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Abstract: Enhancers are short DNA segments that play a key role in biological processes, such as
accelerating transcription of target genes. Since the enhancer resides anywhere in a genome sequence,
it is difficult to precisely identify enhancers. We presented a bi-directional long-short term memory
(Bi-LSTM) and attention-based deep learning method (Enhancer-LSTMAtt) for enhancer recognition.
Enhancer-LSTMAtt is an end-to-end deep learning model that consists mainly of deep residual neural
network, Bi-LSTM, and feed-forward attention. We extensively compared the Enhancer-LSTMAtt
with 19 state-of-the-art methods by 5-fold cross validation, 10-fold cross validation and independent
test. Enhancer-LSTMAtt achieved competitive performances, especially in the independent test. We
realized Enhancer-LSTMAtt into a user-friendly web application. Enhancer-LSTMAtt is applicable
not only to recognizing enhancers, but also to distinguishing strong enhancer from weak enhancers.
Enhancer-LSTMAtt is believed to become a promising tool for identifying enhancers.

Keywords: enhancer; promoter; deep learning; feed-forward attention; convolution neural network;
long-short term memory; residual neural network

1. Introduction

Enhancers are short pieces of DNA sequences of 50 to 1500 bp, which can accelerate the
transcription of target genes by binding the transcription factors [1,2]. Unlike the promoters,
enhancers are located either in the upstream/downstream or within the genes they regulate
and doesn’t have to be close to the starting sites of transcription [2–4]. Increasing evidences
indicate that enhancers play a critical role in the gene regulation [4,5]. The enhancers
control the expression of genes involved in cell differentiation [6,7] and are responsible
for morphological changes in three spine stickleback fish [8]. The enhancers orchestrate
critical cellular events such as differentiation [9,10], maintenance of cell identity [11,12],
and response to stimuli [13–15] by binding to transcription factors [16]. The enhancers
are closely related to inflammation and cancer [17]. Therefore, precisely detecting en-
hancers from DNA sequences is critical to further investigate their functions or roles in the
cellular processes.

The methods or techniques used to identify enhancers are divided into two categories:
high-throughput experimental technology and computational method [5,18]. The former
includes chromatin immunoprecipitation followed by deep sequencing (ChIP–seq) [19,20],
protein-binding microarrays (PBMs) [21], systematic evolution of ligands by exponential
enrichment (SELEX) [22], yeast-one-hybrid (Y1H) [23], and bacterial-one-hybrid [24]. The
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main idea behind these technologies is to identify enhancers by recognizing properties
of the enhancer-binding interactors [16]. There are generally four ways of experimental
technology. The first way is to identify enhancers by binding sites of the specific tran-
scription factors (TFs) with the help of ChIP-seq [13,25]. These techniques are restricted to
cell-type or tissue-specific TFs. The second way is to detect enhancers by recognizing the
binding sites of transcriptional co-activators such as CBP (also known as CREB-binding
protein or CREBBP) and P300 (also called EP300 or E1A binding protein p300) recruited
by the TFs [12,13,26]. However, not all enhancers are characterized by the co-activators,
and the ChIP-grade antibodies are not always available. The third way is to identify
nucleosome-depleted open regions of DNase I hypersensitivity [27]. The open regions
include other DNA elements, such as promoters, silencers/repressors, insulators, and
other function-unknown sequences [28,29]. The modifications of histones in the flanking
nucleosomes are of certain signature of enhancers. For example, histones flanking active
enhancers are typically marked by H3 mono-methylated at lysine 4 (H3K4me1), while
histone flanking active promoters are marked by H3K4me3 [13]. Therefore, the fourth
method is genome-wide mapping of histone modifications. In spite of great success in
identifying enhancers, high-throughput experimental technologies have two drawbacks:
they are time-consuming and expensive. Therefore, it is a challenging task to identify all
enhancers from thousands of tissues or cells.

The computational methods have been developed to complement the high-throughput
experimental technologies over the recent decade [18,30,31]. The computational methods
include genomics comparison-based methods and machine learning-based methods. The
enhancers reside in any region of the genome, so it is very difficult to find intuitively
linear motifs of enhancers by genomics comparison-based methods. Machine learning-
based methods build a classification model to fit known enhancers and then predict new
enhancers. Furthermore, Machine learning-based methods are capable of discovering
non-linear hidden motifs of enhancers. To date, there are at least twenty machine learning-
based methods for enhancer prediction [16,32–63], such as iEnhancer-2L [40], iEnhancer-
PsedeKNC [41], EnhancerPred [42], and EnhancerPred2.0 [43]. The general workflow of
these methods is firstly to compute representation of sequences such as pseudo k-tuple
nucleotide composition, nucleotide binary profiles, as well as accumulated nucleotide
frequency, then to learn a classifier by using a machine learning algorithm such as support
vector machine and random forest, and finally to predict unknown sequences.

