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Abstract: Heme proteins serve diverse and pivotal biological functions. Therefore, clarifying the
mechanisms of these diverse functions of heme is a crucial scientific topic. Distortion of heme
porphyrin is one of the key factors regulating the chemical properties of heme. Here, we constructed
convolutional neural network models for predicting heme distortion from the tertiary structure of
the heme-binding pocket to examine their correlation. For saddling, ruffling, doming, and waving
distortions, the experimental structure and predicted values were closely correlated. Furthermore, we
assessed the correlation between the cavity shape and molecular structure of heme and demonstrated
that hemes in protein pockets with similar structures exhibit near-identical structures, indicating
the regulation of heme distortion through the protein environment. These findings indicate that the
tertiary structure of the heme-binding pocket is one of the factors regulating the distortion of heme
porphyrin, thereby controlling the chemical properties of heme relevant to the protein function; this
implies a structure–function correlation in heme proteins.

Keywords: heme distortion; pocket conformation; convolutional neural network; machine learning

1. Introduction

Heme proteins are a group of proteins that bind heme(s)—a complex of iron and
porphyrin—to serve diverse and important biological functions. The roles of heme in
heme proteins are diverse; for instance, heme acts as an electron carrier [1,2], an active site
for enzymes such as oxidoreductases [3,4], an oxygen storage molecule [5,6], a ligand for
proteins [7,8], and an iron storage molecule [9]. Hemophore proteins bind heme for its
transport or storage [10]. Heme is classified into several types according to its peripheral
groups (Figure 1), and the most common heme types are heme b and c [11,12]. Other
major heme types include heme a and o, in addition to a few minor types. The key factors
regulating the diverse functions of heme include the axial ligand of heme, the types of
heme, the orientation of the propionate side chains, and the distortion of heme porphyrin.
Since distal and proximal amino acids including axial ligands are relevant in determining
heme protein functions, the role of the axial ligand and porphyrin substituents of heme

Biomolecules 2022, 12, 1172. https://doi.org/10.3390/biom12091172 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12091172
https://doi.org/10.3390/biom12091172
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-0782-9677
https://orcid.org/0000-0003-3546-3198
https://orcid.org/0000-0002-4165-8672
https://doi.org/10.3390/biom12091172
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12091172?type=check_update&version=2


Biomolecules 2022, 12, 1172 2 of 16

has been investigated [13,14]. We have also examined the effect of the peripheral group
of heme porphyrin on the redox potentials [15]. Recently, heme distortion is suggested to
be correlated with the chemical properties of heme, such as redox potential and oxygen
affinity [16].
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Normal-coordinate structural decomposition (NSD) [17] is one of the most common
methods for estimating heme porphyrin distortion. In NSD, displacement from the equilib-
rium structure—or distortion—is represented as a linear combination of the vibrational
modes of heme porphyrin. Among these, the three lowest vibrational modes: saddling,
ruffling, and doming (out-of-plane distortion), and the breathing mode (in-plane distortion)
are closely correlated with its chemical properties. Bikiel et al. [18] clarified that the out-of-
plane distortion tends to marginally decrease the binding affinity of heme for oxygen, while
the breathing mode tends to decrease or increase it significantly. In a study on cytochrome
c551, Sun et al. [19] suggested a significant role of ruffling distortion in redox control. In a
systematic study, Imada et al. [20] examined the association between saddling and ruffling
distortions and redox potential and indicated that saddling distortion increases the redox
potential of heme, while ruffling distortion exhibits the opposite tendency. In another
study, a novel distortion correlated with the chemical properties of heme was elucidated.
Kanematsu et al. [21] analyzed the molecular structures of hemes in oxidoreductases and
oxygen-binding proteins and successfully discovered a distortion correlated with both
redox potential and oxygen affinity.

We focused on the correlation between heme distortion and protein environment,
which contains proximal and distal amino acids including axial ligands, as a first step of
elucidating the regulation of heme distortion caused by the environment around heme.
Heme in its host protein exhibits various degrees of distortion from the isolated struc-
ture [12]. Our simulation study revealed that doming distortions in the oxygenated and
deoxygenated states differ between hemoglobin and myoglobin, suggesting that the molec-
ular structure of heme is affected by its protein environment, which controls the chemical
properties of heme relevant to its protein function [22]. Some studies have reported the
structural rigidity of heme-binding pockets. In addition, studies on protein structures in
the apo (heme-unbound) and holo (heme-bound) states have shown that most apo–holo
pairs exhibit small structural differences [23,24]. Using Brownian dynamic simulations,
Sacquin-Mora et al. [25] showed that residues in the heme-binding site must be tightly
anchored to realize biological functions, except for those flexible in protein function.
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Our recent study using machine learning indicated a correlation between the amino
acid composition of the heme-binding pocket and heme distortion along the three low-
est vibrational modes [26]. Here, we investigated the correlation between the tertiary
structure of the heme-binding pocket and the distortion of heme by predicting the latter
from the former using a convolutional neural network (CNN). CNN is a deep learning
method that has enabled breakthroughs in various computer vision tasks, such as image
classification [27,28].

