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Abstract: Structure–function relationships in proteins have been one of the crucial scientific topics in
recent research. Heme proteins have diverse and pivotal biological functions. Therefore, clarifying
their structure–function correlation is significant to understand their functional mechanism and is
informative for various fields of science. In this study, we constructed convolutional neural network
models for predicting protein functions from the tertiary structures of heme-binding sites (active
sites) of heme proteins to examine the structure–function correlation. As a result, we succeeded in
the classification of oxygen-binding protein (OB), oxidoreductase (OR), proteins with both functions
(OB–OR), and electron transport protein (ET) with high accuracy. Although the misclassification
rate for OR and ET was high, the rates between OB and ET and between OB and OR were almost
zero, indicating that the prediction model works well between protein groups with quite different
functions. However, predicting the function of proteins modified with amino acid mutation(s)
remains a challenge. Our findings indicate a structure–function correlation in the active site of heme
proteins. This study is expected to be applied to the prediction of more detailed protein functions
such as catalytic reactions.

Keywords: structure–function correlation; active site conformation; convolutional neural network;
machine learning

1. Introduction

Proteins with metal cofactors and ions are called metal proteins, where a metal ion and
its environment work as a catalytic active center. Because metal proteins enable biochemical
reactions not possible with ordinary proteins, many researchers pay attention to them [1–5].
Heme proteins are the largest class of metal proteins and serve pivotal biological functions.
Heme, a Fe–porphyrin complex, is an active center of heme proteins and expresses diverse
functions such as an electron transport [6,7], a catalyst for various kinds of reactions [8,9],
and an oxygen carrier [10,11]. Besides being an active center, it plays a role in the regulation
of protein functions as a ligand [12,13] and in a source of Fe ions [14]. Some proteins bind
to heme for transport or storage; these are referred to as hemophores [15]. The mechanism
of heme protein functions has been a crucial scientific issue. The structural information
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on heme proteins is increasing yearly [16], indicating a high level of scientific interest.
However, few studies have comprehensively investigated heme proteins.

The key factors regulating the heme function are considered to be the axial ligand
of heme, the side-chain orientation of the heme propionate, the types of heme, and the
porphyrin distortion of heme. Because distal and proximal amino acids and chemical
structures of heme are important factors in determining protein functions, their roles
have been investigated [17–19]. However, these factors alone do not determine protein
functions [20].

Both experimental and computational studies have shown a correlation between heme
distortion and its chemical properties [21–24]. Our group discovered a heme distortion
classified into oxygen-binding proteins and oxidoreductases by a combined analysis of
machine learning and quantum chemical calculations [25]. Therefore, we focused on the
contribution of heme distortion to the functional regulation of heme proteins. Heme com-
plexed with its host protein exhibits a distorted conformation from its isolated structure [20],
suggesting the regulation of the heme porphyrin structure by the protein environment
around heme. From a simulation study for two oxygen carrier proteins, hemoglobin and
myoglobin, it was suggested that the host protein environment affects heme distortion and
controls chemical properties of heme relevant to the function of its host protein [26]. As a
first step in clarifying such regulation of function of heme, we elucidated the correlations
between the heme distortion and protein environment around heme, including proximal
and distal amino acids using a machine learning method [27] and a convolutional neural
network (CNN) [28]. Since the heme distortion correlates with its chemical properties, it is
likely that it also correlates with protein function. Considering these results, we can expect
to predict protein functions from the tertiary structures of heme-binding sites, including
axial ligand(s).

In experimental studies, researchers are actively working on modifying the function
of proteins by introducing amino acid mutations. Especially for myoglobin, which is an
oxygen carrier, engineered proteins, such as peroxidase [29–33], exhibit enzymatic activity.
These mutated sites are primarily located in heme-binding pockets (active sites) other than
axial ligands. Thus, changes in the protein environment of a heme-binding site significantly
affect protein functions.

In this study, we constructed a CNN model for predicting protein functions from the
tertiary structures of the heme-binding sites of heme proteins, including proximal and
distal amino acids. The CNN is a kind of deep neural network that is widely utilized in
computer vision tasks, such as image classification [34,35]; it has also been applied to the
classification of protein cavity structures [36]. We succeeded in predicting protein functions
from the pocket structures of three functional groups of heme proteins. The prediction with
our CNN model worked well between the groups with quite different functions. Analysis
of the similarity of cavity shape among proteins with the same function suggests that
there is no one-to-one correspondence between a protein function and a pocket structure.
This study is expected to be applied to the prediction of more detailed protein functions
such as catalytic reactions. This is the first step toward understanding structure–function
relationships in the active sites of heme proteins.