The aforementioned machine learning-based methods require sophisticated design
of representations as well as sophisticated selection of conventional machine learning
algorithms. In practice, any single representation is not able to characterize enhancers well,
while a combination of diverse representations has the potential to improve the performance
but reduces the generalization ability of the methods. The deep learning methods that have
been developed in the recent decades have proven to be good at addressing complex issues,
including protein structure prediction, which is thought to be one of the most challenging
tasks [64,65]. Yao et al. [60] presented a word embedding-based deep learning method
named iEnhancer-GAN to detect enhancers. To make up for insufficiency of the number of
training samples, iEnhancer-GAN [60] used the sequence generative adversarial net [66] to
augment training samples. Min et al. [33] developed a deep convolution neural network
(CNN)-based method for distinguishing enhancers from non-enhancers, which required
only primary sequences as input. Khanal et al. [52] exploited word embedding in the field
of natural language processing as well as CNN to construct a method named iEnhancer-
CNN. Nguyen et al. [50] integrated multiple CNNs into the iEnhancer-ECNN. The CNN
is capable of characterizing local properties [67], but is insufficient to represent semantic
relationships between words in the context of sequences. Tan et al. [48] exploited recurrent
neural networks (RNN) and integrated the output of both RNN and CNN for the final
decision. Le et al. [55] presented an advanced method (BERT [68]) to capture semantics of
DNA sequences. On the basis of analysis of the published works or methods for detecting
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enhancers, we presented a bi-directional long-short term memory (Bi-LSTM) and attention-
based deep learning method for enhancer recognition called Enhancer-LSTMAtt.

2. Data

For fair comparison with the state-of-the-art methods, we used the same bench-
mark dataset as those in iEnhancer-2L [40], iEnhancer-PsedeKNC [41], EnhancerPred [42],
EnhancerPred2.0 [43], Enhancer-Tri-N [44], iEnhaner-2L-Hybrid [45], iEnhancer-EL [46],
iEnhancer-5Step [47], DeployEnhancer [48], ES-ARCNN [49], iEnhancer-ECNN [50],
EnhancerP-2L [51], iEnhancer-CNN [52], iEnhancer-XG [53], Enhancer-DRRNN [54],
Enhancer-BERT [55], iEnhancer-KL [56], iEnhancer-RF [57], spEnhancer [58], iEnhancer-
EBLSTM [59], iEnhancer-GAN [60], piEnPred [61], iEnhancer-RD [62], and iEnhancer-
MFGBDT [63]. The dataset was initially collected by Liu et al. [40] from chromatin state
information of nine cell lines (H1ES, K562,GM12878, HepG2, HUVEC, HSMM, NHLF,
NHEK and HME) which was annotated by ChromHMM [69,70]. The initial enhancers
included sequences of less than 200 bp and were of high homologies. In order to com-
ply with the length of nucleosome and linker DNA, less than 200 bp sequences were
removed and more than 200 bp sequences were cut into segments of fixed length (200 bp).
Liu et al. [40] employed the CD-HIT to decrease or remove homologies among sequences.
The CD-HIT [71–73] is a clustering tool to reduce redundant sequences. The generated
non-redundant sequences were used to examine the dependency of methods on homol-
ogy [74–80]. Liu et al. [40] set sequence identity to 0.8, indicating that homologies between
chosen enhancers were not less than 0.8. The enhancers were grouped into strong en-
hancers and weak enhancers. The numbers of weak enhancers and the non-enhancers are
much greater than those of strong enhancers. To achieve a balance between positive and
negative samples, Liu et al. [40] randomly sampled the same numbers of weak enhancers
as the strong enhancers and the same number of non-enhancers as the sum of strong and
weak enhancers. The benchmark dataset S consisted of the strong enhancer set Sstrong,
the weak enhancer set Sweak, and the non-enhancer set Snon, whose numbers were 742,
742, and 1484, respectively. During the process of distinguishing the enhancer from the
non-enhancer, both the strong enhancers and the weak enhancers were viewed as positive
samples, and the non-enhancers were viewed as negative samples. During the process of
distinguishing strong enhancers from weak enhancers, strong enhancers were positive, and
weak enhancers were negative.

Another dataset Si was used for the independent test, which was from reference [46].
The Si contained 100 strong enhancers Si

strong, 100 weak enhancers Si
weak and 100 non-

enhancers Si
non. The sequence identities between any two enhancers are not more than 0.8

by processing by CD-HIT [71–73].

3. Methods

As shown in Figure 1, the proposed method comprised mainly input, embedding, 1D
CNN, residual neural network (ResNet), Bi-LSTM, attention, dropout, flattened, and fully
connected layers. The input was DNA segments of 200 bp. Then, DNA segments were
transformed into number sequences by

f(X) =


0
1
2
3
4

A
C
G
T
N

(1)

where N denoted the characters of the unknown nucleotide. The embedding of number
sequences was entered into the convolution module and the LSTM module. The convolu-
tion module consisted mainly of the 1D CNN and ResNet [81–83], while the LSTM module
comprised mainly Bi-LSTM [84,85] and feed-forward attention [86,87]. The concatenation
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of outputs of the two modules was entered into the fully connected layer. Following
the fully connected layer was the final layer, which contained one neuron representing
the probabilities of belonging to enhancers. We set the threshold to 0.5, and thus more
than 0.5 output indicated that the corresponding input was predicted to be positive and
otherwise to be negative. The numbers of the parameters and the shape of output in each
layer of the Enhancer-LSTMAtt were listed in Table 1.