To this end, in the present study, we constructed a CNN model and trained it to predict
heme distortion from the structure of the heme-binding pocket including the proximal and
distal amino acids. We obtained high correlation coefficients for saddling, ruffling, doming,
and waving(y) distortions, suggesting an association between the heme-binding pocket
structure and heme distortion for these vibrational modes. Furthermore, we revealed that
hemes in protein pockets with similar structures exhibit near-identical structures. These
results suggest that the protein environment of the heme-binding pocket regulates the
molecular structure of heme, thereby controlling the chemical properties of heme relevant
to protein function. This is a first step to understand the structure–function correlation in
heme proteins.

2. Materials and Methods
2.1. Data Collation on Heme Proteins and Dataset Preparation for Deep Learning

Structural information on heme proteins was extracted from the PDBx/mmCIF files
downloaded from the Protein Data Bank Japan (PDBj) [29]. Briefly, we collated PDB
entries, including the compound IDs (_chem_comp.id), of HEM, HEA, HEB, HEC, and
HEO, and their structures at a resolution ≤ 2.0 Å via an SQL search in PDBj Mine rela-
tional database [30] (https://pdbj.org/rdb/search, accessed on 4 January 2022). Hemes
with missing data in the coordinates of 25 atoms that form the Fe–porphyrin skeleton
(Figure 1, upper panel) were excluded. Consequently, 6677 heme samples from 3121 unique
PDB entries were selected. The Bio.PDB package [31] for BioPython version 1.78 [32] and
MDTraj library version 1.9.5 [33] were used to analyze the structural data. The type of each
heme molecule was determined based on peripheral groups, and the type was considered
“unknown” when atoms were missing from the structural data of a heme. Protein function
was classified based on structural keywords stored in the PDB entry. Details of heme
protein data collection are described in our previous studies [12,26].

As a first step of elucidating the regulation of heme distortion caused by the environ-
ment around heme including axial ligands, we focused on only the protein environment
for understanding the correlation between the heme-binding pocket and heme distortion.
We removed the heme molecules of heme proteins in which non-amino acids are axially
coordinated to heme. At this stage, 3843 samples were extracted. These samples con-
tain proximal and distal amino acids and axially ligated amino acids, which are relevant
to protein function. The axial ligands were defined as the residues or molecules with
atom(s) within 3.1 Å from the Fe atom of heme. To reduce sequence redundancy in the
whole dataset, we excluded protein chains with the same amino acid sequence using the
PISCES server [34], yielding a nonredundant dataset. The nonredundant dataset contained
939 samples. Since even a slight difference in the amino acid sequence can affect the tertiary
structure of the heme-binding pocket and distortion of heme, the threshold for sequence
similarity was set to 99.99%.

The distortion of heme porphyrin was estimated using NSD [17], which is a common
method for evaluating heme conformation. As mentioned earlier, NSD represents por-
phyrin distortion as a linear combination of distortions along the vibrational modes of
heme. We calculated the equilibrium structure and vibrational modes of the Fe–porphyrin
molecule using the PBE0 hybrid functional [35] with 6-31G(d) basis sets [36–38] and used
these to estimate heme distortion. Details of the calculation are described elsewhere [12].
Only 12 vibrational modes described by Bikiel et al. [18] were considered.

https://pdbj.org/rdb/search
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2.2. CNN Model