2. Materials and Methods
2.1. Data Collection of Heme and Its Host Proteins

To collate the structural and functional information of heme proteins, we searched
PDB entries containing the compound IDs (_chem_comp.id) of HEM, HEA, HEB, HEC, or
HEO with a resolution of 2.0 Å or less using SQL in the PDBj Mine relational database [37]
(https://pdbj.org/rdb/search, accessed on 6 October 2022). The PDBx/mmCIF files were
downloaded from the Protein Data Bank Japan (PDBj) [38]. Structural information was
extracted from the atom_site category of the PDBx/mmCIF file. We collected only one
model for each PDB entry. When the occupancy value is <1.0 and pdbx_PDB_model_num
is 1, the atom with the largest occupancy was selected from the atoms with the same
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auth_seq_id and label_asym_id in the atom_site category. When the occupancy was 0.5,
we chose the atoms with the label_alt_id of A. This selection was applied even to atoms
with different auth_seq_id values in the atom_site category. After collecting the atomic
coordinates, we excluded heme molecules missing one or more of the 25 heavy atoms
forming the Fe–porphyrin skeleton (Figure 1). Consequently, 6866 heme molecules from
3206 unique PDB entries were obtained. The Bio.PDB package [39] for BioPython version
1.78 [40] was used to parse the mmCIF files.
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Figure 1. Chemical structure of heme. Fe–porphyrin skeleton is enclosed by a square-dotted line.

As a first step in elucidating the correlation between the tertiary structure of an active
site and protein function, we used only the structures in which amino acids or water
molecules were axially coordinated to heme. Here, 5185 samples were obtained. Axial
ligands were defined as amino acid residues or other molecules, including one or more
atoms within 3.1 Å of the heme iron atom. MDTraj library version 1.9.5 [41] was used to an-
alyze the structural data. To reduce the redundancy of amino acid sequences, we excluded
protein chains with sequence similarity higher than 99.99% using the PISCES server [42].
Finally, the samples in which the coverage of heme was less than 0.6 were excluded because
the biological and asymmetric units were likely to differ. This nonredundant dataset was
composed of 1234 samples and is referred as dataset_99. Although the oxidation state of Fe
is closely related to the protein function, we did not consider it in this study because the
aim of this study was an elucidation of the structure–function relationship in hemeproteins
and a construction of functional predictor from the pocket structure for this purpose.

2.2. Assignment of Protein Function to Each Heme Sample

Information about protein function was assigned by the enzyme commission (EC)
number and gene ontology (GO) associated with each entity in each PDB entry, as well as
keywords and descriptions stored in each PDB entry. The EC number, GO, keywords, and
description were collected by a SQL search from EC_number of sifts.pdb_chain_enzyme
table, GOID of gene_ontology_pdbmlplus table, keywords of brief_summary table, and
pdbx_description of entity table in PDBj Mine relational database (accessed on 6 October
2022), respectively. First, we assigned function(s) to each sample of the non-redundant
dataset as follows:

(1) If the protein chain(s), including the axial ligand(s), had an EC number(s), the first
digit of the EC number(s) was assigned.

(2) If case 1 did not apply and the protein chain(s) had GO associated with “oxygen-
binding”, “oxidoreductase activity”, “electron transfer activity”, “transcription”, or
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“heme transport” as the molecular function or biological process, one function was
assigned in order from these functions.

(3) If cases 1 and 2 did not apply and the PDB entry had keywords associated with
“hemophore”, “electron transfer activity”, “oxygen-binding”, “oxidoreductase activ-
ity”, “heme extraction”, “signaling protein”, “nitrophorin (NO transport)”, or “heme
transport”, one function was assigned in order from these functions.

(4) If cases 1–3 did not apply and the PDB entry had a description of cytochrome p460,
“oxidoreductase” was assigned.

(5) If cases 1–4 did not apply or there was no axial ligand, “unclassified” was assigned.

At this stage, 16 types of function labels, including multi-function combinations, were
assigned. Next, we manually modified the function of dehaloperoxidase and myoglobin
with oxidoreductase activity to “oxygen-binding and oxidoreductase” (dual-function).
In this study, we only used the samples assigned “oxygen-binding”, “oxidoreductase”,
“electron transfer”, or “oxygen-binding and oxidoreductase” as protein functions. These
protein functions are listed in SI (pdbid_function_list.csv).