Biomolecules 2022, 12, x  4 of 19 
 

where N denoted the characters of the unknown nucleotide. The embedding of number 
sequences was entered into the convolution module and the LSTM module. The convo-
lution module consisted mainly of the 1D CNN and ResNet [81–83], while the LSTM 
module comprised mainly Bi-LSTM [84,85] and feed-forward attention [86,87]. The con-
catenation of outputs of the two modules was entered into the fully connected layer. 
Following the fully connected layer was the final layer, which contained one neuron 
representing the probabilities of belonging to enhancers. We set the threshold to 0.5, and 
thus more than 0.5 output indicated that the corresponding input was predicted to be 
positive and otherwise to be negative. The numbers of the parameters and the shape of 
output in each layer of the Enhancer-LSTMAtt were listed in Table 1. 

 

 
Figure 1. The architecture of the Enhancer-LSTMAtt. Conv1D, Batch Norm, Attention, Activation, 
Dense, and Max Pool 1D denote the 1D CNN layer, the batch normalization layer, the feed-forward 
attention layer, activation function, the fully-connected layer, and the max pooing layer respec-
tively. 

Table 1. The shapes of outputs and the numbers of parameters in the Enhancer-LSTMAtt. 

Layers Shape of Output Number of Parameters 
Input (None, 200) 0 

Figure 1. The architecture of the Enhancer-LSTMAtt. Conv1D, Batch Norm, Attention, Activation,
Dense, and Max Pool 1D denote the 1D CNN layer, the batch normalization layer, the feed-forward
attention layer, activation function, the fully-connected layer, and the max pooing layer respectively.

3.1. Embedding Layer

The embedding is generally the first layer of the deep neural network, whose role is to
map the categorical (discrete) variable to continuous vectors (https://towardsdatascience.
com/neural-network-embeddings-explained-4d028e6f0526 (accessed on 3 March 2022)) [88].
The traditional one-hot encoding suffered from two defaults. One was that it was not
capable of distinguishing similarities between representations. Another was that the
representation was sparse in the case of the large vocabulary. The embedding well solved
two issues and thus was widely applied to the area of natural language processing. The
embedding can be used alone, such as word2vec and Glove, or fused into the deep neural
network as the first layer.

https://towardsdatascience.com/neural-network-embeddings-explained-4d028e6f0526
https://towardsdatascience.com/neural-network-embeddings-explained-4d028e6f0526
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Table 1. The shapes of outputs and the numbers of parameters in the Enhancer-LSTMAtt.

Layers Shape of Output Number of Parameters

Input (None, 200) 0
Embedding (None, 200, 32) 160

Conv1D(32, 8) (None, 200, 32) 8224
Batch Normalization (None, 200, 32) 128

Activation (None, 200, 32) 0
Max Pooling (None, 199, 32) 0

Conv1D_1(64, 8) (None, 96, 64) 16,448
Batch Normalization (None, 96, 64) 256

Activation (None, 96, 64) 0
Conv1D_2(64, 8) (None, 96, 64) 32,832

Batch Normalization (None, 96, 64) 256
Conv1D_3(64, 8) (None, 96, 64) 16,448

Add (None, 96, 64) 0
Activation (None, 96, 64) 0

Conv1D_4(64, 8) (None, 96, 64) 32,832
Batch Normalization (None, 96, 64) 256

Activation (None, 96, 64) 0
Conv1D_5(64, 8) (None, 96, 64) 32,832

Batch Normalization (None, 96, 64) 256
Add (None, 96, 64) 0

Activation (None, 96, 64) 0
Conv1D_6(64, 8) (None, 96, 64) 32,832

Batch Normalization (None, 96, 64) 256
Activation (None, 96, 64) 0

Conv1D_7(64, 8) (None, 96, 64) 32,832
Batch Normalization (None, 96, 64) 256

Add (None, 96, 64) 0
Activation (None, 96, 64) 0

Global Max Pooling (None, 64) 0
Bidirectional LSTM (None, 200, 64) 16,640
Bidirectional LSTM (None, 200, 64) 24,832

Attention (None, 64) 264
Dropout (None, 64) 0

Concatenate (None, 128) 0
Dense(16) (None, 16) 2064
Dense(1) (None, 1) 17

3.2. CNN

CNN is one of most popular neural network architectures used to construct deep
neural network [67,89,90]. The main characteristic of the CNN is to capture the local hidden
structure by using convolutional kernels or filters. As shown in Figure 2A, the input is
divided into patches, which are convoluted into the feature map by the convolutional
kernel. The patches are allowed to overlap, and the interval between adjacent patches is
called the stride. All of the patches in the same input share the convolutional kernel which
are learnable parameters. To keep the size of the input unchanged, the input is sometimes
required to pad. To increase the non-linear ability of the CNN, the activation function is
added to the feature map. The activation function includes ReLU, sigmoid, tanh, weakly
ReLU, and ELU. The pooling in the CNN is a non-linear down-sampling, whose role is to
reduce the dimensionality of representations and to speed up the calculation. In addition,
the pooling is able to avoid or decrease the over-fitting issue.
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3.3. ResNet

As the number of stacked layers in the deep neural network increased, three issues
would occur: information loss, gradient vanishing or exploding, and network degradation.
This resulted in the worse performance of the deep neural network [89]. He el al. [81]
presented ResNet to address these issues. The basic architecture of ResNet [81] was
composed of residual mapping F(x) and identity mapping x, as shown in Figure 2B. The
identify mapping ensured no loss of inputted information in spite of increasing layers. The
residual mapping was viewed as the learnable residual function and might be conventional
convolutions. The ResNet enabled the neural network to go deeper without network
degradation. Li et al. [81] used ResNet to construct a 152-layers deep network, which
reduced the top 5 error rates of image recognition to 5.71% on the ImageNet.