Here, we constructed a CNN model whose input and output are the protein environ-
ment and the distortion of heme porphyrin, respectively, according to the following process.
We converted the non-uniform protein structural data into uniform dimensional data for
use as input for the CNN model. Although a set of voxels is a candidate to represent the
tertiary structures of protein pockets, determining the pocket area is a problem. As shown
in Figure 2a, sets of voxels in a cube-shaped inclusion region centered on the heme-binding
pocket were used as input for the CNN model in the present study. The location of the cube
was defined as follows. First, a least-squares plane was calculated for four atoms in the
Fe–porphyrin skeleton of heme, namely CHA, CHB, CHC, and CHD (the correspondence
between atom positions and names is presented in Figure 1), and defined as the xy-plane.
The xy-plane was rotated such that the x-axis was parallel to the vector connecting CHA
and CHC projected the least-squares plane (Figure 2b). Then, the z-axis was determined to
be perpendicular to the x- and y-axes and was right-handed. The origin was determined
as the mean coordinate of the four atoms: CHA, CHB, CHC, and CHD. The cube was
placed such that each edge of the cube was parallel to the x-, y-, and z-axes, and the center
was at the origin (0, 0, 0). The edge length was set to 17, 20, and 24 Å to examine the
effect of inclusion region size on the prediction. Next, we demonstrated voxelization of
the inclusion region. Using a protein structure without heme and other molecules, we
generated a cubic grid with 1 Å spacing, computed whether each area was occupied by
any atom, and assigned 0 (unoccupied) or 1 (occupied) to each grid. The region occupied
by each atom was defined as the region within a sphere whose radius is half the length of
the Van der Waals radius of the atoms—C: 1.70 Å, N: 1.55 Å, O: 1.52 Å, and S: 1.80 Å. The
voxels were calculated for each atom (C, N, O, and S), and the generated data were used
as an input with four channels (right panels of Figure 2a). The output was the distortion
of heme porphyrin along the 12 vibrational modes (12 dimensions) or each vibrational
mode (one dimension). Loss was calculated as the mean-square error between the observed
(experimentally determined) and predicted values.
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Figure 2. CNN model used in the present study. (a) A schematic diagram of input voxels. The protein
backbone is represented as a green cartoon, and the heme molecule is shown as the licorice model
colored in salmon. The input voxels were calculated for each atom (C, N, O, or S), as illustrated
in the right panel. The heme molecule(s) were excluded in the voxel calculation. (b) A diagram of
determination of x- and y-axes based on the coordinates of heme for the calculation of input voxels.
The heme molecule is represented as the licorice model, and the atoms used for the determination of
the axes are shown by dotted circles. (c) Layers included in the developed CNN model are shown.
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All CNN models were constructed and trained by using PyTorch version 1.11.0 [39].
The model used in the present study is described in Figure 2c and Table 1. The dimensions of
data presented in Figure 2a,c are for the case in which the edge length in the inclusion region
was 20 Å. Here, we briefly demonstrate the method commonly used in CNNs: convolution,
batch normalization, activation function, pooling, and dropout. The convolutional layer,
as exemplified by Conv3d in PyTorch, is the main building block of a CNN and plays a
role in the extraction of local features. It selects a dot product between the values of the
input voxels and filter weights. The hyperparameters of convolution include the number
of output channels (number of filters), kernel size of filters, stride (number of voxels that
move a filter in each step), and the presence or absence of padding (adding voxels outside
the input voxels). Batch normalization, as exemplified by BatchNorm3d or BatchNorm1d
in PyTorch, is a method for standardizing the inputs over mini-batches to stabilize and
accelerate training by reducing the internal covariate shift. An activation function adds
nonlinearity to the output and helps the neural network to learn complex patterns. Rectified
linear units (ReLU), sigmoid, and hyperbolic tangent functions are common activation
functions. We used the ReLU function in the present study. Pooling is a technique used
to reduce feature dimensions. Max pooling, as exemplified by MaxPool3d in PyTorch, is
the most commonly used pooling method. It selects the maximum value in each kernel
of a feature map and generates a down-sampled feature map. The hyperparameters of
max pooling include the kernel size of filters and stride. Finally, feature maps in the
CNN were fully connected. Specifically, the weighted sum of outputs was computed
from previous layers to obtain a specific output. A dropout layer is often added to avoid
over-learning. Outputs of a randomly selected set of neurons were ignored during training.
The probability of ignoring nodes is specified by a hyperparameter.

Table 1. The layers and parameters of the CNN model used in this study.

