.nlm.nih.gov/pubmed/33594289
http://doi.org/10.3390/biom11070971
http://www.ncbi.nlm.nih.gov/pubmed/34356595
http://doi.org/10.3390/v14081774
http://www.ncbi.nlm.nih.gov/pubmed/36016396
http://doi.org/10.1038/s41598-017-09536-z


Biomolecules 2023, 13, 163 13 of 15

6. Byers, N.M.; Fleshman, A.C.; Perera, R.; Molins, C.R. Metabolomic insights into human arboviral infections: Dengue, Chikun-
gunya, and Zika viruses. Viruses 2019, 11, 225. [CrossRef]

7. Fujiogi, M.; Camargo, C.A., Jr.; Raita, Y.; Bochkov, Y.A.; Gern, J.E.; Mansbach, J.M.; Piedra, P.A.; Hasegawa, K. Respiratory viruses
are associated with serum metabolome among infants hospitalized for bronchiolitis: A multicenter study. Pediatr. Allergy Immunol.
2020, 31, 755–766. [CrossRef]

8. Liptak, P.; Baranovicova, E.; Rosolanka, R.; Simekova, K.; Bobcakova, A.; Vysehradsky, R.; Duricek, M.; Dankova, Z.; Kapinova,
A.; Dvorska, D.; et al. Persistence of metabolomic changes in patients during post-COVID phase: A prospective, observational
study. Metabolites 2022, 12, 641. [CrossRef]

9. Iftimie, S.; López-Azcona, A.F.; Vicente-Miralles, M.; Descarrega-Reina, R.; Hernández-Aguilera, A.; Riu, F.; Simó, J.M.; Garrido, P.;
Joven, J.; Camps, J.; et al. Risk factors associated with mortality in hospitalized patients with SARS-CoV-2 infection. A prospective,
longitudinal, unicenter study in Reus, Spain. PLoS ONE 2020, 15, e0234452. [CrossRef]

10. Iftimie, S.; López-Azcona, A.F.; Vallverdú, I.; Hernández-Flix, S.; de Febrer, G.; Parra, S.; Hernández-Aguilera, A.; Riu, F.; Joven, J.;
Andreychuk, N.; et al. First and second waves of coronavirus disease-19: A comparative study in hospitalized patients in Reus,
Spain. PLoS ONE 2021, 16, e0248029. [CrossRef]

11. Castañé, H.; Baiges-Gaya, G.; Hernández-Aguilera, A.; Rodríguez-Tomàs, E.; Fernández- Arroyo, S.; Herrero, P.; Delpino-Rius,
A.; Canela, N.; Menendez, J.A.; Camps, J.; et al. Coupling machine learning and lipidomics as a tool to investigate metabolic
dysfunction-associated fatty liver disease. A general overview. Biomolecules 2021, 11, 473. [CrossRef]

12. Ma, J.; Deng, Y.; Zhang, M.; Yu, J. The role of multi-omics in the diagnosis of COVID-19 and the prediction of new therapeutic
targets. Virulence 2022, 13, 1101–1110. [CrossRef]

13. Baros-Steyl, S.S.; Al Heialy, S.; Semreen, A.H.; Semreen, M.H.; Blackburn, J.M.; Soares, N.C. A review of mass spectrometry-based
analyses to understand COVID-19 convalescent plasma mechanisms of action. Proteomics 2022, 22, e2200118. [CrossRef]

14. Costanzo, M.; Caterino, M.; Fedele, R.; Cevenini, A.; Pontillo, M.; Barra, L.; Ruoppolo, M. COVIDomics: The proteomic and
metabolomic signatures of COVID-19. Int. J. Mol. Sci. 2022, 23, 2414. [CrossRef]

15. Castañé, H.; Iftimie, S.; Baiges-Gaya, G.; Rodríguez-Tomàs, E.; Jiménez-Franco, A.; López-Azcona, A.F.; Garrido, P.; Castro,
A.; Camps, J.; Joven, J. Machine learning and semi-targeted lipidomics identify distinct serum lipid signatures in hospitalized
COVID-19-positive and COVID-19-negative patients. Metabolism 2022, 131, 155197. [CrossRef]

16. Iftimie, S.; García-Heredia, A.; Pujol, I.; Ballester, F.; Fort-Gallifa, I.; Simó, J.M.; Joven, J.; Camps, J.; Castro, A. Preliminary study
on serum paraoxonase-1 status and chemokine (C-C motif) ligand 2 in hospitalized elderly patients with catheter-associated
asymptomatic bacteriuria. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1417–1424. [CrossRef]

