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Abstract: Lipid emulsification is a technique that is being explored for improving the bioavailability
of omega 3 (n-3) long chain (LC) fatty acid (FA). The nature of the emulsifiers can differently impact
the lipid bioavailability via a modification of the lipolysis step. Among natural emulsifiers, gum
acacia (GA), an indigestible polysaccharide, provides protective encapsulation of n-3 by forming a
specifically crown-like shape around lipid drops, which could also impact the digestion step. Despite
the interest in lipolysis rate, the impact of GA on lipid bioavailability has never been explored in a
complete physiological context. Thus, we followed in a kinetics study the n-3 bioavailability in rat
lymph, orally administered DHA-rich oil, formulated based on GA compared to the bulk phase form
of the oil. The AUC values were significantly improved by +121% for total TG and by 321% for n-3
PUFA, specifically for EPA (+244%) and for DHA (+345%). Benefits of GA have also been related
to the transport of FA in lymph, which was 2 h earlier (Tmax = 4 h), compared to the Tmax (6 h)
obtained with the bulk phase oil. All the data showed that GA is one of the most favorable candidates
of natural emulsifiers to improve n-3 bioavailability and their rate of absorption for health targets.

Keywords: emulsion; intestinal lipid absorption; lymphatic lipids; fish oil; omega-3 bioavailability;
PUFA absorption; acacia gum; acacia fiber; gut absorption fiber inhibitory effect; DHA

1. Introduction

Improving the bioavailability of n-3 PUFA is of particular interest to human health,
since according to the latest epidemiological study [1], the consumption of long chain (LC)
n-3 PUFA is almost twice lower than expected from the French guidelines [2,3]. Yet, eicos-
apentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) are recognized
to reduce the risk of developing several chronic pathologies, such as cardiovascular, stroke,
neurodegenerative, inflammatory and cancer diseases [4–10]. In this context, in addition to
increasing dietary intake, new research is focusing on improving the bioavailability of n-3
LC PUFA.

It is well known that lipid bioavailability mainly depends on several factors inherent to
the food matrix, including intramolecular and supramolecular structures [11–15]. However,
recently, the process of lipid emulsification has been described to improve the intestinal
uptake of oils and lipophilic compounds [11–15], as well as the bioavailability of n-3 PUFA
in lymph or in plasma [12,16–22]. A lipid emulsion consists of a dispersion of small lipid
droplets in an immiscible phase, often aqueous phase. Studies have showed that the
formation of lipid droplets has a positive effect on the fatty acid (FA) bioavailability via
improved gastrointestinal lipolysis. Indeed, lipid emulsification provides a large lipid–
water interface for the adsorption of pancreatic lipase and promotes faster and more
efficient lipolysis compared to the bulk phase oil [23–25]. The rate of lipolysis is, thus,
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strongly influenced by the supramolecular structures of the lipid matrix [15,26–28], making
gastrointestinal lipolysis a crucial step for FA bioavailability. The improvement of intestinal
absorption of fatty acids would result in a modification of lipid micellization and would
favor the FA absorption within enterocytes and would promote the accretion of triglycerides
(TG) into chylomicrons (CM) in rat lymph.

The composition of the interface, i.e., the nature of the emulsifiers, can affect the
lymphatic metabolism of TG, and consequently the plasma concentrations of TG.

In general, emulsions are thermodynamically unstable and need interfacial agents to
avoid the emulsion break. These agents provide consistency (thickening and gelling) and/or
to stabilize the system or even for the flavour-controlled release. Several emulsifiers are
used in food emulsions or in nutraceutical delivery systems. They can be adsorbed at oil–
water interfaces to protect lipid droplets against coalescence. Due to their different interfacial
properties, emulsifiers differently affect the enzymatic activity and lipolysis rate during lipid
digestion [29], which results in a modification of FA bioavailability [16,24,25,30–37]. For
example, casein and Tween have been described to inhibit, whereas lecithin would enhance
lipid digestion [12,17].

Among food-grade surfactants, gum acacia (GA), a hydrocolloid exudate from acacia
trees, is a polysaccharide carbonate and protein complex, which has been used for decades in
food formulations for its interfacial properties. Hydrocolloids are water-soluble polymers with
a wide variety of molecules, including proteins and polysaccharides. This natural product is a
complex mixture of biopolymers that are heterogeneous of arabinogalactan polysaccharide
with a wide range of molecular weight (Mw; from 0.02 to 11 × 106 g · mol−1) [38,39]. The
major class of compounds including arabinogalactan proteins (AGP), and glycoproteins (GP),
are adsorbed at the oil–water interface, and thanks to their amphiphilic behaviors, they have
emulsifying properties and are responsible for the oil stabilization processes [39–41].