Layer Function Filter (Kernel) Output Dimension
(Channel × Depth ×Width × Height)

1 Conv3d 2 × 2 × 2
with 0-padding 64 × 21 × 21 × 21

2 Conv3d 2 × 2 × 2
with 0-padding 128 × 22 × 22 × 22

3 BatchNorm3d - 128 × 22 × 22 × 22

4 Conv3d 2 × 2 × 2
without padding 128 × 21 × 21 × 21

5 ReLU - 128 × 21 × 21 × 21
6 BatchNorm3d - 128 × 21 × 21 × 21

7 MaxPool3d 2 × 2 × 2
stride: 2 × 2 × 2 128 × 10 × 10 × 10

8 Full connection - 128,000
9 Linear - 128
10 ReLU - 128
11 Dropout 0.4 128
12 Linear - 64
13 BatchNorm1d - 64
14 ReLU - 64
15 Linear - 1 (or 12)

To verify the generalization performance of the model, five-fold cross-validation
was performed for each vibrational mode. We did not isolate a test dataset from a cross-
validation dataset because of limited data. The non-redundant dataset was split into five
subsets after shuffling the samples. The following steps were performed for each subset:

1. A subset was split into validation and test datasets at a ratio of 0.2:0.8.
2. The model was trained using the remaining four subsets (training set) for 300 epochs.

(In the training process, a network is trained to reduce the loss between the predicted
and observed values by using an optimizer. The number of epochs indicates the
number of times that training is carried out for the entire training dataset.)
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3. The model with the minimum value of loss, calculated as the mean-square error, in
the validation dataset was selected.

4. The resulting model was validated on the test dataset; prediction was performed by
using the resulting model on the test dataset.

Adam optimizer [40] with a learning rate of 0.01 was used for training. The batch size
was set to 32.

2.3. Clustering and Principal Component Analyses of Heme-Binding Pockets

We analyzed the three-dimensional shapes of heme-binding pockets (cavity) by using
POVME 3.0 [41]. In POVME, the cavity shape of a ligand-binding protein structure can be
quantified as a bit vector, each element of which indicating whether the respective grid
point belongs to the ligand-binding pocket. The protein structures complexed with heme
were superimposed on five atoms in heme: FE, NA, NB, NC, and ND. The coordinates of
the missing atoms for proteins were generated using the AMBER LEaP program included
in AmberTools version 19.0 [42]. The grid structure of the cavity was computed by using
only the protein coordinates (i.e., heme and other molecules were removed). Parameters
for POVME calculation were as follows: the center and radius of the inclusion sphere
were set to the coordinates of the Fe atom of heme and 8.5 Å, respectively. This radius
was determined according to the molecular size of heme. The distance between Fe and
oxygen atoms of propionates was approximately 8.5 Å. The Tanimoto score implemented
in POVME 3.0 was used to estimate the similarity between pairs of heme-binding pockets.
Hierarchical clustering and principal component analysis (PCA) [43] of cavity shapes were
performed by using POVME 3.0. The number of clusters was set to 35. We examined three
cases of the number of clusters (15, 25, and 35) and obtained the most preferable results
(many eigenvectors correlated with heme distortions) for 35.

2.4. Alignment of Amino Acid Sequences of Heme Proteins

We downloaded the amino acid sequences of the target heme proteins as FASTA files
from PDBj (as of 4 January 2022) and extracted the sequences of 2867 protein chains in the
whole dataset. Clustering was performed for the obtained sequence data using Cd-Hit [44],
and threshold of sequence similarity was set to 90%.

3. Results and Discussion
3.1. Prediction of Heme Distortion from the Tertiary Structure of the Heme-Binding Pocket Using a
CNN Model

We constructed a model to simultaneously predict the magnitude of distortions along
the 12 vibrational modes. The edge length of the input voxel was set to 20 Å. The obtained
models were assessed based on the R2 score calculated as follows:

R2 = 1−
∑i

(
pobserved

i − ppredicted
i

)2

∑i

(
pobserved

i − pobserved
)2 , (1)

where pobserved
i and ppredicted

i are the distortions of ith heme molecule obtained from the
PDB structures and those predicted by the CNN model, respectively, and pobserved is the
mean of heme distortion averaged over the PDB structures in the test dataset. The R2 score
is a measure used to evaluate how well the model fits the regression, and its values ranges
from –∞ to 1. A moderate correlation (correlation coefficient ≥ 0.6) was found between the
observed and predicted values for saddling, ruffling, doming, and waving(y) distortions.
Detailed prediction results are presented in Table S1, and the plot of observed and predicted
values is shown in Figure S1 using results from the model with the maximum R2 score
among the five cross-validation runs as an example.