2.3. CNN Model

Here, we constructed a CNN model whose input and output were the tertiary structure
of the heme-binding pocket and the protein function, respectively. To use the non-uniform
structural data of heme-binding site as input for the CNN model, we converted the data into
uniform dimensional data. Then, we used voxel sets included in a cube-shaped inclusion
region on the heme-binding site as an input (Figure 2). This inclusion region was defined as
described below. First, we calculated a least-squares plane for CHA, CHB, CHC, and CHD
atoms in the porphyrin ring of heme and defined it as the xy-plane. Then, we rotated the
xy-plane such that the x-axis was parallel to the vector connecting CHA and CHC projected
onto the least-squares plane and determined the z-axis to be perpendicular to the xy-plane
and right-handed. Finally, the origin was translated to the barycenter of CHA, CHB, CHC,
and CHD. The edge length of the inclusion region was set to 24 Å, which is identical to
the value determined in our previous study [28]. For voxelization, we divided the space
included in the inclusion region into the small cubic region (voxel) with an edge length of
1 Å. Using atomic coordinates of protein without heme and molecules other than proteins,
we assigned 1 (occupied) or 0 (unoccupied) to each voxel depending on whether it was
occupied by any atom or not, respectively. The input voxels were prepared for each atom
of C, N, O, and S, and used as an input with four channels. For the detailed procedures for
determining the inclusion region and voxelization, please refer to our previous study [28].
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represented as a blue cartoon and a licorice model colored in salmon, respectively. The input voxels
were prepared for each atom of C, N, O, and S, as illustrated in the right panel. The coordinates of
heme and molecules other than protein were not used in the voxel calculation.
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The output of the CNN model is a class label of the protein function. Class labels are
two- or three-dimensional, allowing multiple functions to be assigned to a single sample.
The loss was calculated as binary cross-entropy between the observed (assigned function)
and predicted class labels.

We constructed and trained all CNN models using PyTorch version 1.11.0 [43]. The
parameters of our CNN model are shown in Table 1. These parameters are identical to those
determined in our previous study [28] except the last layer. A brief demonstration regarding
the method used in CNN is also described there. The network model was constructed so
that the number of layers would not be too large, and the other hyperparameters were
roughly tuned. The output dimension of each layer was determined by the number of
output channels specified in Convolution layer, and the parameters such as the kernel
size and/or stride of the Convolution and Pooling layers. These hyperparameters were
set to those commonly used. We tried a couple of models with different hyperparameters
for this study, which resulted in almost no effect on accuracy. For training, the stochastic
gradient descent optimizer with a learning rate of 0.01 was used, and the batch size was set
to 32. To verify the generalization performance of the model, five-fold cross-validation was
performed. We did not separate the test and cross-validation datasets because of limited
data. The detailed procedure of the cross-validation has been described in our previous
study [28].

Table 1. Layers and parameters of our CNN model.

Layer Function Filter (Kernel) Output Dimension
(Channel × Depth ×Width × Height)

1 Conv3d 2 × 2 × 2
with 0-padding 64 × 21 × 21 × 21

2 Conv3d 2 × 2 × 2
with 0-padding 128 × 22 × 22 × 22

3 BatchNorm3d - 128 × 22 × 22 × 22

4 Conv3d 2 × 2 × 2
without padding 128 × 21 × 21 × 21

5 ReLU - 128 × 21 × 21 × 21
6 BatchNorm3d - 128 × 21 × 21 × 21

7 MaxPool3d 2 × 2 × 2
stride: 2 × 2 × 2 128 × 10 × 10 × 10

8 Full connection - 128,000
9 Linear - 128
10 ReLU - 128
11 Dropout 0.4 128
12 Linear - 64
13 BatchNorm1d - 64
14 ReLU - 64
15 Linear - 2 or 3
16 Sigmoid - 2 or 3

2.4. Analyses of Cavity of Heme-Binding Site

We computed the cavity shapes of heme-binding sites using POVME 3.0 [44]. With
POVME, the cavity shape of a ligand-binding pocket can be represented as a bit vector,
each element of which represents whether or not the respective grid is located in a ligand-
binding cavity, 1 for a cavity and 0 for protein atoms. We refer to this bit vector as a “cavity
vector” in the following. To compare the cavity shapes of various proteins, the region to
be analyzed was limited to the vicinity of the heme molecule: the center and radius of the
inclusion sphere (parameters for POVME) were set to the coordinates of the heme iron
atom and 8.5 Å, respectively. We set the grid size to 1 Å and did not use the option for
removing isolated points that were not contiguous with the specified region. The detailed
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procedure for preparing the input protein coordinates has been described in our previous
work [28].