17. Fort-Gallifa, I.; García-Heredia, A.; Hernández-Aguilera, A.; Simó, J.M.; Sepúlveda, J.; Martín-Paredero, V.; Camps, J.; Joven, J.
Biochemical indices of oxidative stress and inflammation in the evaluation of peripheral artery disease. Free Radic. Biol. Med.
2016, 97, 568–576. [CrossRef]

18. Kreger, B.E.; Craven, D.E.; Carling, P.C.; McCabe, W.R. Gram-negative bacteremia. III. Reassessment of etiology, epidemiology
and ecology in 612 patients. Am. J. Med. 1980, 68, 332–343. [CrossRef]

19. Berkman, L.F.; Leo-Summers, L.; Horwitz, R.I. Emotional support and survival after myocardial infarction. A prospective,
population-based study of the elderly. Ann. Intern. Med. 1992, 117, 1003–1009. [CrossRef]

20. Riera-Borrull, M.; Rodríguez-Gallego, E.; Hernández-Aguilera, A.; Luciano, F.; Ras, R.; Cuyàs, E.; Camps, J.; Segura-Carretero,
A.; Menendez, J.A.; Joven, J.; et al. Exploring the process of energy generation in pathophysiology by targeted metabolomics:
Performance of a simple and quantitative method. J. Am. Soc. Mass Spectrom. 2016, 27, 168–177. [CrossRef]

21. Abraham, A.; Pedregosa, F.; Eickenberg, M.; Gervais, P.; Mueller, A.; Kossaifi, J.; Gramfort, A.; Thirion, B.; Varoquaux, G. Machine
learning for neuroimaging with scikit-learn. Front. Neuroinform. 2014, 8, 14. [CrossRef] [PubMed]

22. Lundberg, S.; Lee, S.I. A unified approach to interpreting model predictions. arXiv 2017, arXiv:170.07874.
23. Fahrmann, J.F.; Grapov, D.D.; Wanichthanarak, K.; DeFelice, B.C.; Salemi, M.R.; Rom, W.N.; Gandara, D.R.; Phinney, B.S.; Fiehn,

O.; Pass, H.; et al. Integrated metabolomics and proteomics highlight altered nicotinamide- and polyamine pathways in lung
adenocarcinoma. Carcinogenesis 2017, 38, 271–280. [CrossRef] [PubMed]

24. Li, Y.; Zhang, D.; Gao, X.; Wang, X.; Zhang, L. 2’- and 3’-ribose modifications of nucleotide analogues establish the structural basis
to inhibit the viral replication of SARS-CoV-2. J. Phys. Chem. Lett 2022, 13, 4111–4118. [CrossRef] [PubMed]

25. Guo, X.; Wu, S.; Li, N.; Lin, Q.; Liu, L.; Liang, H.; Niu, Y.; Huang, Z.; Fu, X. Accelerated metabolite levels of aerobic glycolysis and
the pentose phosphate pathway are required for efficient replication of infectious spleen and kidney necrosis virus in Chinese
perch brain cells. Biomolecules 2019, 9, 440. [CrossRef]

26. Sen, S.; Kaminiski, R.; Deshmane, S.; Langford, D.; Khalili, K.; Amini, S.; Datta, P.K. Role of hexokinase-1 in the survival of
HIV-1-infected macrophages. Cell Cycle 2015, 14, 980–989. [CrossRef]

27. Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M.M.C.; Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Grüning, N.-M.; Krüger,
A.; Alam, M.T.; et al. The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. Camb.
Philos. Soc. 2015, 90, 927–963. [CrossRef]

28. Chen, I.T.; Aoki, T.; Huang, Y.T.; Hirono, I.; Chen, T.C.; Huang, J.Y. White spot Syndrome virus induces metabolic changes
resembling the Warburg effect in shrimp hemocytes in the early stage of infection. J. Virol. 2011, 85, 12919–12928. [CrossRef]

