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Abstract: The outbreak of COVID-19 caused millions of deaths worldwide, and the number of total
infections is still rising. It is necessary to identify some potentially effective drugs that can be used to
prevent the development of severe symptoms, or even death for those infected. Fortunately, many
efforts have been made and several effective drugs have been identified. The rapidly increasing
amount of data is of great help for training an effective and specific deep learning model. In this study,
we propose a multi-task deep learning model for the purpose of screening commercially available
and effective inhibitors against SARS-CoV-2. First, we pretrained a model on several heterogenous
protein–ligand interaction datasets. The model achieved competitive results on some benchmark
datasets. Next, a coronavirus-specific dataset was collected and used to fine-tune the model. Then,
the fine-tuned model was used to select commercially available drugs against SARS-CoV-2 protein
targets. Overall, twenty compounds were listed as potential inhibitors. We further explored the
model interpretability and exhibited the predicted important binding sites. Based on this prediction,
molecular docking was also performed to visualize the binding modes of the selected inhibitors.

Keywords: deep learning; drug discovery; multi-task learning; protein–ligand interaction; SARS-CoV-2

1. Introduction

As of June 2022, SARS-CoV-2 has sickened more than five hundred million and killed
over six million people across the globe. SARS-CoV-2 is the seventh member of the family
of coronaviruses that infect humans [1,2]. Similar to MERS-CoV and SARS-CoV, SARS-
CoV-2 causes severe respiratory diseases and is capable of spreading from person to person.
Unfortunately, the rapid mutation of this virus makes it difficult to develop effective
vaccines, especially for Omicron. The COVID-19 pandemic will last for years. Therefore,
the continuous development of effective anti-SARS-CoV-2 drugs is necessary to prevent
the worsening of symptoms, or even death. As a positive-sense, single-stranded RNA
beta-coronavirus, SARS-CoV-2 encodes structural, non-structural and accessory proteins.
Among these, RNA-dependent RNA polymerase (RdRp), 3-chymotrypsin-like protease
(3CLpro), papain-like protease (PLpro), helicase and the spike glycoprotein are supposed
to be the main targets. Several compounds that targeted these viral proteins and inhibited
coronavirus in vitro have been reported and moved into clinical trials [3]. For example,
remdesivir is an approved HIV reverse-transcriptase inhibitor, which has broad-spectrum
activities against RNA viruses such as MERS-CoV and SARS-CoV. However, it showed less
effective activity in an Ebola clinical trial [4–6]. Previous reports showed that remdesivir
inhibited SARS-CoV-2 in vitro with an EC50 of 0.77 µM [7], and was used to treat a SARS-
CoV-2-infected patient in the United States [8]. However, more potential inhibitors against
SARS-CoV-2 are still needed.

Computational methods, such as molecular docking, select compounds that can bind
to a target protein and thus improve the success rates of drug discovery. Recently, methods
based on deep learning have gained impressive performance in terms of protein–ligand
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binding prediction [9–11]. One main advantage of this algorithm is that it can extract
hidden features automatically from raw data and thus significantly improve the prediction
accuracy. However, deep learning models might suffer from the generalizability issue due
to lack of data. Recently, pretraining models on a large-scale dataset before applying to a
small dataset has emerged as a powerful paradigm for solving this issue [12].

In this study, we propose a multi-task deep learning model for selecting potential
SARS-CoV-2 inhibitors. First, the model was pretrained on several heterogenous protein–
ligand interactions datasets (Figure 1). The model achieved competitive results on several
protein–ligand benchmark datasets. Next, a coronavirus-specific dataset was collected and
used to fine-tune the model. The fine-tuned model was then used to select commercially
available drugs against the SARS-CoV-2 targets. Overall, twenty drugs were listed as
potential inhibitors. Furthermore, we explored the model interpretability and found that
the predicted important binding sites were close to ground truth.
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Figure 1. Schematic of the proposed model. The model involves two parts: protein/ligand feature
extraction and their interaction prediction. First, the protein sequence is processed in turn by
word2vec [13], multi-heads residual layer and Bi-GRU (bidirectional gated recurrent unit) modules.
Ligand smiles is processed by node2vec [14]. Then, their representations are fed into a shared layer
and task-specific layer and connected to the labels.