3. Results and Discussion
3.1. Prediction of Protein Function from the Tertiary Structure of the Heme-Binding Pocket Using a
CNN Model: Two-Label Classification

We constructed a CNN model to predict the function of proteins classified into the
following three classes, namely, oxygen-binding protein (OB), oxidoreductase (OR), and
proteins with both functions (OB–OR), from the tertiary structures of heme-binding pockets
by using the dataset_99. The output of the CNN model is two-dimensional, with each label
indicating whether each function (oxygen-binding or oxidoreductase) is retained, namely,
(0, 1), (1, 0), and (1, 1) represent the OB, OR, and OB–OR classes, respectively. Only when
the values of the two labels matched between the observed and predicted ones were the
results considered true positives (TP). The obtained models were evaluated in terms of the
score, Sacc, calculated as follows:

Sacc =
∑c∈L NTP

c

∑c∈L Nc
(1)

where L, Nc, and NTP
c represent the labels of function, the number of samples belonging to

class c, and the number of samples in class c that are TP as a result of prediction, respectively.
In this analysis, L = {OB, OR, OB–OR}. NOB, NOR, and NOB−OR for the test sets of five-fold
cross-validation runs were 190, 312, and 35, respectively. The mean and standard deviation
of the Sacc scores obtained from five-fold cross-validation was 0.959 ± 0.021, indicating
high prediction accuracy.

We also calculated the confusion matrix M using the scikit-learn Python library [45]
version 0.24.2 (Table 2). The non-diagonal element of a confusion matrix, Mij, represents
the actual number of observations in class i but are predicted to be in class j. The confusion
matrix of Table 2 was normalized, and each element has a mean value over five cross-
validation runs. Although in two-label classification, the predicted value can also be (0, 0),
which means that the sample is neither OB nor OR, there was no sample with a predicted
value of (0, 0) in this analysis. Therefore, such a sample is omitted in Table 2. The protein
function could be predicted with very high accuracy for the single-function proteins (OB
and OR). However, protein function prediction was difficult for the dual-function proteins
(OB–OR). We also calculated the mean values of accuracy, recall, precision, and specificity
over the five-fold cross-validation runs for each class (Table S1). For the calculation of these
indicators, we defined Mii as TP, Mji (j 6= i) as false positive, Mij (j 6= i) as false negative, and
Mjk (j 6= i, k 6= i) as true negative for class i. Whereas all indicators were high in the single-
function proteins, only precision was high in the OB–OR. The latter means that samples
that were predicted to be OB–OR were correct, but there were many samples belonging
OB–OR that could not be correctly predicted. The dual-function proteins contain two types
of proteins: dehaloperoxidase and myoglobin mutants. The ratios of TP in the samples
included in the test sets of five cross-validation runs were 1.0 (9/9) for dehaloperoxidase
and 0.423 (11/26) for myoglobin mutants with a dual-function (DF-Myoglobin). The low
TP rate in the OB–OR class was due to the inaccuracy of the prediction of the function of
DF-Myoglobins. Considering that the dataset_99 includes 116 samples with the description
of “myoglobin” in PDB, 32 of which have dual functions, it is likely that the prediction was
influenced by samples with similar pocket structures but a different function.
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Table 2. Mean values and standard deviations of the normalized confusion matrices over five-fold
cross-validation runs. Values in the parentheses represent the confusion matrix calculated with the
combined data of the test sets of five-fold cross validation runs for two-label classification.

Predicted Value

OB OR OB–OR

Observed Value

OB [190] † 0.985 ± 0.012
(187)

0.010 ± 0.012
(2)

0.005 ± 0.010
(1)

OR [312] † 0.010 ± 0.008
(3)

0.990 ± 0.008
(309)

0.000 ± 0.000
(0)

OB–OR [35] † 0.436 ± 0.248
(15)

0.000 ± 0.000
(0)

0.564 ± 0.248
(20)

† Values in the square brackets represent the sample numbers of each class.