To examine the effect of different edge lengths of input voxels on the prediction,
we constructed models using the input voxels with edge lengths of 17, 20, and 24 Å (an
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example is shown in Figure 3a) for each of these four vibrational modes and calculated
the corresponding R2 score. The means and standard deviations of R2 scores of the five
cross-validation runs are shown in Figure 3b. Except for the waving(y) mode, changes
in R2 score due to differences in the edge length of the input were very small, suggesting
that information on the structure of the heme-binding pocket near the pocket surface is
sufficient to predict heme distortion. In our previous study examining the correlation
between the composition of amino acid residues in the heme-binding pocket and heme
distortion [26], no correlation was detected for the waving(y) mode, as opposed to that for
the first three vibrational modes. This might be because more detailed information on the
tertiary structure of the pocket enabled us to predict even a small conformational difference.
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Figure 3. (a) Atoms in the inclusion region with the edge length of 17 (lime), 20.0 (violet), and
24.0 (magenta) Å, as exemplified by PDB ID: 1mba. The whole protein structure and heme molecule
are shown as the orange cartoon and the yellow licorice model, respectively. (b) Plot of R2 scores
averaged over five cross-validation runs versus the edge length of the input voxels for each heme
distortion. (c) Correlation between the predicted and observed values in the test dataset of the best
model among five cross-validation runs for each heme distortion. Values on the upper left of each
panel represent correlation coefficients. Slate-blue, light-coral, and sea-green points indicate heme c,
b, and a, respectively. (d) Distribution of saddling, ruffling, and doming distortions for each heme
type in the non-redundant dataset.

Next, we focused on the three vibrational modes correlated with the redox poten-
tial [20] and oxygen affinity [18] of heme: the saddling, ruffling, and doming modes. The
input edge length was set to 24 Å because high R2 scores were obtained for all three
vibrational modes. The mean values and standard deviations of R2 scores and the root-
mean-square errors (RMSEs) of the five cross-validation runs are presented in Table 2, and
the corresponding correlation coefficients are listed in Table S2. Although the variation in
scores among the cross-validation runs was higher for the doming distortion than for the
other two distortions, we noted a strong correlation between the observed and predicted
values for all three modes. In particular, high correlation coefficients were obtained for
the saddling distortion, regardless of the combination of the test and training datasets; the
minimum value of the correlation coefficient was 0.77. The RMSE for each magnitude of
distortion averaged over five-cross validation runs showed that the prediction tended to
be failed in the region with large distortion as compared with the that around 0.0 (planar
structure) (Figure S2). This would be caused by the difference in the number of data;
data are abundant for heme with a planar structure but few for highly distorted heme to
train a CNN model. A CNN model may be improved by increasing the data of highly
distorted heme.
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Table 2. The results of the prediction by the input voxels with the edge length of 24 Å. The mean
value and standard deviation of R2 score, and RMSE values are listed.

Saddling Ruffling Doming

R2 score
(max., min.)

0.62 ± 0.05
(0.70, 0.55)

0.50 ± 0.09
(0.65, 0.39)

0.46 ± 0.15
(0.70, 0.25)

RMSE †

(min., max.)
0.21 ± 0.02
(0.20, 0.24)

0.31 ± 0.04
(0.25, 0.37)

0.16 ± 0.03
(0.11, 0.20)

† RMSE is shown in angstroms.

To examine the effect of heme type on the prediction, the RMSE values for the test
datasets in each cross-validation run were calculated for each heme type (Table 3). Regard-
ing the correlation between the protein environment and heme type, only heme c forms
covalent bonds with its host protein, causing distortion along the ruffling mode [45]. The
prediction results for each heme type are shown as color-coded points in Figure 3c, and
the histograms of each distortion for each heme type are presented in the lower panels of
Figure 3d. Heme c tends to be distorted toward the ruffling mode. For ruffling and doming
distortions, the RMSE values for heme c were almost half of those for heme b, suggesting a
strong effect of the protein environment on heme distortion. Furthermore, we analyzed
the effect of protein function on the prediction. However, the results were not sufficiently
simple to observe differences in the degree of distortion for each protein function (Table S3
and Figure S3).

Table 3. The mean values and standard deviations of RMSE in angstroms between the observed and
predicted values for each heme type.

Heme Type Saddling Ruffling Doming

heme c (85.8 ± 2.7) † 0.20 ± 0.01 0.22 ± 0.02 0.11 ± 0.01
heme b (64.2 ± 3.0) 0.22 ± 0.02 0.41 ± 0.07 0.22 ± 0.06

† Values in parentheses represent the mean values of the sample numbers in the test set for five cross-validation runs.