2. Results and Discussion
2.1. Model Performance on Benchmarks

We first trained a multi-task deep learning model on heterogenous protein–ligand
interaction datasets. The model achieved competitive results on several benchmark sets.
For example, the PDBbind v.2016 dataset is a widely used benchmark for evaluating
protein–ligand interaction prediction methods [15]. It provides more than ten thousand
protein–ligand structural complexes with binding affinity (e.g., Kd, Ki). We split the
PDBbind set the same way as Pafnucy [16], a classic deep learning-based method for
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predicting protein–ligand affinity. Moreover, two independent test sets CASF-2013 [17] and
Astex Diverse [18] were used to test the generalizability of the model.

Two metrics, RMSE (root mean square error) and Pearson′s correlation coefficient
R, were used to evaluate the regression task. As shown in Figure 2, the model achieved
RMSE = 1.538, R = 0.71 on the test set and performed well on both independent tests. These
results are better than most classic structure-based methods. It is worth noting that our
model is only sequence-based.
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square error. MAE: mean absolute error. R: Pearson′s correlation coefficient R. SD: stand deviation.

For the classification task, the model was evaluated on DUD-E, Human, C. elegans and
KIBA datasets using 3-fold cross validation. Two traditional machine learning algorithms,
SVM and random forest, were also used to compare these datasets. As shown in Figure 3,
the proposed model showed excellent performance on most evaluation metrics, including
AUC, accuracy, precision, recall, F1-score and specificity. Specifically, the single-task
method, which indicates training on one specific label, achieved better performance than
the multi-task method on more specific metrics such accuracy and precision, while the
multi-task method showed better performance on recall, indicating that it covered more
protein–ligand interaction data space. It should be noted that each single-task model
corresponded to only one dataset (i.e., it performed well on one dataset but performed
poorly on the other datasets). Therefore, the single-task model is likely to perform poorly
on coronavirus-specific datasets due to the generalizability issue, even though it performed
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well on the benchmark dataset. In contrast, the multi-task model was trained once and
achieved excellent results on all these datasets. These results suggest that the multi-task
model has a better applicability by leveraging heterogenous datasets.
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2.2. Screening of SARS-CoV-2 Inhibitors

Recently, pretraining a model on a large-scale dataset before applying it to a small
dataset has emerged as a powerful paradigm for improving model generalizability. In-
spired by this idea, we fine-tuned the pretrained model on a collected SARS-CoV-2 dataset
and then selected potential SARS-CoV-2 inhibitors from a bioactive commercial library
containing 10 thousand compounds. After excluding drugs with possible side effects, a total
of 10 drugs with high binding affinity were identified, as listed in Table 1. Among these,
abacavir (sulfate), a powerful nucleoside analog reverse-transcriptase inhibitor used to treat
HIV (human immunodeficiency virus) was predicted to have high binding affinity with
multiple proteins of SARS-CoV-2 including RdRp and helicase. Darunavir, a protease in-
hibitor used to treat HIV, was used in a clinical trial against COVID-19 (ChiCTR2000029541).
It should be noted that both darunavir and darunavir (ethanolate) were not present in
the training and fine-tuning sets. That is, they were “unseen” by the model. Our model
also predicted that darunavir could target 3CLpro and PLpro with affinity Kd = 57.30
and 46.16 nM, respectively, while darunavir (ethanolate) binds to 3CLpro and PLpro with
affinity Kd = 44.51 and 35.86 nM, respectively. These results partially prove the accu-
racy and generalizability of our model. In our predictions, almitrine mesylate, which is
a respiratory stimulant that enhances respiration, was used in the treatment of chronic
obstructive pulmonary disease. Roflumilast has anti-inflammatory effects and is used as an
orally administered drug for the treatment of inflammatory conditions of the lungs such
as chronic obstructive pulmonary disease. These two predicted drugs are associated with
respiratory symptoms that are the main clinical symptoms of COVID-19. Interestingly,
kesuting syrup and keqing capsules were used in a trial for the treatment of mild and
moderate COVID-19 (ChiCTR2000029991). It is uncertain whether these drugs only help
to alleviate clinical symptoms or have a direct effect on the virus. Daclatasvir is used
against Hepatitis C Virus (HCV), which stops HCV viral RNA replication and protein
translation by directly inhibiting HCV protein NS5A. In this study, the predicted binding
affinity between daclatasvir and RdRp was 15.03 nM. Fiboflapon sodium, a high-affinity
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5-lipoxygenase-activating protein inhibitor used for the treatment of asthma, was predicted
to have potential affinity to PLpro with Kd = 197.63 nM.