29. Pérez-Torres, I.; Soto, M.E.; Guarner-Lans, V.; Manzano-Pech, L.; Soria-Castro, E. The possible role of glucose-6-phosphate
dehydrogenase in the SARS-CoV-2 infection. Cells 2022, 11, 1982. [CrossRef]

http://doi.org/10.3390/v11030225
http://doi.org/10.1111/pai.13296
http://doi.org/10.3390/metabo12070641
http://doi.org/10.1371/journal.pone.0234452
http://doi.org/10.1371/journal.pone.0248029
http://doi.org/10.3390/biom11030473
http://doi.org/10.1080/21505594.2022.2092941
http://doi.org/10.1002/pmic.202200118
http://doi.org/10.3390/ijms23052414
http://doi.org/10.1016/j.metabol.2022.155197
http://doi.org/10.1007/s10096-016-2679-8
http://doi.org/10.1016/j.freeradbiomed.2016.07.011
http://doi.org/10.1016/0002-9343(80)90101-1
http://doi.org/10.7326/0003-4819-117-12-1003
http://doi.org/10.1007/s13361-015-1262-3
http://doi.org/10.3389/fninf.2014.00014
http://www.ncbi.nlm.nih.gov/pubmed/24600388
http://doi.org/10.1093/carcin/bgw205
http://www.ncbi.nlm.nih.gov/pubmed/28049629
http://doi.org/10.1021/acs.jpclett.2c00087
http://www.ncbi.nlm.nih.gov/pubmed/35503748
http://doi.org/10.3390/biom9090440
http://doi.org/10.1080/15384101.2015.1006971
http://doi.org/10.1111/brv.12140
http://doi.org/10.1128/JVI.05385-11
http://doi.org/10.3390/cells11131982


Biomolecules 2023, 13, 163 14 of 15

30. Bojkova, D.; Costa, R.; Reus, P.; Bechtel, M.; Jaboreck, M.C.; Olmer, R.; Martin, U.; Ciesek, S.; Michaelis, M.; Cinatl, J., Jr. Targeting
the pentose phosphate pathway for SARS-CoV-2 therapy. Metabolites 2021, 11, 699. [CrossRef]

31. Sun, H.; Zhang, A.H.; Song, Q.; Fang, H.; Liu, X.Y.; Su, J.; Yang, L.; Yu, M.D.; Wang, X.J. Functional metabolomics discover pentose
and glucuronate interconversion pathways as promising targets for Yang Huang syndrome treatment with Yinchenhao Tang.
RSC Adv. 2018, 8, 36831–36839. [CrossRef]

32. Chen, S.; Niu, C.; Lv, W. Multi-omics insights reveal the remodeling of gut mycobiome with P. gingivalis. Front. Cell. Infect.
Microbiol. 2022, 12, 937725. [CrossRef]

33. Lu, X.; Liu, T.; Zhou, J.; Liu, J.; Yuan, Z.; Guo, L. Subgingival microbiome in periodontitis and type 2 diabetes mellitus: An
exploratory study using metagenomic sequencing. J. Periodontal Implant. Sci. 2022, 52, 282–297. [CrossRef]

34. Xiong, H.; Li, N.; Zhao, L.; Li, Z.; Yu, Y.; Cui, X.; Liu, Q.; Zhao, C. Integrated serum pharmacochemistry, metabolomics, and
network pharmacology to reveal the material basis and mechanism of Danggui Shaoyao San in the treatment of primary
dysmenorrhea. Front. Pharmacol. 2022, 13, 942955. [CrossRef]

35. Wu, Y.; Li, K.; Zeng, M.; Qiao, B.; Zhou, B. Serum metabolomics analysis of the anti-inflammatory effects of gallic acid on rats
with acute inflammation. Front. Pharmacol. 2022, 13, 830439. [CrossRef]

36. Isaacs, C.E.; Kim, K.S.; Thormar, H. Inactivation of enveloped viruses in human bodily fluids by purified lipids. Ann. N. Y. Acad.
Sci. 1994, 724, 457–464. [CrossRef]

37. Nefedova, E.; Koptev, V.; Bobikova, A.S.; Cherepushkina, V.; Mironova, T.; Afonyushkin, V.; Shkil, N.; Donchenko, N.; Kozlova,
Y.; Sigareva, N.; et al. The infectious bronchitis coronavirus pneumonia model presenting a novel insight for the SARS-CoV-2
dissemination route. Vet. Sci. 2021, 8, 239. [CrossRef]

38. Thormar, H.; Isaacs, C.E.; Brown, H.R.; Barshatzky, M.R.; Pessolano, T. Inactivation of enveloped viruses and killing of cells by
fatty acids and monoglycerides. Antimicrob. Agents Chemother. 1987, 31, 27–31. [CrossRef]

39. Cheudjeu, A. Correlation of D-xylose with severity and morbidity-related factors of COVID-19 and possible therapeutic use of
D-xylose and antibiotics for COVID-19. Life Sci. 2020, 260, 118335. [CrossRef]