3.2. Differences in the Importance of Information Included in Subsets of Input Data

To specify a region important for predicting heme distortions, we discarded the
information of a specific region of input voxels and computed prediction scores using the
model described in Section 3.1 (edge length of input = 24 Å). Information was discarded in
two ways: “outside discarding,” which removes information from the outside (Figure 4a)
and “inside discarding,” which removes information from the inside (center) (Figure 4b).
First, we defined two cubes: the “outer cube” whose vertex coordinates are (±12, ±12,
±12) and the “inner cube” (right panels in Figure 4a,b). Let the coordinates of vertices of
the inner cube on the “outside discarding” and “inside discarding” be (±(12 − r), ±(12 −
r), ±(12 − r)) and (±r, ±r, ±r), respectively. Then, we denote the sets of voxels in the outer
and inner cubes as Vouter and Vinner, respectively. For “outside discarding,” the elements of
Vouter − Vinner (a set of elements in Vouter but not in Vinner) were replaced by 0 (0 ≤ r < 12,
Figure 4a), that is, the information was removed from the outside of the input voxels. For
the “inside discarding,” the elements of Vinner were replaced by 0 (0 ≤ r < 12, Figure 4b),
that is, the information was removed from the inside. Since Vouter is equivalent to the input
voxels used to train the CNN model, the information is intact when r = 0 in both cases.
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Mean R2 scores obtained from predictions for each test dataset in the five cross-
validation runs are shown in the left panels of Figure 4a,b. Because the change in the
amount of information loss for a change in r was not linear and differed between “outside
discarding” and “inside discarding,” we also plotted the resulting R2 scores against the
volume of the region where the information remained (Figure 4c). As shown in Figure 4c,
the change in R2 scores was not correlated with the amount of information but depended on
the region included in the input for the prediction. With “outside discarding” (Figure 4a),
the scores started decreasing significantly at r = 4–6 Å, where the edge length of the inner
cube was 16–12 Å, reaching almost 0 at r = 7 Å, where the edge length of the inner cube
was 10 Å. Meanwhile, for “inside discarding” (Figure 4b), the scores did not largely change
at r = 4 Å, where the edge length of the inner cube was 8 Å, but decreased slowly at r = 5 Å,
where the edge length of the inner cube was 10 Å. Based on these results, information from
an inclusion region with the edge length of 8–16 Å is essential, while that from an inclusion
region with the edge length of 8 Å is non-essential, and Al is a set of atoms included in the
cubic region with edge lengths of 2l. Examples of Al (l = 4, 5, 6, and 7) are illustrated in
Figure 4d using PDB ID 1mba [46]. From these results, a cubic region with the edge length
(2l) of < 8 Å contains very few protein atoms; therefore, the structure of the pocket surface
is considered to be important for the prediction.

Furthermore, we examined the impact of separation of atomic species in the input
on the prediction. The CNN model shown in Figure 2c was trained and validated on a
dataset with one-channel inputs (only the input dimension was different from the model in
Table 1). The one-channel input was generated by calculating the logical sum (OR) of the
four-channel inputs; therefore, the difference in atomic species was not considered. The
results of five-fold cross-validation are presented in Table 4. The R2 score decreased in the
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ruffling mode, whereas no large difference was noted in the saddling and doming modes,
suggesting that the steric effect was dominant for the latter two distortions.

Table 4. Results of prediction by the model which takes voxels with one-channel as an input.

Saddling Ruffling Doming

R2 score
(max., min.)

0.63 ± 0.07
(0.72, 0.53)

0.39 ± 0.10
(0.52, 0.24)

0.43 ± 0.17
(0.68, 0.17)

RMSE †

(min., max.)
0.21 ± 0.02
(0.19, 0.25)

0.34 ± 0.02
(0.31, 0.37)

0.16 ± 0.03
(0.12, 0.21)

† RMSE is shown in angstroms.

3.3. Similarity of the Structure of Heme-Binding Pockets and Hemes

To elucidate the association between the shape of the heme-binding pocket and heme
distortion, we evaluated the similarity of cavity shapes, which are a structural property
of the region surrounded by the protein for pairs of protein chains. Since we considered
only the structure in the vicinity of the target heme, the cavity shapes of hemes binding
to a unique pocket varied in the present study. The cavity shape of the ith sample was
represented as a bit vector using POVME, referred to as cavity vector vi, and the similarity
score between the ith and jth samples was calculated as the Tanimoto score between vi
and vj. The Tanimoto score ranges from zero to one, with one indicating identical shapes.
Because the number of combinations of protein chains was very large for analysis, the
pairs were randomly sampled without replacement from the whole or non-redundant
dataset. The similarity score was plotted against the root-mean-square deviation (RMSD)
of the heavy atoms of the heme Fe–porphyrin skeleton (Figure 5a). The pairs with high
similarity scores showed small RMSD values for heme, indicating that hemes exhibit
similar structures in protein pockets of similar structures. In addition, some pairs with low
similarity scores showed small RMSD values for heme, indicating the lack of one-to-one
correspondence between cavity shape and heme distortion.