Next, we examined in detail the samples with inaccurate function prediction. Fifteen
of the twenty-one samples with inaccurate predictions were DF-Myoglobins, most of which
were predicted to belong to the OB class. The samples other than DF-Myoglobins classified
as OB are listed in Table 3. PDB ID of 3QZX [46] is protoglobin, which has highly distorted
heme, suggesting that the pocket structure is different from those of other oxygen-binding
proteins. For PDB IDs of 3QZX, 4XDI [47], and 6O0A [48], there was no sample with a
similar amino acid sequence (similarity ≥ 0.7). The lack of sufficient training data may
be the cause of prediction failure. For two cases (PDB ID of 2BK9 [49] and 3MVC [50]),
the protein function assignment may be wrong, and the predicted results were correct
(misassignment of protein function). Although the former is hexacoordinate hemoglobin,
which is expected to function as oxidoreductase, it is unclear whether this protein exhibits
enzymatic activity. The latter exhibits oxidoreductase activity and no affinity to the oxygen
molecules, but OB was assigned as the protein function. There was a sample with OB as
the class label (observed value) and OB–OR as the predicted value (PDB ID: 7CEZ). PDB ID
of 7CEZ is myoglobin G5K/Q8K/A19K/V21K mutant. Its functional property is unknown
because the paper is unpublished. This mutant may exhibit oxidoreductase activity, as we
predicted. Considering these results, protein function assignment is one of the significant
challenges in this type of research.

Table 3. List of the samples that failed to predict other than those classified as OB and DF-Myoglobins.

PDB ID Protein Name Observed Value Predicted Value Remark

2BK9 hemoglobin OR OB misassignment
3MVC GLB-6 OB OR misassignment
3QZX protoglobin OB OR -

4XDI THB1
(truncated hemoglobin) OR OB -

6O0A flavohemoglobin OR OB -

7CEZ myoglobin
(G5K/Q8K/A19K/V21K) OB OB–OR detailed function

unknown

3.2. Specification of Regions in Input Data Significant for Prediction

To determine the regions significant for predicting protein function, we examined the
change in prediction scores when information about a specific region of input voxels was
discarded. The model constructed in Section 3.1 was used for this analysis. Information was
discarded in two ways. We refer to them as “outside discarding” and “inside discarding”,
which remove information from the outside (Figure 3a) and inside (center) (Figure 3b),
respectively. First, two cubes were defined: the “outer cube” and the “inner cube”. The
vertex coordinates of the outer cube are (±12, ±12, ±12), being equivalent to the inclusion
region of the CNN model. Let the vertex coordinates of the inner cube be (±(12–r), ±(12–r),
±(12–r)) on the “outside discarding” and be (±r, ±r, ±r) on “inside discarding”. Then, the
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sets of voxels in the outer and inner cubes are denoted as Vouter and Vinner, respectively. The
voxels in Vouter but not in Vinner were replaced with 0 for “outside discarding” (0 ≤ r < 12,
Figure 3a), and those of Vinner were replaced with 0 for “inside discarding” (0 ≤ r < 12,
Figure 3b). In both cases, information is intact (not discarded) at r = 0.
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Figure 3. (a) Mean Sacc scores plotted against r, which is the distance between the faces of the outer
(red) and inner (black) cubes presented in the right panel for “outside discarding.” The error bar
shows the standard deviation. The centers of the outer and inner cubes are identical, and their edges
are parallel. (b) Mean Sacc scores plotted versus r for ”inside discarding.” (c) Sacc scores versus the
volume of the region with the original information. (d) Atoms included in cube-shaped regions with
an edge length of l are illustrated using the PDB entry of 1A00 as an example. The lime spheres and
the combination of lime and magenta spheres represent l = 18 and 24, respectively. The main chain of
the host protein is shown as a yellow cartoon, and heme as a yellow stick.

Sacc for “outside discarding” and “inside discarding” averaged over the test sets in the
five-fold cross-validation runs are presented in the left panels of Figure 2a,b, respectively.
Because the amount of information loss on the r value was different between “outside
discarding” and “inside discarding” and nonlinear, Sacc scores were also plotted against
the volume of the region with the original information (Figure 3c). Considering that the
change in Sacc scores between the volumes of 3000 and 6000 Å3 differed for “outside
discarding” and “inside discarding,” the score would depend on the region used for
prediction. Whereas the scores dropped sharply when the value of r exceeded 3 Å, where
the edge length of the inner cube was 18 Å and reached almost 0.5 r = 9 Å in “outside
discarding”, it did not significantly change between the values of r from 0 to 10 Å, where the
edge length of the inner cube is 0–20 Å in “inside discarding.” These results suggest that the
prediction was performed using the information near the surface of the outer cube (input
voxels). Examples of Al (l = 18 and 24), which is an atom set included in the cube with edge
lengths of l, are illustrated in Figure 3d using a PDB entry of 1A00. This may be one of
the reasons why it was difficult to distinguish amino acid mutations in the heme-binding
pocket of DF-Myoglobin. We also constructed a CNN model using smaller input voxels
(edge length = 17 Å) as an input. However, almost the same result was obtained (the mean
and standard deviation of Sacc score over five-fold cross-validation was 0.959 ± 0.024). The
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confusion matrix is shown in Table S2. The modification of inputs may be required to
incorporate information about the pocket surface into the prediction.

