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Abstract: Mosquito transgenesis and gene-drive technologies provide the basis for developing
promising new tools for vector-borne disease prevention by either suppressing wild mosquito
populations or reducing their capacity from transmitting pathogens. Many studies of the regulatory
DNA and promoters of genes with robust sex-, tissue- and stage-specific expression profiles have
supported the development of new tools and strategies that could bring mosquito-borne diseases
under control. Although the list of regulatory elements available is significant, only a limited set of
those can reliably drive spatial–temporal expression. Here, we review the advances in our ability
to express beneficial and other genes in mosquitoes, and highlight the information needed for the
development of new mosquito-control and anti-disease strategies.
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1. Introduction

Mosquito-borne diseases are one of the greatest challenges to global health [1]. Anophe-
les mosquitoes are the main vectors of human malaria parasites; Aedes species are ma-
jor transmitters of arboviruses, including dengue, chikungunya, and Zika; and Culex
mosquitoes are prominent vectors of viruses that cause encephalitic infections, including
West Nile virus, and nematode parasites that cause lymphatic filariasis. Classical disease
control methods, including repellents and bed nets, target bite prevention and mosquito
elimination, typically using chemical insecticides [2]. However, disease incidences remain
high, and resistance to commonly used insecticides is increasingly present in wild mosquito
populations [3]. In order to supplement insecticide-based control strategies, the use of
genetically engineered mosquitoes has been proposed to provide next-generation tools for
disease prevention, and these include genetic-based vector population elimination or a
reduced pathogen transmission capacity [4,5].

Advances in the knowledge of vector–pathogen interactions and mosquito biology,
combined with the development of genomic data and sophisticated tools for genetic
editing, provide opportunities to improve transgenic technologies in major mosquito
vectors. Transgenesis experiments are essential to investigate endogenous gene function
and to introduce exogenous DNA products desired to mitigate pathogen transmission [4,6].
Current gene drive research is centered mainly on drives based on the CRISPR-Cas9
genome-editing toolset, and the proposed strategies use pre-characterized promoter and
terminator elements, each driving tissue-specific transgene expression as required for
different functions in the germline and in various somatic tissues. However, compared
to the knowledge accumulated on transcriptional regulation in the vinegar fly, Drosophila
melanogaster, little is known about the regulatory genome of mosquitoes. In fact, the
regulatory networks of most mosquito genes remain understudied from a mechanistic
perspective [7].

Computational predictions and comparative genomics tools have assisted in the iden-
tification of cis-acting regulatory regions and transcriptional enhancers in mosquitoes [8,9].
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Additionally, the functional fragments of gene control sequences have been defined pri-
marily through transposon-mediated transgenesis experiments [10–12]. Nevertheless, a
comprehensive understanding of mosquito regulatory biology requires combining and
cross validating data generated using direct, indirect and in silico approaches. Recent efforts
are in place to further characterize mosquito gene regulatory networks in vivo and provide
new insights into mechanisms controlling mosquito functional gene expression [7,13].

Here we review the various promoters that have been shown to drive transgene
expression in mosquitoes and their utility for biotechnology-based control approaches, as
well as the valuable insights into mosquito regulatory biology they provide.

2. Genetic Engineering Toolbox

The ability to manipulate gene expression in specific tissues at specific times in de-
velopment is key to understanding mosquito biology and developing genetic means for
vector control [14]. This work is facilitated in mosquitoes through the use of bi-partite
expression systems such as the Gal4-UAS system [10,15,16]. For example, a recent con-
tribution using this system expanded the genetic tools available to study gene function
in hemocytes by characterizing the gene expression pattern driven by the Drosophila hml
promoter in An. gambiae adult females [17]. Similarly, in an effort to obtain multi-tissue
ubiquitous-like expression of transgenes, promoters of highly conserved ‘housekeeping’
genes such as polyubiquitin [18] have been investigated in mosquitoes, with successful
validation of constitutive transcriptional activities [19,20]. Exogenously derived promoters
and control sequences from genes such as heat-shock protein 70, actin5c and ubiquitin from D.
melanogaster, and the baculovirus immediate-early (IE1), have also been useful in mosquito
transgenesis [21–26].