40. Ferreira, A.S.; Ad Souza, M.; Raposo, N.R.B.; Ferreira, A.P.; Silva, S.S. Xylitol inhibits J774A.1 macrophage adhesion in vitro. Braz.
Arch. Biol. Technol. 2011, 54, 1211–1216. [CrossRef]

41. Xu, M.L.; Wi, G.; Kim, H.J.; Kim, H.J. Ameliorating effect of dietary xylitol on human respiratory syncytial virus (hRSV) infection.
Biol. Pharm. Bull. 2016, 39, 540–546. [CrossRef] [PubMed]

42. Yin, S.Y.; Kim, H.J.; Kim, H.J. Protective effect of dietary xylitol on influenza A virus infection. PLoS ONE 2014, 9, e84633.
[CrossRef] [PubMed]

43. Anand, S.; Mande, S.S. Diet, microbiota and gut-lung connection. Front. Microbiol. 2018, 9, 2147. [CrossRef] [PubMed]
44. Shukla, S.D.; Budden, K.F.; Neal, R.; Hansbro, P.M. Microbiome effects on immunity, health and disease in the lung. Clin. Transl.

Immunol. 2017, 6, e133. [CrossRef] [PubMed]
45. Russell, S.L.; Gold, M.J.; Willing, B.P.; Thorson, L.; Mcnagny, K.M.; Finlay, B.B. Perinatal antibiotic treatment affects murine

microbiota, immune responses and allergic asthma. Gut Microbes 2013, 4, 158–164. [CrossRef]
46. Looft, T.; Allen, H.K. Collateral effects of antibiotics on mammalian gut microbiomes. Gut Microbes 2012, 3, 463–467. [CrossRef]
47. Xie, J.; Cho, H.; Lin, B.M.; Pillai, M.; Heimisdottir, L.H.; Bandyopadhyay, D.; Zou, F.; Roach, J.; Divaris, K.; Wu, D. Improved

metabolite prediction using microbiome data-based elastic net models. Front. Cell. Infect. Microbiol. 2021, 11, 734416. [CrossRef]
48. Wan, J.; Zhang, Y.; He, W.; Tian, Z.; Lin, J.; Liu, Z.; Li, Y.; Chen, M.; Han, S.; Liang, J.; et al. Gut microbiota and metabolite changes

in patients with ulcerative colitis and Clostridioides difficile infection. Front. Microbiol. 2022, 13, 802823. [CrossRef]
49. Colonetti, K.; de Carvalho, E.L.; Rangel, D.L.; Pinto, P.M.; Roesch, L.F.W.; Pinheiro, F.C.; Schwartz, I.V.D. Are the bacteria and

their metabolites contributing for gut inflammation on GSD-Ia patients? Metabolites 2022, 12, 873. [CrossRef]
50. Liu, A.; Ma, T.; Xu, N.; Jin, H.; Zhao, F.; Kwok, L.Y.; Zhang, H.; Zhang, S.; Sun, Z. Adjunctive probiotics alleviates asthmatic

symptoms via modulating the gut microbiome and serum metabolome. Microbiol. Spectr. 2021, 9, e0085921. [CrossRef]
51. Tong, W.; Hannou, S.A.; Wang, Y.; Astapova, I.; Sargsyan, A.; Monn, R.; Thiriveedi, V.; Li, D.; McCann, J.R.; Rawls, J.F.; et al. The

intestine is a major contributor to circulating succinate in mice. FASEB J. 2022, 36, e22546. [CrossRef]
52. Nagata, N.; Takeuchi, T.; Masuoka, H.; Aoki, R.; Ishikane, M.; Iwamoto, N.; Sugiyama, M.; Suda, W.; Nakanishi, Y.; Terada-

Hirashima, J.; et al. Human gut microbiota and its metabolites impact immune responses in COVID-19 and its complications.
Gastroenterology 2022, in press. [CrossRef]

53. Liao, J.; Li, Q.; Lei, C.; Yu, W.; Deng, J.; Guo, J.; Han, Q.; Hu, L.; Li, Y.; Pan, J.; et al. Toxic effects of copper on the jejunum and
colon of pigs: Mechanisms related to gut barrier dysfunction and inflammation influenced by the gut microbiota. Food Funct.
2021, 12, 9642–9657. [CrossRef]

54. Yu, W.; Shang, J.; Guo, R.; Zhang, F.; Zhang, W.; Zhang, Y.; Wu, F.; Ren, H.; Liu, C.; Xiao, J.; et al. The gut microbiome in differential
diagnosis of diabetic kidney disease and membranous nephropathy. Ren. Fail. 2020, 42, 1100–1110. [CrossRef]