3.3. Prediction of Protein Function from the Tertiary Structure of the Heme-Binding Pocket Using a
CNN Model: Three-Label Classification

We constructed a CNN model with three-dimensional output to predict the functions
of proteins classified into the following four classes: OB, OR, OB–OR, and electron transport
protein (ET) by using the dataset_99. Other classes were not assigned in this study. The
output is three-dimensional, with each label indicating whether or not each function
(oxygen-binding, oxidoreductase, or electron transfer) is retained, namely, (0, 1, 0), (1, 0, 0),
(1, 1, 0), and (0, 0, 1) represent the OB, OR, OB–OR, and ET classes, respectively. Only when
the values of the three labels matched between the observed and predicted ones were the
results considered TP.

The number of samples belonging to OB, OR, OB–OR, and ET for the test sets of five-
fold cross-validation were 193, 297, 36, and 371, respectively. The prediction accuracy was
also reasonably high in the three-label classification, and the mean and standard deviation
of the Sacc for L = {OB, OR, OB–OR, ET} in Equation (1) obtained from the five-fold cross-
validation were 0.895 ± 0.031. As shown in the confusion matrix shown in Table 4, while
the recall for the OB class was as high as that in the two-label classification, that for OR
became lower and was nearly the same as that for ET. This may be because of the functional
similarity between OR and ET. We also calculated the mean values of accuracy, recall,
precision, and specificity over the five-fold cross-validation runs for each class (Table S3).
Some of the samples that were erroneously predicted as ET despite being OR had a keyword
associated with “electron transfer” in PDB. Notably, the low false recognition rates between
OB and ET and between OB and OR, suggest a clear difference in the tertiary structures
of their active sites. This indicates the structure–function relationships in the active sites
of heme proteins. We expect the application of this method to the classification of a wider
variety of protein functions in the future.

Table 4. Mean values and standard deviations of the normalized confusion matrices over five
cross-validation runs. Values in the parentheses represent the confusion matrix calculated with the
combined data of the test sets of five-fold cross validation runs for three-label classification.

Predicted Value

OB OR OB–OR ET Others †

Observed
Value

OB [193] ‡ 0.973 ± 0.016
(188)

0.016 ± 0.013
(3)

0.006 ± 0.012
(1)

0.000 ± 0.000
(0)

0.005 ± 0.010
(1)

OR [297] ‡ 0.006 ± 0.007
(2)

0.907 ± 0.054
(268)

0.000 ± 0.000
(0)

0.084 ± 0.049
(26)

0.004 ± 0.007
(1)

OB–OR [36] ‡ 0.570 ± 0.296
(20)

0.000 ± 0.000
(0)

0.430 ± 0.296
(16)

0.000 ± 0.000
(0)

0.000 ± 0.000
(0)

ET [371] ‡ 0.000 ± 0.000
(0)

0.110 ± 0.019
(40)

0.000 ± 0.000
(0)

0.890 ± 0.019
(331)

0.000 ± 0.000
(0)

† ”Others” represents the predicted value of (0, 0, 0). ‡ Values in the square brackets represent the sample numbers
of each class.

3.4. Validation of Datasets Used for CNN Model Construction

To validate the dataset used for the CNN model construction in this study, we con-
structed CNN models using the additional datasets with different thresholds of the se-
quence similarity. Although a previous study, in which the heme-binding site was detected
from the property of pocket cavity, adopted a threshold of 80% [36], a sufficient value of
the threshold of sequence similarity is generally debatable [51]. Here, we used 25.00, 60.00,
80.00, and 99.99% as the threshold of sequence identity for nonredundant datasets. This
is because thresholds of 25% were adopted for the prediction of secondary structure [52]
and disorder region [53], and a threshold of 60% of the motif length was proposed for
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the prediction of post-translational modifications [54]. Since these datasets included few
samples of OB-OR, we removed the OB-OR samples from each dataset and carried out
the classification of OB and OR (two-label and two-class classification). We referred to
these datasets as dataset_25, dataset_60, dataset_80, and dataset_99_without_OB-OR, re-
spectively, in the following. The mean Sacc scores over five-fold cross-validation runs were
0.923 ± 0.069, 0.934 ± 0.089, 0.974 ± 0.022 and 0.990 ± 0.011 for the dataset_25, dataset_60,
dataset_80, and dataset_99_without_OB-OR, respectively. The mean values of accuracy,
recall, precision, and specificity over five-fold cross-validation runs are listed in Table 5.
Despite the bias in the sample numbers of each class, most indicators showed high values
in both classes even in the dataset of dataset_25.