To elucidate the simple correlation between cavity shape and heme distortion, we
performed hierarchical clustering of cavity shapes for the whole dataset, followed by PCA
of cavity shapes in each cluster (i.e., we conducted PCA for a group of samples with similar
cavity shapes). In some clusters, we obtained eigenvectors correlated to heme distortion.
Two examples with high correlation coefficients are shown in Figure 5b (Clusters 9 and 11).
In Cluster 9, the PC1 values of cavity shapes were correlated with doming distortion, with
a correlation coefficient of 0.84. In Cluster 11, PC1 values of cavity shapes were correlated
with the saddling distortion, with a correlation coefficient of 0.99. In these examples, a
difference along eigenvector led to a large difference in heme distortion, as shown in
Figure 5b. The corresponding eigenvectors for Clusters 9 and 11 are shown in Figure 5c,d,
respectively. In Cluster 9, the area corresponding to the element of the eigenvector with
a relatively large value surrounded the Fe atom and was distributed at periphery of the
heme molecule. Meanwhile, in Cluster 11, this area was distributed only at the periphery of
the heme molecule. Therefore, the cavity shape of the periphery of heme may be important
for saddling distortion, whereas the protein structure surrounding the Fe atom may be
significant for doming distortion. Incidentally, we could not obtain features correlated with
heme distortion using PCA for all samples in the whole dataset. Therefore, heme distortion
is regulated by even a slight difference in cavity shape, and it is smaller than the difference
in structures between all protein chains in the whole dataset (differences between clusters
would be preferentially detected using PCA).
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Figure 5. (a) Plot of similarity scores of cavity shapes versus RMSD of heme for the pairs of protein
chains in the whole and non-redundant datasets. (b) Plot of PC1 values of cavity shapes versus
the magnitude of distortion of heme in Clusters 9 (left panel) and 11 (right panel). Dashed lines
colored in the dark-orchid, pink, and turquoise are linear regression lines for saddling, ruffling, and
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regression analysis. (c,d) First eigenvectors obtained from PCA for Clusters 9 (c) and 11 (d). Lime
and magenta mesh surfaces represent the isosurfaces of +0.25 and −0.25. Structures with large PC1
values would have the cavity containing lime area but not the magenta area. Heme is represented as
the licorice model. Left and right panels show the same vector viewed from different directions.

3.4. Similarity of the Structures of Heme-Binding Pockets between Protein Chains with Similar
Amino Acid Sequences

To estimate the correlation between the amino acid sequences and cavity shapes
of the pocket, we analyzed the variability of cavity shapes among homologous protein
chains. By clustering protein chains in the whole dataset according to amino acid sequence,
2867 protein chains were classified into 399 clusters. From these clusters, we selected
10 clusters in the order of the number of protein chains in a cluster. Let I be a set of
samples of cavity shapes in a cluster (the number of protein chains does not correspond
to the number of heme-binding pockets because of the existence of multi-heme proteins).
To estimate the dispersion of cavity shapes, we calculated the mean distance from the
barycenter for cavity vector vi in each cluster as follows:

NI = |I|, the number of samples of a set I, (2)

µI =
1

NI
∑i∈I vi, (3)

dI =
1

NI
∑i∈I ‖vi − µI‖, (4)

where ‖·‖ represents the L2 norm.
The number of protein chains, number of samples, dI , and protein names for each

cluster are presented in Table 5. Results for the whole dataset (3843 samples) are also
included at the bottom of Table 5 for reference. For smaller dI values, higher similarity was
expected for cavity shapes in a cluster.
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Table 5. The cluster indices, sample numbers, dI , and protein names of each cluster. The shaded rows
represent the clusters with large dI .

Cluster Index Sample Number dI Protein Name

1 407 (407) † 7.55 Nitric-oxide synthase
2 146 (146) 8.43 Hemoglobin (beta chain)
3 133 (95) 5.46 Bacterioferritin
4 103 (103) 7.72 Hemoglobin (alpha chain)
5 99 (99) 8.18 Nitric oxide synthase
6 64 (81) 8.94 Cytochrome c oxidase subunit 1
7 55 (55) 11.14 Dehaloperoxidase
8 50 (50) 6.41 Nitric oxide synthase oxygenase
9 47 (47) 9.84 Cytochrome c
10 46 (321) 14.46 Eight-heme nitrite reductase

whole dataset 3843 17.27 -
† Values in parentheses represent the number of heme-binding pocket samples.