3.4. Bi-LSTM

Long-short term memory (LSTM) [90] is a type of recurrent neural network
(RNN) [91,92]. The RNN is especially suitable to deal with time series questions due
to its architecture: sharing weights at all of the time steps. The RNN was applied to a
wide range of fields, including speech recognition [93], continuous B-cell epitope predic-
tion [94], sentiment analysis [95], and action recognition [96]. The major default of the RNN
was that it is prone to cause gradient vanishing or exploding for long sequence analysis.
Therefore, the RNN was restricted to short sequences [97,98]. The LSTM [90] employed
the gate mechanism to control conveying of information, including selective addition of
new information or removal of information accumulated previously. The LSTM was able
to capture the relationship of the words in the former with those in the back but was not
able to characterize the relationship of the words in the back with those in the former. The
Bi-LSTM [84,85] addressed the issue well. As shown in Figure 3, the Bi-LSTM was made
up of two LSTMs, one from forward to backward and another from backward to forward.
The two LSTMs shared embedding of words but were independent of each other in terms
of learnable parameters. The concatenation of hidden states in both LSTMs corresponded
to the output of the Bi-LSTM.
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3.5. Feed-Forward Attention

Attention mechanisms are increasingly becoming a hot topic in the field of deep
learning. The attention mechanisms are a scheme of allocating weights, which is very
similar to the scene where one assigns a different focus to different parts when watching an
object. There are many attention schemes, including feed-forward attention [99] and self-
attention [100], etc. The feed-forward attention is intended to make up for the deficiency
of the LSTM in the long-term dependency. Assume that the hidden state at time step
t in the LSTM was ht. The context vector generated by the feed-forward attention was
computed by

c = ∑T
t=1 αtht, (2)

where αt was the attention weight of the hidden state ht. αt was defined by

αt =
exp(et)

∑T
k=1 exp(ek)

, (3)

where
et = δ(ht). (4)

δ was the learnable parameter.

3.6. Dropout Layer

Dropout proposed by Hinton et al. [101] is a concept to train deep neural network. In
the process of training, a certain proportion of neurons are randomly dropped out, and all of
the neurons are used as usual in the process of prediction [102]. The dropout serves two-fold
functions: speeding up training of the deep neural network and reducing over-fitting.

3.7. Flatten Layer and Fully Connected Layer

The flatten layer was intended to convert the shape of data so as to link conveniently
the next layers. The flatten layers did not have any learnable parameters. The fully
connected layer was identical to the hidden layer in the multilayer perceptron, and each
neuron was connected to all of the neurons in the previous layer.

4. Cross Validation and Evaluation Metrics

To examine the predictive performance of the presented method, we used n-fold cross
validation and independent test. In the n-fold cross-validation, the training dataset was
divided into n parts of equal or approximately equal size, of which n-1 parts were used
to train the model and the remaining part was used to test the model. This process was
repeated n times. In the independent test, the training dataset was used to train the model,
and the independent dataset was used to test the model.
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This is a binary classification issue, so we used common metrics to evaluate the
predictive performance, including sensitivity (SN), specificity (SP), accuracy (ACC), and
Matthews’ correlation coefficient (MCC), which are defined as

SN =
TP

TP + FN
(5)

SP =
TN

FP + TN
(6)

ACC =
TP + TN

TP + FN + FP + TN
(7)

MCC =
TP× TN− FP× FN√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)
(8)

where TP is the number of true positive samples, FN is the number of false negative
samples, FP is the number of false positive samples, and TN is the number of true negative
samples. SN, SP and ACC lie between 0 and 1. The MCC ranges from −1 to 1. More values
of SN, SP, ACC and MCC indicated better performance.

The receiver operating characteristic (ROC) curve is a commonly used way to evaluate
the performance of binary classification methods. The ROC curve is drawn by plotting the
true positive rate (TPR) against the false positive rate (FPR) under various thresholds. The
TPR and the FPR are computed by

TPR =
TP

TP + FN
(9)

FPR =
FP

FP + TN
(10)

The area under the ROC curve (AUC) ranges from 0 to 1. If the AUC was equal to 1,
the prediction was perfect. The AUC equaling 0.5 indicated a random prediction and the
AUC equaling to 0 was an opposite prediction.

We used Python programming language along with the deep learning toolkit Tensor-
Flow (version 2.0) to implement the Enhancer-LSTMAtt. We conducted 5-fold cross valida-
tion, 10-fold cross validation and independent test on the Microsoft Windows 10 operating
system, which is installed on a notebook computer with 32G RAM and 6 CPUs, each with
2.60 GHz. Each epoch costs about 25 s in the training process, while prediction of each sam-
ple takes no more than 2 s by using the trained Enhancer-LSTMAtt. The codes along with
the datasets are available at Github: https://github.com/feng-123/Enhancer-LSTMAtt.