Table 1. Potential inhibitors for SARS-CoV-2.

Drug CAS Target Predicted Affinity (nM)

Abacavir (sulfate) 188062-50-2 RdRp
helicase

3.03
3.06

Darunavir 206361-99-1 3CLpro
PLpro

57.30
46.16

Darunavir (ethanolate) 635728-49-3 3CLpro
PLpro

44.51
35.86

Itraconazole 84625-61-6 PLpro
RdRp

127.98
16.90

Almitrine mesylate 29608-49-9 3CLpro 29.31
Daclatasvir 1009119-64-5 RdRp 15.03

Daclatasvir (dihydrochloride) 1009119-65-6 RdRp 19.87
Metoprolol tartrate 56392-17-7 PLpro 153.23
Fiboflapon sodium 1196070-26-4 PLpro 197.63

Roflumilast 162401-32-3 3CLpro 248.89

Furthermore, the model was applied to screen lead compounds for 3CLpro inhibition
from a diverse screening library containing two million compounds. This screening library,
namely, the Enamine HTS Collection, encompasses versatile chemotypes developed within
a couple of decades of chemical research at Enamine and its partner academic organizations.
Compounds within this library frequently have unusual structures and unique properties.
3CLpro was taken as the screening target because of its wide application and large amount
of corresponding data. Thus, the fine-tuned deep learning model had relatively higher
accuracy for selecting 3CLpro inhibitors. For the screening, the candidate compounds were
first screened by our model. Those candidates were ranked according to the predicted
scores. Then, candidates with high predicted scores were further screened based on their
possible side effects. For example, Panobinostat, which is a potent and orally active non-
selective HDAC inhibitor and has antineoplastic activity, was predicted to inhibit RdRp at
111.19 nM. However, Panobinostat has been reported to possibly cause side effects such as
severe diarrhea, headache and even severe infection. Thus, these candidates with severe
side effects were excluded. Finally, a total of 10 potential lead compounds are listed in
Table 2.

Table 2. The predicted lead compounds for SARS-CoV-2 3CLpro.

ID SMILES Probability

Z56899184 O=[N+]([O-])c1cccc(SSc2cccc([N+](=O)[O-])c2)c1 0.969
Z229622170 N#Cc1cccc(CN2C(=O)C(=O)c3cccc(Br)c32)c1 0.947
Z57728899 COc1ccc(CN2C(=O)C(=O)c3cc(Br)ccc32)cc1 0.918
Z90667629 [Na+].[O-][n+]1ccccc1[S-] 0.863

Z1238998507 N#Cc1cc([N+](=O)[O-])ccc1Oc1cncc(Cl)c1 0.782
Z56833036 O=C1c2ccccc2C(=O)c2c1cccc2S(=O)(=O)N1CCOCC1 0.724
Z57013003 COc1ccc(N2CCN(C(=O)c3cc(=O)[nH]c4ccccc34)CC2)cc1 0.711

Z1245218850 N#CCc1cccc(C(=O)Oc2cncc(Cl)c2)c1 0.697
Z56785091 c1nc(SSc2nc[nH]n2)n[nH]1 0.682