Table 5. Mean values and standard deviations of accuracy, precision, recall, and specificity obtained
from two-label classification over the five-fold cross-validation runs for each class.

Dataset Class Label Accuracy Recall Precision Specificity

Dataset_25
OB [9] † 0.923 ± 0.069 0.800 ± 0.400 0.653 ± 0.366 0.925 ± 0.074

OR [55] † 0.923 ± 0.069 0.925 ± 0.074 0.983 ± 0.033 0.800 ± 0.400

Dataset_60
OB [36] † 0.934 ± 0.089 0.703 ± 0.381 0.979 ± 0.036 ‡ 0.994 ± 0.013

OR [192] † 0.934 ± 0.089 0.994 ± 0.013 0.937 ± 0.090 0.703 ± 0.381

Dataset_80
OB [59] † 0.974 ± 0.022 0.932 ± 0.097 0.896 ± 0.106 0.983 ± 0.015

OR [239] † 0.974 ± 0.022 0.983 ± 0.015 0.987 ± 0.017 0.932 ± 0.097

Dataset_99_
without_OB-OR

OB [196] † 0.990 ± 0.011 0.995 ± 0.010 0.981 ± 0.026 0.987 ± 0.020
OR [308] † 0.990 ± 0.011 0.987 ± 0.020 0.997 ± 0.007 0.995 ± 0.010

† Values in the square brackets represent the sample numbers of the test sets of each class. ‡ The results averaged
over four runs of the five-fold cross-validation runs because both TP and FP were 0 in a run.

In addition, we performed the same analysis of Section 3.2 with the CNN model
constructed by the dataset_25. As shown in Figure S1, the behaviors of both “outside
discarding” and “inside discarding” are similar to those of the dataset_99, suggesting that
both networks by the dataset_25 and dataset_99 may use similar features.

We also constructed a CNN model by using the dataset_25 for three-label classification,
the same analysis as Section 3.3, and obtained the mean Sacc score of 0.767 ± 0.083. The
number of samples belonging to OB, OR, and ET for the test sets of five-fold cross-validation
were 15, 54, and 31, respectively. There was a sample that was erroneously classified as
Others. The confusion matrix and values of accuracy, recall, precision, and specificity were
listed in Tables S4 and S5. The slight decrease in the mean Sacc score compared with that of
the dataset_99 would be mainly due to misclassification of OR. There was an increase in the
number of cases where the OB was classified as OR and the OR was classified as ET. The
small sample number may lead to a decrease in accuracy with an increase in class labels.

These results indicate that the presence of similar data does not unfairly increase
accuracy, namely, the effect of a large value of the sequence identity is small. A similar kind
of robustness to the sequence identity cutoff has been demonstrated for the performance
of a structure-based graph convolution network model over the function prediction [55].
Therefore, we conclude that the sequence homology would have little impact on our
problem.

3.5. Similarity of the Structures of Heme-Binding Pockets between Proteins with the
Same Function

To estimate the similarity of cavity shapes of the heme-binding sites in proteins with
the same function, we analyzed the variability of cavity shapes for each protein group
using cavity vectors computed by POVME software. Let I be a set of samples of cavity
shapes in a protein group. The mean distance from the barycenter for cavity vector vi was
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calculated for each protein group as an indicator of dispersion of a set of cavity vectors
following the same procedure as our previous work [28], as follows:

NI = |I|(the number of samples of I), (2)

µI =
1

NI
∑i∈I vi (3)

dI =
1

NI
∑i∈I

∣∣∣∣∣∣∣∣vi − µI

∣∣∣∣∣∣∣∣ (4)

where || || represents the L2 norm.
The protein group identifier, number of samples, and dI for each protein group cal-

culated for the dataset_99 and dataset_25 are shown in Table 6. Results for the combined
group of OB, OR, and OB–OR (referred to as “Combined” in the following), dehaloperoxi-
dase, DF-Myoglobin, and myoglobin (OB) are also listed for comparison. For smaller dI
values, higher cavity shape similarity was expected in a protein group.