5. Results

We tested the Enhancer-LSTMAtt for its ability to not only distinguish between en-
hancers and non-enhancers, but also discriminate strong enhancers from weak enhancers.
The process of distinguishing between enhancers and non-enhancers was called the first
stage, where all of the enhancers, including weak enhancers, were positive samples. The
process of discriminating strong from weak enhancers was called the second stage, where
the strong enhancers were positive and the weak enhancers were negative samples. We
conducted 5-fold cross validation in dataset S. Figure 4 shows the ROC curve of each fold,
and Table 2 lists the evaluation of performance. We obtained an average AUC of 0.8259 in
the first stage and an average AUC of 0.6439 in the second stage. We achieved an average
SN of 0.7304, an average SP of 0.8006, an average ACC of 0.7655, and an average MCC of
0.5339 in the first stage and an average SN of 0.6765, an average SP of 0.6024, an average
ACC of 0.6395, and an average MCC of 0.2804 in the second stage. Obviously, the predictive
performance in the first stage was much better than that in the second stage, indicating
that it was more difficult to discriminate strong enhancers from weak enhancers than to
discriminate enhancers from non-enhancers.

https://github.com/feng-123/Enhancer-LSTMAtt
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Table 2. Performances of 5-fold cross validation.

SN SP ACC MCC AUC

Frist Stage
fold 1 0.7374 0.7811 0.7593 0.5190 0.8281
fold 2 0.8013 0.7576 0.7795 0.5595 0.8388
fold 3 0.6801 0.8350 0.7576 0.5214 0.8114
fold 4 0.7710 0.7980 0.7845 0.5692 0.8454
fold 5 0.6622 0.8311 0.7466 0.5004 0.8056
mean 0.7304 0.8006 0.7655 0.5339 0.8259

Second Stage
fold 1 0.6846 0.6510 0.6678 0.3358 0.6780
fold 2 0.6913 0.5369 0.6141 0.2310 0.6131
fold 3 0.7297 0.5811 0.6554 0.3143 0.6392
fold 4 0.6149 0.6419 0.6284 0.2569 0.6405
fold 5 0.6622 0.6014 0.6318 0.2640 0.6488
mean 0.6765 0.6024 0.6395 0.2804 0.6439

5.1. Comparison with State-of-the-Art Methods

As mentioned in the introduction, no less than 20 computational methods have been
developed for predicting enhancers. Some methods were tested by jackknife test, some by
5-fold cross validation, some by 10-fold cross-validation, and some by the independent test.
Some methods distinguished enhancers from non-enhancers, while some discriminated
strong from weak enhancers. Table 3 summarizes these methods. Since the jackknife test is
too time-consuming for deep learning methods, we conducted 5-fold cross, 10-fold cross
validation, and independent tests to compare these state-of-the-art methods. Tables 4 and 5
list the evaluation of performances. Different indices evaluate different performances. For
instance, SN is used to evaluate the ratio of the number of correctly predicted positive
samples to the total number of positive ones, while SP is the ratio of the number of
correctly predicted negative samples to the total number of negative ones. Sometimes,
the two indices would not maintain synchronization, which was difficult to determine
as good or bad. In this case, the overall indices could be used, such as ACC and MCC.
In the 5-fold cross-validation, Enhancer-LSTMAtt was superior to Enhancer-BERT [55],
DeployEnhancer [48] and iEnhancer-RF [57] in terms of ACC and MCC in the first stage
and exceeded iEnhancer-PsedeKNC [41], DeployEnhancer [48], EnhancerP-2L [51], and
iEnhancer-RF [57] in terms of MCC in the second stage. In the 10-fold cross-validation,
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Enhancer-LSTMAtt reached competitive performance with ES-ARCNN [49], iEnhancer-
XG [53], and iEnhancer-MFGBDT [63] in the second stage.

Table 3. Summary of the state-of-the-art methods for predicting enhancers.

Method Jackknife 5-Fold 10-Fold Independent Enhancer or Not Strong or Weak

iEnhancer-2L [40]
√ √ √ √

iEnhancer-PsedeKNC [41]
√ √ √

EnhancerPred [42]
√ √ √ √

EnhancerPred2.0 [43]
√ √ √

Enhancer-Tri-N [44]
√ √ √

iEnhaner-2L-Hybrid [45]
√ √ √

iEnhancer-EL [46]
√ √ √ √

iEnhancer-5Step [47]
√ √ √ √

DeployEnhancer [48]
√ √ √ √

ES-ARCNN [49]
√ √ √

iEnhancer-ECNN [50]
√ √ √

EnhancerP-2L [51]
√ √ √ √ √

iEnhancer-CNN [52]
√ √ √ √

iEnhancer-XG [53]
√ √ √ √

Enhancer-DRRNN [54]
√ √ √

Enhancer-BERT [55]
√ √ √

iEnhancer-KL [56]
√ √ √

iEnhancer-RF [57]
√ √ √ √

spEnhancer [58]
√ √ √

iEnhancer-EBLSTM [59]
√ √ √

iEnhancer-GAN [60]
√ √ √ √

piEnPred [61]
√ √ √ √

iEnhancer-RD [62]
√ √ √ √

iEnhancer-MFGBDT [63]
√ √ √ √

√
denoted conduction of corresponding cross validation.

Table 4. Comparison with state-of-the-art methods by 5-fold cross validation.