55. Yin, J.; Li, Y.; Han, H.; Liu, Z.; Zeng, X.; Li, T.; Yin, Y. Long-term effects of lysine concentration on growth performance, intestinal
microbiome, and metabolic profiles in a pig model. Food Funct. 2018, 9, 4153–4163. [CrossRef]

56. Zhou, J.; Zhong, L. Applications of liquid chromatography-mass spectrometry based metabolomics in predictive and personalized
medicine. Front. Mol. Biosci. 2022, 9, 1049016. [CrossRef]

57. Su, Y.; Chen, D.; Yuan, D.; Lausted, C.; Choi, J.; Dai, C.L.; Voillet, V.; Duvvuri, V.R.; Scherler, K.; Troisch, P.; et al. Multi-omics
resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 2020, 183, 1479–1495. [CrossRef]

http://doi.org/10.3390/metabo11100699
http://doi.org/10.1039/C8RA06553E
http://doi.org/10.3389/fcimb.2022.937725
http://doi.org/10.5051/jpis.2103460173
http://doi.org/10.3389/fphar.2022.942955
http://doi.org/10.3389/fphar.2022.830439
http://doi.org/10.1111/j.1749-6632.1994.tb38947.x
http://doi.org/10.3390/vetsci8100239
http://doi.org/10.1128/AAC.31.1.27
http://doi.org/10.1016/j.lfs.2020.118335
http://doi.org/10.1590/S1516-89132011000600017
http://doi.org/10.1248/bpb.b15-00773
http://www.ncbi.nlm.nih.gov/pubmed/27040626
http://doi.org/10.1371/journal.pone.0084633
http://www.ncbi.nlm.nih.gov/pubmed/24392148
http://doi.org/10.3389/fmicb.2018.02147
http://www.ncbi.nlm.nih.gov/pubmed/30283410
http://doi.org/10.1038/cti.2017.6
http://www.ncbi.nlm.nih.gov/pubmed/28435675
http://doi.org/10.4161/gmic.23567
http://doi.org/10.4161/gmic.21288
http://doi.org/10.3389/fcimb.2021.734416
http://doi.org/10.3389/fmicb.2022.802823
http://doi.org/10.3390/metabo12090873
http://doi.org/10.1128/Spectrum.00859-21
http://doi.org/10.1096/fj.202200135RR
http://doi.org/10.1053/j.gastro.2022.09.024
http://doi.org/10.1039/D1FO01286J
http://doi.org/10.1080/0886022X.2020.1837869
http://doi.org/10.1039/C8FO00973B
http://doi.org/10.3389/fmolb.2022.1049016
http://doi.org/10.1016/j.cell.2020.10.037


Biomolecules 2023, 13, 163 15 of 15

58. Song, J.W.; Lam, S.M.; Fan, X.; Cao, W.J.; Wang, S.Y.; Tian, H.; Chua, G.H.; Zhang, C.; Meng, F.P.; Xu, Z.; et al. Omics-driven
systems interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell Metab 2020, 32, 188–202.e5. [CrossRef]

59. Sindelar, M.; Stancliffe, E.; Schwaiger-Haber, M.; Anbukumar, D.S.; Adkins-Travis, K.; Goss, C.W.; O’Halloran, J.A.; Mudd, P.A.;
Liu, W.C.; Albrecht, R.A.; et al. Longitudinal metabolomics of human plasma reveals prognostic markers of COVID-19 disease
severity. Cell Rep. Med. 2021, 2, 100369. [CrossRef]

60. Wu, P.; Chen, D.; Ding, W.; Wu, P.; Hou, H.; Bai, Y.; Zhou, Y.; Li, K.; Xiang, S.; Liu, P.; et al. The trans-omics landscape of COVID-19.
Nat. Commun. 2021, 12, 4543. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.cmet.2020.06.016
http://doi.org/10.1016/j.xcrm.2021.100369
http://doi.org/10.1038/s41467-021-24482-1

	Introduction 
	Materials and Methods 
	Study Design and Participants 
	Targeted Metabolomics 
	Statistical Analyses 
	Dimensionality Reduction and Heatmap Analysis 
	Machine Learning Analysis 

	Results 
	Comparisons between the Serum Metabolic Signatures of the Different Groups of Participants 
	Clinical Characteristics Associated with Changes in the Serum Metabolome 
	Comparisons between the Urine Metabolic Signatures of COVID-19-Positive and Negative Patients 
	Machine Learning Potential Identified in COVID-19 Biomarkers in Serum, but Not in Urine 

	Discussion 
	Conclusions 
	References