Sustained, easily scored marker gene expression is desirable during screening for
transgenic individuals when making new or maintaining previously established lines. This
has been traditionally achieved by the use of a variety of viral and insect promoters, due to
their lack of organism and tissue-specificity, to direct the expression of a fluorescent protein-
encoding or other visible marker gene. The most frequently used and best characterized
promoters come from D. melanogaster or baculoviruses and have been used successfully
to express both exogenous and modified endogenous genes in mosquitoes or mosquito
cell lines [12,25–34]. Later, genomic sequences derived from regions adjacent to the 5′-end
(upstream) of endogenous heat shock protein-encoding genes were shown to be capable
of driving marker expression in Ae. aegypti, both transiently in cells and embryos and
through the stable integration of transgenes [35,36]. Although the most commonly used
promoter for marker visualization is 3xP3 [37,38], which is remarkably visible in the optic
nerves of larvae and pupae [39], identification of positive individuals can be difficult in
weaker phenotypes or in later stages of development due to dark eye pigmentation [40]. In
such cases, marker genes driven by strong constitutive promoters can be advantageous,
particularly if there is a need to reliably identify transgenic mosquitoes in a wider range of
stages [41], such as in field applications.

Initial work to define and characterize mosquito promoters in vivo relied on Class
II transposable elements (transposons) to integrate modified endogenous and exogenous
gene constructs stably and heritably into vector genomes. Class II elements are DNA-based
and comprise a gene (and regulatory elements) encoding a transposase enzyme flanked
by inverted repeat sequences of varying complexity and length (length and sequence are
characteristic of each family of transposons). Complete (autonomous) elements are able
to mobilize (excise and integrate) through either a conservative (no net increase in copy
number) or replicative (increase in copy number) mode, thereby changing their linkage
relationships in the genome [41]. Following the inability to adapt the P element, first
discovered in D. melanogaster, to mosquito species, new discoveries identified a number of
elements, Hermes, Mos 1 mariner, Minos, and ultimately, piggyBac, that work well in both
anopheline and culicine mosquitoes [42].
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More recently, high-efficiency genome engineering applications, such as those based
on CRISPR-Cas9 technologies, have supplanted most applications of transposable elements.
Their ability to target the integration of DNA to a preselected site in the genome can be
used to control or mitigate variations of transgene performance resulting from position-site
effects often encountered when using transposable elements [42]. The Cas9-based systems
require a ubiquitously expressed guide RNA (gRNA) sequence to direct nuclease cleavage
activity at the preselected site as a first step in integration or modification. In mosquitoes,
RNA Polymerase III (Pol III) promoters have been used for genetic control strategies that
depend on gRNA or RNAi [43] expression. In particular, the U6 RNA polymerase III
gene promoters are ideal for non-coding RNA expression due to their nucleus-associated
transcription without the 5′- and 3′-end mRNA modification associated with Polymerase
II gene expression. Endogenous U6 regulatory sequences have been used to drive gRNA
expression across different mosquito species, with varying degrees of activity [40,44–46]. To
complement the tools used for efficient transgene transmission in mosquitoes, we discuss
below the multiple sequences used to drive expression of Cas9 in the germline, a capability
essential for gene drive development.

3. Germline-Specific Promoters

Two general genetic strategies for mosquito population management have been en-
visioned: population suppression, and population replacement with individuals that are
refractory to disease transmission. Several gene-drive based versions of these strategies
require the use of regulatory sequences that drive expression primarily or exclusively in
the germline, particularly the ones that utilize engineered site-specific homing endonucle-
ases. When expression of an endonuclease such as Cas9 is activated in the male and/or
female germline in a hemizygote, cleavage of the target site on the wild-type chromosome
followed by homology-directed DNA repair results in an increase in the frequency of the
drive transgene in the population [47].

In mosquitoes, expression of transgenes in germline-specific patterns were achieved
using notable regulatory sequences. The regulatory regions of the β2-tubulin gene have been
utilized to drive testis-specific marker expression [48,49]. The germline-specific regulatory
promoter and untranslated regions from the vasa, nanos, and zero population growth (zpg)
genes have been used to direct expression of the Cas9 nuclease in male and female germ
cells as components of gene-drive systems [40,50–53]. In addition, sex-specific expression
of fluorescent markers can be exploited for an efficient high-throughput sex separation
during mosquito rearing. This strategy has been pursued using the β2 tubulin promoter in
Ae. aegypti [48] and An. stephensi [49], and in An. gambiae, where the use of the doublesex
(dsx) promoter [54] permits early larval separation due to its selective expression-driven
pattern in male larvae at early developmental stages [55].