SN SP ACC MCC AUC

Frist Stage
iEnhancer-PsedeKNC [41] 0.7731 0.7630 0.7678 0.5400 0.8500

iEnhancer-5Step [47] 0.8110 0.8350 0.8230 0.6500 -
DeployEnhancer [48] 0.7325 0.7642 0.7483 0.4980 0.7694

EnhancerP-2L [51] 0.9077 0.9259 0.9168 0.8340 0.9400
iEnhancer-CNN [52] 0.7588 0.8888 0.8063 0.6929 0.8957
Enhancer-BERT [55] 0.7950 0.7300 0.7620 0.5250 -
iEnhancer-KL [56] 0.8322 0.8524 0.8423 0.6800 -
iEnhancer-RF [57] 0.7364 0.7871 0.7618 0.5264 0.8400

piEnPred [61] 0.9228 0.8047 0.8788 0.7660 0.9603
iEnhancer-RD [62] 0.8100 0.7650 0.7880 0.5760 0.8440
Enhancer-LSTMAtt 0.7304 0.8006 0.7655 0.5339 0.8259

Second Stage
iEnhancer-PsedeKNC [41] 0.6262 0.6441 0.6341 0.2700 0.6900

iEnhancer-5Step [47] 0.7530 0.6080 0.6810 0.3700 -
DeployEnhancer [48] 0.7965 0.3828 0.5896 0.1970 0.6068

EnhancerP-2L [51] 0.6221 0.6182 0.6193 0.2400 0.9000
iEnhancer-CNN [52] 0.7364 0.7680 0.7643 0.4505 0.8109

iEnhancer-KL [56] 0.9340 0.9287 0.9313 0.8600 -
iEnhancer-RF [57] 0.6846 0.5661 0.6253 0.2529 0.6700

piEnPred [61] 0.6554 0.7094 68.24 0.3654 0.7568
iEnhancer-RD [62] 0.8400 0.5700 0.7050 0.4260 0.7920
Enhancer-LSTMAtt 0.6765 0.6024 0.6395 0.2804 0.6439
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Table 5. Comparison with state-of-the-art methods by 10-fold cross validation.

SN SP ACC MCC AUC

Frist Stage
EnhancerP-2L [51] 0.8653 0.9690 0.9172 0.8398 0.9700
iEnhancer-XG [53] 0.7570 0.8650 0.8110 0.6265 -

iEnhancer-GAN [60] 0.9510 0.9510 0.9510 0.9020 -
iEnhancer-MFGBDT [63] 0.7754 0.7978 0.7867 0.5735 -

Enhancer-LSTMAtt 0.7414 0.7873 0.7658 0.5298 0.8256

Second Stage
ES-ARCNN [49] 0.7278 59.57 66.17 0.3263 0.6604

EnhancerP-2L [51] 0.8049 0.9397 0.8723 0.7519 0.9300
iEnhancer-XG [53] 0.7494 0.5855 0.6674 0.3395 -

iEnhancer-GAN [60] 0.8730 0.8710 0.8720 0.7440 -
iEnhancer-MFGBDT [63] 0.7056 0.6163 0.6604 0.3232 -

Enhancer-LSTMAtt 0.6463 0.6380 0.6429 0.2851 0.6550

Table 6 lists evaluation of performances of all of the 19 methods on the independent test.
To the best of our knowledge, nearly all of the methods used the same independent dataset
Si for independent test, and no other published enhancers were collected as the second
independent dataset. Obviously, Enhancer-LSTMAtt achieved competitive performance
with these state-of-the-art methods. In the first stage, Enhancer-LSTMAtt reached the best
SP (0.8150), the best ACC (0.8050), and the best MCC (0.6101), achieved a second AUC
(0.8588), which was less than the AUC of iEnhancer-RF, and obtained a competitive SN
(0.7950), which was less than the SN of iEnhancer-GAN [60], spEnhancer [58], iEnhancer-
5Step [47], piEnPred [61], iEnhancer-RD [62], and iEnhancer-BERT [55]. In the second
stage, the Enhancer-LSTMAtt reached the best SN, ACC and MCC, a second AUC to that
of the iEnhancer-RF [57], and a second SP to that of the Enhancer-DRRNN [54]. These
results indicated that Enhancer-LSTMAtt is a competitive method to recognize enhancers.
It must be pointed out that we didn’t conduct cross validation and independent test for
19 methods, and the evaluation of their performances directly came from their published
papers. Figure 5 shows the ROC curve of the independent test.

Table 6. Comparison with state-of-the-art methods by independent test.

SN SP ACC MCC AUC

Frist Stage
iEnhancer-2L [40] 0.7100 0.7500 0.7300 0.4604 0.8062
EnhancerPred [42] 0.7350 0.7450 0.7400 0.4800 0.8013
iEnhancer-EL [46] 0.7100 0.7850 0.7475 0.4964 0.8173

iEnhancer-5Step [47] 0.8200 0.7600 0.7900 0.5800 -
DeployEnhancer [48] 0.7550 0.7600 0.7550 0.5100 0.7704
iEnhancer-ECNN [50] 0.7520 0.7850 0.7690 0.5370 0.8320

EnhancerP-2L [51] 0.7810 0.8105 0.7950 0.5907 -
iEnhancer-CNN [52] 0.7825 0.7900 0.7750 0.5850 -
iEnhancer-XG [53] 0.7400 0.7750 0.7575 0.5150 -

Enhancer-DRRNN [54] 0.7330 0.8010 0.7670 0.5350 0.8370
Enhancer-BERT [55] 0.8000 0.7120 0.7560 0.5140 -
iEnhancer-RF [57] 0.7850 0.8100 0.7975 0.5952 0.8600
spEnhancer [58] 0.8300 0.7150 0.7725 0.5793 0.8235

iEnhancer-EBLSTM [59] 0.7550 0.7950 0.7720 0.5340 0.8350
iEnhancer-GAN [60] 0.8110 0.7580 0.7840 0.5670 -

piEnPred [61] 0.8250 0.7840 0.8040 0.6099 -
iEnhancer-RD [62] 0.8100 0.7650 0.7880 0.5760 0.8440

iEnhancer-MFGBDT [63] 0.7679 0.7955 0.7750 0.5607 -
Enhancer-LSTMAtt 0.7950 0.8150 0.8050 0.6101 0.8588



Biomolecules 2022, 12, 995 12 of 18

Table 6. Cont.