Z1776036493 Cc1cc(Br)cc2c1N(CCBr)C(=O)C2=O 0.676

2.3. Model Interpretation

To explore how the model discerns protein–ligand interaction, we conducted a method
to identify the key amino acids that are critical for binding. The listed potential inhibitors
were regarded as positive samples with high prediction scores. Then, we masked sub-
sequences of samples to obtain a “masked” prediction score, and then calculated the
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importance of these masked sub-sequences. As shown in Figure 4, the critical parts for
binding in protein sequences were visualized using a heatmap. In the heatmap, the brighter
the region, the more important it is. For 3CLpro, the important amino acids for binding are
mostly located at two main parts. It should be noted that different drugs result in different
weights in these two regions. For example, roflumilast has higher weights in the first region,
indicating the binding sites for roflumilast are close to the middle pocket of 3CLpro. As
for abacavir (sulfate), both regions more or less affect the binding, especially the second
region at the 180–200th amino acids. For PLpro, the predicted binding sites are located at
the 100–120th amino acids.
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Moreover, we visualized the predicted binding sites in 3D structures to show possible
pockets. The 3CLpro of SARS-CoV-2 (PDB: 6lu7) was used. As mentioned above, two
regions of 3CLpro contributed mostly to the binding. As shown in Figure 4A, the region
in the upper part (100–200th amino acids) was predicted as the main pocket due to the
high weights in most predictions. SARS-CoV-2 PLpro has a catalytic triad composed of
Cys114-His275-Asp289 and a conventional zinc-binding domain of four cysteine residues:
Cys192, Cys194, Cys227, and Cys229 [19]. The central “thumb” domain contributes the
catalytic Cys112 to the active site. Similarly, our model predicted that the 100–120th amino
acids contributed mainly to the final binding of small molecules.

2.4. Molecular Docking

Based on our prediction and known protein–ligand structural complexes, we per-
formed the molecular docking of predicted inhibitors to 3CLpro. Four inhibitors, Z56899184,
Z57728899, Z57013003 and Z1245218850, were docked to 3CLpro using ArgusLab [20]. For
each compound, the best pose with the lowest binding affinity from the ArgusLab docking
results was selected. As shown in Figure 5, these inhibitors all bind to amino acids that
are located in the active site of 3CLpro (the predicted upper binding region in Figure 4A).
Previous studies have shown that the catalytic residue Cys145 is critical for forming cova-
lent bonds between 3CLpro and inhibitors [21,22]. As shown, compound Z56899184 also
forms a covalent bond with Cys145 of 3CLpro in the docking result (with binding affinity:
−8.67 kcal/mol). These results indicate that Cys145 plays a critical role in the binding
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process. It should be noted that the binding affinity between the protein and ligand cannot
be simply considered based on docking scores (i.e., often expressed in kcal/mol).
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Figure 5. Molecular docking of predicted inhibitors to SARS-CoV-2 3CLpro. (A) Z56899184,
−8.67 kcal/mol; (B) Z57728899, −7.86 kcal/mol; (C) Z57013003, −7.45 kcal/mol; (D) Z1245218850,
−8.41 kcal/mol. 3CLpro is represented as translucent gray cartoon. The involved amino acids are
represented in cyan.

3. Conclusions

In this work, a multi-task deep learning model was proposed to predict potential
commercial drugs against SARS-CoV-2. There are two main points that should be restated.
First, the model was pretrained on heterogenous protein–ligand interaction datasets before
being applied to the SARS-CoV-2 inhibitor screening. This idea was inspired by the recent
success of pretrained models on various fields such as natural language processing. The
core logic of this method was transfer learning, which could extract features from large-
scale datasets and then transfer the learned knowledge to a small set. This method has
a broad application in drug discovery which is often hindered by the small data issue.
Although the pretrained model had wide distribution in the protein–ligand interaction
data space, the distance between existing knowledge and future application is ambiguous.
Therefore, which part of the pretraining set would cause issues such as negative effect
was not understood well. Second, the exploration of the “black box” within deep learning
model is very important, especially in the drug discovery area. The black box model may
increase the risk of subsequentially false leads, thus causing severe consequences. Our
model could provide some insights into this. Overall, we are on a cheerful avenue for the
application of pretrained deep learning models in drug discovery.
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4. Methods
4.1. Data

A few benchmark protein–ligand interaction datasets were used for model pretraining,
including DUD-E [23], Human, C. elegans [24], KIBA [25] and PDBbind [15]. For classifica-
tion, DUD-E, Human, C. elegans and kinase inhibitor bioactivity (KIBA) were used. A total
of 91,220 samples from the DUD-E dataset were used in this study, in which the negative-to-
positive ratio was set to 3:1 to avoid an imbalance of data. Similarly, the negative-to-positive
ratios of Human and C. elegans sets were also set to 3:1. For the KIBA, protein–ligand
interactions with values bigger than 12.1 were regarded as positive samples. For regression,
the PDBbind v.2016 and kinase dataset Davis were used. Specifically, 13,196 protein–ligand
complexes from the PDBbind set were split the same way as Pafnucy. Similarly, the kinase
dataset Davis consisting of a total of 9125 interactions with the corresponding binding
affinity (Kd) was used here.