Considering gene drives, different Cas9 expression constructs support the conclusion
that promoter-dependent Cas9 transcript localization may play a critical role in drive in-
tegration outcomes [56,57]. It has been demonstrated that successful drive conversion in
the male germline occurs without subsequent formation of resistance alleles in the embryo
due to paternally deposited Cas9 [57]. In contrast, in zygotes with maternal deposition of
Cas9/gRNA complexes, the physical distance between the paternal and maternal chromo-
somes within the embryo may prevent homology-directed repair and result in a potentially
drive-resistant allele [40,58]. Furthermore, lower levels of paternally transmitted Cas9 in
the embryo can minimize off-target and toxicity effects. Additionally, the nanos promoter
significantly lowered somatic Cas9 expression compared to the vasa promoter, supporting
the conclusion that it is a better choice in drive strategies where gene disruption in somatic
cells could have fitness costs [59]. Recently, an examination of transcript distribution pat-
terns of Cas9 transgenes driven by the vasa or nanos promoters in the germline of transgenic
Anopheles mosquitoes showed an overall strong concordance between promoter-driven
Cas9 and endogenous gene expression patterns for both drive systems in males, but also
distinct colocalization patterns for the two drives in female reproductive tissues [53]. De-
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spite the imperfect overlap of transgene vs. endogenous transcript patterns, transgenic
nanos-Cas9 mosquitoes display highly efficient drive performance [58,60].

The zpg control DNA sequences have suitable performances in An. gambiae drive
studies [61,62], potentially due to reduced Cas9 expression levels [53]. In Ae. aegypti, a
comprehensive assessment revealed transcriptional regulatory regions able to drive female
germline-specific, and female and male germline-specific expression, with overlapping but
also distinct transcriptional patterns [63]. Using these, different Cas9 strains engineered
achieved great mutagenic efficiency and specificity [34]. Additionally, a study of Ae. aegypti
developmental transcriptomes [64] led to the identification a novel female germline and
early zygote promoter from the transcription factor bZip1 [65]. It was demonstrated that
transgenic lines in which the bZip1 promoter expresses a fluorescent marker protein follow
the same pattern of expression as the endogenous gene, although the genomic fragment
chosen appears to be strongly repressed by position effects.

Hence, the use of different germline-specific control DNA sequences has provided
initial resources toward understanding the basis for differing drive properties and the iden-
tification of regulatory elements that will be instrumental in furthering our understanding
of mosquito biology and control.

4. Population Suppression

Genetics-based population suppression can be achieved through mass-release of
mosquitoes carrying dominant-lethal, sex-conversion, or female reproductive damaging
transgenes. Dominant-lethal and female reproductive damaging approaches usually re-
quire spatially restricted expression of a deleterious gene product under the control of
specific regulatory elements to achieve their designed outcomes. Additionally, to maintain
breeding populations of transgenic strains, these lethal or damaging effector genes must be
under conditional regulation so that lethality or sterility only occurs under non-permissive
conditions [66]. The promoter and control DNA derived from the flight muscle-specific
Actin-4 gene in Ae. aegypti [67] and an antibiotic-repressible lethal factor were used to create
a female-specific flightless phenotype strain [68]. This approach was also shown to work in
a related species, Ae. albopictus [69] and was successfully adapted to An. stephensi [70], with
the use of orthologue endogenous regulatory sequences. Moreover, while early studies in
Cx. quinquefasciatus transgenesis proved the functional conservation of the flight muscle D.
melanogaster act88F promoter [71], its use to drive effector transgene expression has not yet
been accomplished for this species.

Some insect promoters can be exploited for developing mosquito control strategies
to reduce vector populations by female-to-male sex conversion, or to aid in sterile insect
techniques that require releasing only non-biting males. For example, the ectopic expression
of the Y chromosome-linked signal gene Yob under the control of the germline promoter
vasa generated a partial female lethal phenotype in An. gambiae [72]. However, complete
penetrance of the lethal phenotype may require the use of promoters that are more active
during the early zygotic stage. This has been achieved in An. stephensi, where a male-only
phenotype was achieved by expression of an autosomally integrated construct consisting
of the male-determining gene, Guy1, driven by its own endogenous promoter [73]. Addi-
tionally, successful conversions of females into fertile males with all male-specific sexually
dimorphic features were achieved using the native promoter of the male-determining factor
Nix in Ae. aegypti and Ae. albopictus [74,75].