Table 6. Protein groups, sample numbers, and dI . The shaded row represents the protein group
combined OB, OR, OB–OR, and ET.

Protein Group
Sample Number ¯

dI

Dataset_99 Dataset_25 Dataset_99 Dataset_25

OB 241 16 12.70 (1.78) † 15.45 (2.23) †

OR 388 63 16.88 (2.45) † 15.86 (2.61) †

OB–OR 42 0 12.44 (2.41) † -
ET 450 47 16.52 (2.88) † 16.07 (2.05) †

Combined 1121 126 16.80 (2.51) † 15.99 (2.34) †

Dehaloperoxidase 10 0 9.95 (1.21) † -
DF-Myoglobin 32 0 11.20 (2.60) † -

Myoglobin (OB) 82 1 9.99 (2.33) † 0.00 (0.00) †

† Values in parentheses represent the standard deviation of ||vi − µI ||.

As shown in Table 6, similar results were obtained for the dataset_99 and dataset_25.
While dI was slightly small in the OB and OB–OR classes for the result of the dataset_99,
it was as high as that in the “Combined” group, including four protein groups for the
OR and ET classes. For homologous protein groups, dehaloperoxidase and myoglobin,
dI was significantly smaller than that of the “Combined” group. The dI of DF-Myoglobin
was slightly larger than that of myoglobin, suggesting that the mutations in the active site
change the cavity structures. This implies that the structure of an active site is not similar
among proteins with the same function but varies significantly among protein groups.
Considering the results of Section 3.1, the proteins with the same function have a common
structural feature in spite of the difference in the overall cavity shapes.

4. Conclusions

In this study, we constructed a CNN model to predict protein functions from the
tertiary structures of the active sites of heme proteins to examine the structure–function
relationship. High Sacc scores (>0.95) were obtained by the CNN model for two-label classi-
fication for classifying OB, OR, and OB–OR. There were a few cases of false positives due to
the misassignment of protein function, i.e., the predicted results were correct, resulting in
the issue of improving the method of function assignment. In addition, the prediction of the
function of engineered myoglobin (functionally modified mutants) remained a challenge.
Because myoglobin is mostly an oxygen carrier, the difficulty in predicting the function
of functionally modified mutants may be due to the lack of sufficient data. The analysis
results of the similarity of cavity shape among proteins with the same function indicate that
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there is no one-to-one correspondence between the protein function and pocket structure,
suggesting that the proteins with the same function have a common structural feature in
spite of the difference in the overall cavity shapes. Predicting the modified function of
proteins with a single amino acid mutation may require some ingenuity.

We also constructed a CNN model for three-label classification to classify OB, OR,
OB–OR, and ET. Although the overall accuracy was slightly lower than that of the two-label
classification, the recall for OB was maintained at the same level as that for the two-label
classification. The misclassification between OB and ET and between OB and OR is almost
zero, indicating that the prediction works well between the groups with different functions.
The application of this study to classification tasks with more labels is expected.

Overall, this study demonstrated the structure–function correlation in the active sites
of heme proteins. In the future, we will attempt to construct a model to predict more
detailed protein functions, such as catalytic reactions or function of proteins binding heme
as a non-active center, such as hemophores. To improve the accuracy and robustness of
the CNN model, we will attempt to increase the amount of structural data, improve the
function assignment method, modify the input information, and so on. Since the protein
dynamics are also important for protein function, we will also attempt to include them
into the input to improve our CNN model in the future. Our previous study showed that
AlphaFold2 [56], which is a deep learning algorithm for predicting the tertiary structure of
proteins from the amino acid sequence, can accurately predict the structure of the heme-
binding site in heme proteins [57]. If the challenge of predicting heme-binding sites from
their amino acid sequences could be overcome, protein functions would be predicted using
their amino acid sequences for heme proteins. We would like to attempt this challenge in
the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13010137/s1, Table S1: Confusion matrix resulted from
the two-label classification with the edge length of inclusion region of 12.0 Å; Table S2: Confusion
matrix resulted from the two-label classification with the edge length of inclusion region of 8.5 Å;
Table S3: Mean values and standard deviations of accuracy, precision, recall, and specificity obtained
from three-label classification; Figure S1: Plots of mean Sacc scores of the outside discarding and
inside discarding for the CNN model by using the dataset_25; Table S4: Mean values and standard
deviations of the normalized confusion matrices for three-label classification with the dataset_25;
Table S5: Mean values and standard deviations of precision, recall, and specificity obtained from
three-label classification by using the dataset_25.
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