For 6 of the 10 clusters, the mean distance (dI) was smaller than half for the whole
dataset (d

whole
I ), while for 2 of them (total eight clusters), the value was <60% of d

whole
I ,

indicating that pocket structures are similar between protein chains with near-identical
amino acid sequences. The former six clusters in Table 5, whose indices are 1, 2, 3, 4, 5,
and 8, include nitric oxide synthase [47], bacterioferritin [48], and hemoglobin α and β

chains [49,50]. Bacterioferritin functions as an iron storage molecule or an oxidoreductase
and is composed of 12 homo-dimers (i.e., 24-mer protein). Since some PDB structures
only include the coordinates of the asymmetric unit, resulting in a split of heme-binding
pockets [51], we excluded samples with a heme coverage of <0.6. The latter clusters

(dI ≤ 0.6 × d
whole
I ) with indices of 6 and 9 included cytochrome c oxidase [52] and

cytochrome c [2], respectively. Therefore, these may be important to maintain the mi-
crostructure of the heme-binding pocket for redox control. For Cluster 7, which included
dehaloperoxidases [53], dI was slightly larger. This protein harbors a globin-like fold and
functions as an oxygen storage molecule, similar to hemoglobin and peroxidase. The
conformational flexibility of distal histidine increases in the deoxygenated state [54], which
may explain the slightly large dI value. Meanwhile, the dI value of Cluster 10 was much
larger than that of the other clusters. This cluster included eight-heme nitrite reductase.
This enzyme possesses eight heme-binding sites, of which three are in the N-terminal do-
main and the remainder are in the catalytic C-terminal domain [55]. As shown in Figure 6,
structural differences in these eight pockets may explain the large dI value.
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4. Conclusions

In the present study, we constructed a CNN model to predict heme distortion from the
tertiary structure of the heme-binding pocket, which included the proximal and distal amino
acids, to examine the correlation between them. The correlation between the heme-binding
pocket structure and heme distortion suggests that the protein environment affects the
distortion of heme and regulates its chemical properties. High R2 scores were obtained from
prediction by the CNN model for saddling, ruffling, doming, and waving(y) distortions. In
our previous study [26], no correlation was indicated for waving(y) distortion, as opposed
to that for the remaining three distortions. This may be because detailed information on the
tertiary structures of heme-binding pockets enabled us to predict even small conformational
differences. These results of prediction based on partial information of the heme-binding
pocket suggests that the structural information of the pocket surface is significant for the
prediction of heme distortion, and the steric effect is dominant, particularly in the saddling
and doming modes.

Furthermore, we examined the correlation between the shape of the cavity and molec-
ular structure of heme and showed that hemes in protein pockets with similar structures
exhibit near-identical structures. Therefore, heme distortion may be regulated by the pro-
tein environment. Finally, we estimated the correlation between the amino acid sequences
and cavity shapes of heme-binding sites. The variability of cavity shapes was compared
among clusters of protein chains with 90% or higher sequence similarity. We selected
10 clusters with a large number of samples and found that eight of them showed a mean
distance (dI) of <60% of that for the whole dataset. Therefore, pocket structures are similar
among protein chains with near-identical amino acid sequences.

Overall, the tertiary structure of the heme-binding pocket is determined by the amino
acid sequence of protein chain, and it is a determinant of the molecular structure of heme,
thereby controlling its chemical properties, as relevant to the protein function. In this
study, we considered only the protein environment including proximal and distal amino
acids of heme and amino acids axially coordinated to heme. However, the ligation of
non-amino acid to heme is also a determinant of the heme structure and protein function.
In the future, we are going to incorporate the structural information of small molecules
on heme into the CNN model. In addition, to improve the accuracy and robustness of
CNN model, we attempted to increase the number of structural data by adding noise to
their atomic coordinates. We showed that AlphaFold [56], a deep learning algorithm for
predicting the protein tertiary structures from their amino acid sequences, can accurately
predict the structure of the heme-binding pocket in heme proteins [24]. If these two
challenges: (1) prediction of the location of heme-binding site from its amino acid sequence
and (2) prediction of protein function from the structure of heme-binding pocket, can
be overcome, the function of heme proteins may be predicted based on the amino acid
sequence of the protein.
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