A newly developed molecular tool expanded the flexibility of suppression technologies
by engineering a paralysis-inducing neurotoxic synthetic effector designed to be secreted
by the adult fat body following a blood-meal, under the control of the vitellogenin (Vg)
promoter in Ae. aegypti [76]. This makes it possible to dissociate the temporal and spatial
expression patterns of an effector, and allow the use of a wider panel of endogenous
regulatory components for building genetic lethal systems.
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5. Population Modification

Mosquito genomic studies have long focused on the design of engineered genes
under the control of promoter-regulatory DNA to drive site-specific expression in infection-
relevant tissues (‘compartments’ [77]). In addition to spatial considerations, the time of
transgene-mediated protein synthesis relative to pathogen arrival in each of these com-
partments was considered. This is a favorable design feature in engineering mosquitoes to
minimize potential transgenesis-related fitness costs by restricting the expression of trans-
genes to the infection-relevant sex, developmental stage, and mosquito body compartments
in which the pathogens are found. Many endogenous promoters have been used to drive
transgene expression in mosquitoes and examples of these are listed in Figure 1.
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Figure 1. Genes whose promoters and 5′- and 3′ end DNA sequences are used in genetic engineering
of mosquitoes. The promoters and control DNA of a number of genes have been used to drive
expression of genetic components or effector molecules in different tissues of the mosquito. Details
and references on the promoters listed are included in the text. Abbreviations: aapp, anopheline
antiplatelet gene; Aper1, adult peritrophic matrix gene; Apy, apyrase; Cp, zinc carboxypeptidase A1;
D7r, D7-related gene; Hsp70, heat-shock protein 70.

As the midgut is the first tissue encountered by newly introduced parasites and
arboviruses, the regulatory DNA of midgut-specific genes, particularly those that are
expressed at high levels in response to a blood-meal, are ideal candidates for directing
the expression of effector genes in this compartment. The most widely characterized
regulatory regions are from digestive enzyme-encoding genes such as trypsin [78–81] and
carboxypeptidase (Cp) [82]. The control DNA sequences of other genes can be useful for strict
female-specificity, such as the An. gambiae G12 gene [81], or being abundantly expressed in
the midgut even prior to a blood meal, such as peritrophin (Aper1) and actin5C [12,83]. A
number of robust anti-pathogen strategies have been developed using Cp gene ortholog
promoters in Anopheles species [84,85] and Aedes aegypti [86]. However, the use of this
promoter also has been associated with lowered fitness of transgenic mosquitoes, linked
to the action of the transgenes themselves. Mosquitoes with Cp-driven Akt signaling have
an impacted lifespan, likely due to leaky expression at the non-blood-fed stage [87], and
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certain exogenous antimicrobial peptides can exert internal damage to the midgut or cause
undesired physiological effects [85,88].

During subsequent stages of infection, the pathogens traverse the midgut wall (in-
tracellularly and/or extracellularly) and migrate through the open circulatory system
(hemocoel) to the mosquito salivary glands (Plasmodium parasites and arboviruses) or
proboscis (filarial nematodes). Hence, effector gene expression targeted to the mosquito
hemocoel can impact pathogen migration. The Vg gene cis-acting DNA sequences are
the most widely used [23,26,89–91] to induce late-digestion and sex-specific expression of
desired gene products in the fat body for secretion into the hemolymph. This gene has a
restricted temporal profile of expression that peaks around 24 h after a blood meal and
returns to basal level by 48 h. However, for sustained Vg-driven expression, the promoter
can be re-activated by additional blood meal(s) [92]. Similar to Cp-induced expression,
different combinations of molecules and Vg expression systems have contrasting impacts
on mosquito survival and consequent transgene integration into populations. For example,
expression of the peptide SM1 driven by the Vg promoter imposes a significant fitness
load to transgenic mosquitoes [93], but the same does not occur on individuals with the Cp
control DNA driving expression of SM1 [88]. Nonetheless, a number of highly effective
transgenic lines that target multiple infection stages through multi-effector expression using
both Cp and Vg do not show impaired life spans [85,92]. Additionally, heterologous [94]
or mosquito promoter regions can be used to drive salivary gland-specific transgene ex-
pression, including those from Maltase-I, D7r and apyrase [21,95–97], and the anopheline
antiplatelet gene (aapp) [98–100]. Transgene products were expressed in Ae. aegypti under
the control of a functional bi-directional 30K gene promoter, significantly reducing Dengue
virus titers in mosquito salivary glands [101]. The promoter region of aapp also has been
used to induce production, secretion, and host inoculation of a malarial protein through
An. stephensi saliva [102].