SN SP ACC MCC AUC

Second Stage
iEnhancer-2L [40] 0.4700 0.7400 0.6050 0.2181 0.6678
EnhancerPred [42] 0.4500 0.6500 0.5500 0.1020 0.5790
iEnhancer-EL [46] 0.5400 0.6800 0.6100 0.2222 0.6801

iEnhancer-5Step [47] 0.7400 0.5300 0.6350 0.2800 -
DeployEnhancer [48] 0.8315 0.4561 0.6849 0.3120 0.6714

ES-ARCNN [49] 0.8600 0.4500 0.6560 0.3399 -
iEnhancer-ECNN [50] 0.7910 0.5640 0.6780 0.3680 0.7480

EnhancerP-2L [51] 0.6829 0.7922 0.7250 0.4624 -
iEnhancer-CNN [52] 0.6525 0.7610 0.7500 0.3232 -
iEnhancer-XG [53] 0.7000 0.5700 0.6350 0.2720 -

Enhancer-DRRNN [54] 0.8580 0.8400 0.8490 0.6990 -
iEnhancer-RF [57] 0.9300 0.7700 0.8500 0.7091 0.9700
spEnhancer [58] 0.9100 0.3300 0.6200 0.3703 0.6253

iEnhancer-EBLSTM [59] 0.8120 0.5360 0.6580 0.3240 0.6880
iEnhancer-GAN [60] 0.9610 0.5370 0.7490 0.5050 -

piEnPred [61] 0.7000 0.7500 0.7250 0.4506 -
iEnhancer-RD [62] 0.8400 0.5700 0.7050 0.4260 0.7920

iEnhancer-MFGBDT [63] 0.7255 0.6681 0.6850 0.3862 -
Enhancer-LSTMAtt 0.9900 0.8000 0.8950 0.8047 0.9637

Biomolecules 2022, 12, x  10 of 19 
 

some by 5-fold cross validation, some by 10-fold cross-validation, and some by the in-
dependent test. Some methods distinguished enhancers from non-enhancers, while 
some discriminated strong from weak enhancers. Table 3 summarizes these methods. 
Since the jackknife test is too time-consuming for deep learning methods, we conducted 
5-fold cross, 10-fold cross validation, and independent tests to compare these 
state-of-the-art methods. Tables 4 and 5 list the evaluation of performances. Different in-
dices evaluate different performances. For instance, SN is used to evaluate the ratio of 
the number of correctly predicted positive samples to the total number of positive ones, 
while SP is the ratio of the number of correctly predicted negative samples to the total 
number of negative ones. Sometimes, the two indices would not maintain synchroniza-
tion, which was difficult to determine as good or bad. In this case, the overall indices 
could be used, such as ACC and MCC. In the 5-fold cross-validation, Enhancer-LSTMAtt 
was superior to Enhancer-BERT [55], DeployEnhancer [48] and iEnhancer-RF [57] in 
terms of ACC and MCC in the first stage and exceeded iEnhancer-PsedeKNC [41], De-
ployEnhancer [48], EnhancerP-2L [51], and iEnhancer-RF [57] in terms of MCC in the 
second stage. In the 10-fold cross-validation, Enhancer-LSTMAtt reached competitive 
performance with ES-ARCNN [49], iEnhancer-XG [53], and iEnhancer-MFGBDT [63] in 
the second stage. 

Table 6 lists evaluation of performances of all of the 19 methods on the independent 
test. To the best of our knowledge, nearly all of the methods used the same independent 
dataset S  for independent test, and no other published enhancers were collected as the 
second independent dataset. Obviously, Enhancer-LSTMAtt achieved competitive per-
formance with these state-of-the-art methods. In the first stage, Enhancer-LSTMAtt 
reached the best SP (0.8150), the best ACC (0.8050), and the best MCC (0.6101), achieved 
a second AUC (0.8588), which was less than the AUC of iEnhancer-RF, and obtained a 
competitive SN (0.7950), which was less than the SN of iEnhancer-GAN [60], spEnhancer 
[58], iEnhancer-5Step [47], piEnPred [61], iEnhancer-RD [62], and iEnhancer-BERT [55]. 
In the second stage, the Enhancer-LSTMAtt reached the best SN, ACC and MCC, a sec-
ond AUC to that of the iEnhancer-RF [57], and a second SP to that of the Enhanc-
er-DRRNN [54]. These results indicated that Enhancer-LSTMAtt is a competitive method 
to recognize enhancers. It must be pointed out that we didn’t conduct cross validation 
and independent test for 19 methods, and the evaluation of their performances directly 
came from their published papers. Figure 5 shows the ROC curve of the independent 
test. 