For drug screening, several important SARS-CoV-2 proteins were used as targets,
such as RNA-dependent RNA polymerase (RdRp), 3-chymotrypsin-like protease, papain-
like protease and helicase. The sequences of these proteins were extracted from NCBI
(NC_045512.2). The SARS-CoV/SARS-CoV-2 specific dataset was collected from var-
ious papers [21,26–29] and public datasets such as GHDDI and PubChem with filtra-
tion. After removing duplicates, a collection of 10 thousand approved and bioactive
compounds was used for screening. Similarly, a diverse Enamine HTS collection containing
2 million compounds was also used.

4.2. Model

Basically, the proposed model consists of three parts: protein feature extraction by
word2vec and transformer, drug feature extraction by node2vec and interaction prediction
by multi-task modules. The last dense layer was activated as output. The loss functions
were defined as binary cross entropy (BCE) and mean squared error (MSE) for classification
and regression, respectively. Figure 1 displays the basic architecture of the model, and more
details are described below.

Preprocessing. Given the drug SMILES and protein sequence, we first constructed
a graph and words, respectively, and then obtained the dense vectors by the embedding
method. Let Lidx = x1, x2, . . . , xL−1, xL be a word sequence of each protein, where idx
is the sequence index, L is the word sequence length and xi ∈ Rd1 is the d1-dimensional
embedding of the ith word that we split by overlapping 3-gram on the original sequence.
For drugs, let G = (V, E) be a given drug SMILES and f : V → Rd2 be the mapping
function from Vidx = {v1, v2, . . . , vl−1, vl} to feature representation. Where idx is the
sequence index, l is the drug length and vi is the d2-dimensional embedding of the ith node
on the original sequence [30].

Pretraining. With the building of a large-scale word-segmented corpus of protein
sequence, we then used each current word as an input to a log-linear classifier with a
continuous projection layer, and predicted words within a certain range before and after
the current word, proposed as a skip-gram model [13], to obtain the final d1-dimensional
embedding words. Meanwhile, to identify the specific drug network nodes, we considered
node2vec [14] as the representation learning method to design a flexible neighborhood
sampling strategy to explore a random walk, such as {s, v3, v5, v9, v8, v1, v6, v4} of start
node s = v2 and walking length l = 8; thus, we can consider the skip-gram architecture
mentioned above as a feature learning method.

Multi-task module. This module consists of two parts: shared layers and task-specific
layers. The shared layers are designed to learn a joint representation for all tasks. Task-
specific layers are used to learn the weights of specific blocks based on the joint representa-
tion. In this study, two related tasks are defined: classification and regression. The model
was fine-tuned by a virus-specific dataset to acquire robust results for coronavirus.

The model weights were initialized using a Glorot uniform initializer, which keeps
the variance of output and input by correcting the variance of uniform. Then, the Adam
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optimize was used to train the model. The initial learning rate and batch size was set to
10-4 and 256. During the training process, early stopping was used to monitor the training
and validation loss in order to select the final model without overfitting.

4.3. Biological Interpretation

A non-parametric method, “occlusion”, used in our previous study [11], was applied
to explore which parts of the input protein sequences were critical to the task. The intuitive
explanation of this method is: (i) mask a subsequence (e.g., 10–20th amino acids) of a
full-length protein sequence; (ii) predict a result of this modified sequence; (iii) calculate
the difference between this result and the ground truth; (iv) repeat (i) to (iii) and find the
most important amino acids. Specifically, si from test samples (i = 0, 1, 2,..., n−1, here,
n is sample size of test set) was expressed as tuple (protein input_i, compound input_i).
While maintaining compound input_i as unchanged, we systematically masked the protein
input_i in si to track the changes of the output. Then, the importance of each sub-sequence
in the sequence to the prediction could be calculated.
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