Finally, mosquito promoters of immune-modulated genes are potentially useful for
being sensitive to pathogen presence in the system [103]. In addition, the importance of
cis-acting mutations on detoxification enzyme genes for insecticide resistance in mosquitoes
is widely accepted [104–106] and promoters identified as having neural expression patterns
could be used for the functional analysis of SNPs within insecticide-resistant alleles. Given
the availability of mosquito genomes and increased transcriptome data, a great number of
promoters can be predicted for their ability to drive transgenes in mosquitoes. Addition-
ally, sophisticated genetic tools for expression analysis allow cross-species computational
enhancer prediction [13,107,108]. However, these regulatory elements need to be tested
before being used to create genetically engineered mosquitoes. A novel artificial-intron-
based strategy for mosquito transgenesis supports the co-option of regulatory elements of
endogenous loci directly without prior labor-intensive promoter characterization [109] and
is a viable approach to satisfy the need of promoters for many infection-relevant tissues.

6. Conclusions

Methods to produce transgenic mosquitoes have been available for over 20 years [22,110–112].
A number of possible promoters and 5′- and 3′-end DNA sequences to drive the expres-
sion of transgenes and effector molecules whose products hinder mosquito population
survival or pathogen development have been discovered, yet only a handful of these
pre-characterized promoter elements are used routinely for generating transgenic lines
intended for population suppression or modification strategies (Table 1). These regulatory
sequences can be classified into two groups (Figure 1). The first comprises the ubiqui-
tously expressed promoters, and RNA Pol III promoters (U6) used to generate guide RNA
(gRNA)-expressing lines. The second are the tissue-specific promoters, which can drive
expression in the fat body, midgut, salivary glands, hemocytes, and testis and/or ovaries,
the latter being used to generate Cas9-expressing lines.
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Table 1. Transgenic mosquitoes exhibiting pathogen refractoriness or lethal/sterile phenotypes.

Mosquito Species Phenotype Promoter References

An. stephensi

Pathogen
refractoriness

Cp [84,86–88,92,113–116]

Aper1 [83,117]

Vg [84,85,92,116]

aapp [98–100]

Lethality/Sterility
Act-4 [70]

Guy1 [73]

An. gambiae

Pathogen
refractoriness

Cp [118–120]

Vg [121–123]

Lethality/Sterility
β2 tub [124]

Yob [72]

Ae. aegypti

Pathogen
refractoriness

Cp [86,125–127]

PUb [26,127]

30K [101]

Vg [23]

Lethality/Sterility

Vg [76]

Act-4 [68]

Nix [74]

Ae. albopictus Lethality/Sterility
Act-4 [69]

Nix [75]
Cp, zinc carboxypeptidase A1; Aper1, peritrophin; Vg, vitellogenin; aapp, anopheline antiplatelet protein; Act-4,
actin-4; β2 tub, β2 tubulin; PUb, polyubiquitin.

Given that the success of transgenic mosquito vector control approaches relies on well-
targeted gene expression, the identification and characterization of a diverse set of mosquito
promoters and transcriptional enhancers are required for technological progress [13]. An
increased knowledge of the expression systems currently used also can help establish
dosage-response curves of different types of effectors that may require distinct levels of
effectively expressed proteins. Furthermore, the importance of characterizing mosquito
regulatory systems goes beyond their use for biotechnology-based approaches, as different
sequences acting in each of the life cycle stages of the insect or disease agent can provide
valuable insights into mosquito biology and pathogen interaction [128].

Finally, it is important to acknowledge that the application of new genetic engineering
technology is challenging because an accepted standard for moving it from the laboratory
to the field may not exist or have been tested yet [77]. Pathways for moving gene-drive
population suppression and modification mosquitoes to the field are being charted as
the work progresses and the science is often ahead of community-based efforts to cer-
tify best practices. In response, investigators, scientific advisory groups, and potential
stakeholders have offered analyses of challenges and issued guidelines for moving the
science forward [129–131]. Accepted guiding principles include that the work be conducted
in phases in which stringent criteria must be met before moving from one phase to the
next. The World Health Organization (WHO) proposed early on a framework for testing
genetically engineered mosquitoes and defined four phases: Phase 1 tests are discovery
stages physically confined to laboratories and insectaries; Phase 2 moves the strains to
development and are carried out in small-scale physically and/or ecologically contained
field tests; Phase 3 continues development in a series of open release trials that increase
in size, length, and complexity at one or more sites; and Phase 4 moves the technology to
a wider application as a malaria control tool in the delivery stage [129]. Specific strains
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are evaluated and subjected to rigorous ‘go/no go’ criteria in each phase. Later efforts
acknowledged the special challenges posed by the gene-drive system [132–134]. We en-
courage all scientists working with these technologies to adopt the principles outlined
in these frameworks and make the essential efforts to engage potential stakeholders and
end-users [135,136].
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