 
Figure 5. The ROC curves of the independent test. The purple line is the baseline of ROC curve, 
named random guess line. 

Figure 5. The ROC curves of the independent test. The purple line is the baseline of ROC curve,
named random guess line.

5.2. Enhancer-LSTMAtt Webserver

We implemented Enhancer-LSTMAtt into a user-friendly web application which is
freely available at http://www.biolscience.cn/Enhancer-LSTMAtt/ (accessed on 20 May
2022) to all of the scientific researchers. The web application is easy for users to use. The
only thing users do is to upload DNA sequences in a FASTA format either by pasting it into
textbox or by uploading a file. Users click the “submit” button, and then the web application
returns prediction in the 7-tuple. The first column is the names of input sequences, the
second is the range of the enhancers, the third and the fourth are the probabilities of
predicting as the enhancer and the non-enhancer respectively, the fifth and the sixth are
the probabilities of predicting as the strong and the weak enhancer, and the seventh is the
predicted result.

5.3. Discussion

We investigated effect of different non-enhancers on the methods. Due to non-
enhancers that were not available before sampling, we used the sampling and mutation

http://www.biolscience.cn/Enhancer-LSTMAtt/
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strategy to generate new non-enhancers. We randomly selected 30%, 40%, and 50% of
samples in the non-enhancer set Snon and made them mutate. The mutated non-enhancers
and the non-mutated non-enhancers constituted three new non-enhancer sets which along
with the enhancers further comprised three new training sets, respectively. We used the
independent test to examine the performance of the proposed method trained by the new
training sets. As shown in Figure 6, the non-enhancers have a certain influence on the
performance of the method, but this influences is little.
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In the Enhancer-LSTMAtt, there are up to 250,921 trainable parameters. The more
trainable parameters there are, the more overfitting the deep learning model. We used
dropout and batch normalization to reduce model overfitting. We investigated the roles of
both techniques in reducing overfitting. As shown in Figure 7, the training loss descended
rapidly at the beginning stage and then slowly declined to be stable with the increment of
epoch, while the loss of the independent test declined rapidly at the beginning stage and
then fluctuated in a certain range. The AUC of the independent test ascended rapidly at
the beginning stage and then tended to stabilize with the increment of epochs. Therefore,
there is no remarkable overfitting issues for Enhancer-LSTMAtt.
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Enhancers-LSTMAtt is a deep learning-based and end-to-end method that does not
require any feature design. This avoided artificial interference and sophisticated feature
extraction or selection. The Enhancers-LSTMAtt is easier to implement than the feature-
based methods from this viewpoint. Most feature-based methods performed well over
the cross validation but performed badly over the independent test, indicating the weakly
generalized ability. For example, the EnhancerP-2L [51] achieved an MCC of 0.8340 and
an MCC of 0.8398 over the 5-fold and 10-fold cross validations, respectively, but reached
only an MCC of 0.5907, which decreased by more than 0.24. piEnPred [61] substantially
decreased the MCC from 0.7660 over the 5-fold cross validation to 0.6099 over the indepen-
dent test. The Enhancers-LSTMAtt did not reduce the MCC over the independent test and
instead increased the MCC by at least 0.07. Thus, the Enhancers-LSTMAtt is more general-
ized to the independent test than the feature-based methods. Most deep learning-based
methods either utilize the CNN, LSTM, or their combination for enhancer recognition.
For example, both the iEnhancer-ECNN [50] and the iEnhancer-CNN [52] exploited the
CNN, the iEnhancer-EBLSTM [59] used Bi-LSTM, and the DeployEnhancer [48] sequen-
tially combined the CNN and Bi-LSTM. The CNN and Bi-LSTM are two popular neural
network architectures that have the ability to capture different information. The sequential
combination between CNN and Bi-LSTM is disadvantageous to complete exploitation of
these two different types of information. Stacking the CNN and Bi-LSTM in a parallel
manner is able to exploit their respective representations. In addition, we also used the
residual network and the attention mechanism to improve representation. This is two po-
tential reasons why Enhancers-LSTMAtt is superior to other deep learning-based methods
in the independent test, such as the iEnhancer-ECNN [50], the iEnhancer-CNN [52], the
iEnhancer-EBLSTM [59], and the DeployEnhancer [48]. On the other hand, inclusion of
the residual neural network as well as the feed-forward attention and stacking CNN and
Bi-LSTM in a parallel manner added complexity to a certain extent, which in turn increased
the computing cost.

6. Conclusions

Identifying enhancers is key to uncovering their roles in the regulation of transcrip-
tion for target genes. We employed multiple deep learning techniques (i.e., Bi-LSTM,
CNN, residual network and feed-forward attention) to construct Enhancer-LSTMAtt for
enhancer recognition. The Enhancer-LSTMAtt is of the following superiorities over the
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state-of-the-art methods: (1) the Enhancer-LSTMAtt stacked the CNN and the LSTM in
parallel, not in a series-connection manner, which allows stacking diverse representations;
(2) the Enhancer-LSTMAtt utilized the residual neural network, which allows construction
of deeper neural networks without loss of information; and (3) the Enhancer-LSTMAtt
employed the attention mechanism, which allows focusing on key information. Compre-
hensive comparison with state-of-the-art methods suggested that Enhancers-LSTMAtt was
not only a stable tool but also an effective and efficient tool for enhancer identification.
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