The GA ability to form a coating layer surrounding the spherical submicrometric struc-
ture of lipids [42] confers to GA some encapsulation properties and protects labile lipids
from evaporation and oxidation. Thus, GA has been extensively studied in formulation im-
provement of sensitive compounds and lipids, even for n-3 PUFA, with significant increase
in oxidative stability in its final forms [43–46]. As the oxidative phenomena usually occurs
at the oil–water interface (O/W), it has been observed that emulsifiers located at the O/W
interface were more conducive to exert an antioxidant effect compared to their internal
location in the lipid droplets [47]. GA contains 90% indigestible fiber, which confers GA
some prebiotic activities in the colon. Notably, the microbiota taxonomy was modulated by
increasing the Lactobacillus and Bifidobacterium populations and the synthesis of metabolites,
the so called short chain fatty acids (CCFA) [48–50]. The specific structure of GA induced
noticeable progressive colic fermentation, mainly at the distal level, which is responsible
for the potent digestive tolerability [50,51].

In addition to the use of GA in industrial applications, such as emulsification and
encapsulation, the structure complexity due to the formation of a solid crown-like shape
surrounding the lipid droplets induces some controversial expectations about the putative
impact of GA on the physiological bioavailability of n-3 PUFA. Firstly, the emulsification
properties of GA could increase the intestinal uptake of n-3 LC-PUFA with regard to the
greater interfacial area exposure to the digestion process. Indeed, in vitro studies have
demonstrated a positive GA impact in comparative models on lipid bioavailability. How-
ever, in the in vitro studies, highly simplified conditions of free fatty acids released under
the action of lipase and the simplified transit of these molecules through the mimicked
intestinal barrier limit the assessment parameters [29,52].

Secondly, the indigestible and resistant crown-like shape of GA formed around the
lipid droplets of n-3 PUFA latter in the gut transit delay or even could limit their uptake. In
fact, some fiber, even if it is soluble, has been described to reduce body fat mass because of
its affinity to bind to fats and to inhibit intestinal digestion [53,54].
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Even if these data suggest that GA could be an interesting emulsifier for improving
the oil bioavailability in comparison with other surfactants, some in vivo demonstrations
involving a complete function of physiological digestion are still required.

Natural surfactants are steadily increasing in formulation. Thus, within the frame-
work of the development of healthy food products based on natural n-3 PUFA (DHA)
from microalgae, we sought to determine the influence of the FA encapsulation with a
natural emulsifier GA on the intestinal absorption and bioavailability of n-3 LC-PUFA. We
hypothesized that GA could improve the bioavailability of n-3 PUFA from algae oil, due to
its specificity to form a crown-like shape around the lipid droplets.

In order to investigate the interest and the potential nutritional value of combining GA
and algae oil, rats with a lymphatic duct shunt were fed with algae oil, supplied either in a
bulk phase or in O/W emulsion that was GA-stabilized. Lymph was collected sequentially
over 6-h post-feeding. Kinetic and lymph samples were characterized according to their
fatty acid composition and quantification. For more precision, the dispersion state and
stability of the emulsion have been determined to support the in vivo data.

2. Materials and Methods
2.1. Material

Microalgae oil Omegavie DHA 400 Algae QualitySilver® was obtained from
Schizochytrium sp. strain, provided by Polaris (Quimper, France). The lipidic charac-
terization as fatty acid profile (Table 1), oil structure and glyceridic composition (Table 2)
was determined according to the standardization methods of IUPAC 6.002 and NF EN
14105 and NF EN ISO 12966, respectively. The oil provides mainly DHA (47% of total GA)
and to a lesser extent, EPA (1.5% of total GA) in the TG form (97%).

Table 1. Fatty acid profile of the oil in bulk phase and emulsified with gum acacia.

Oil Emulsion

Total fatty acid (%)

SFA * 30.9 33.4
12:0 0.7 0.8
14:0 8.6 9.1
16:0 20.2 21.4
18:0 0.7 0.7

MUFA * 9.8 10.5
14:1 0.1 0.1
16:1 4.0 4.3
18:1 5.8 6.0

PUFA * 59.0 55.5
PUFA n-6 * 9.7 9.4

18:2(n-6) 1.0 1.1
20:4(n-6) 0.2 0.2
22:5(n-6) 8.2 7.9

PUFA n-3 * 49.3 46.1
18:4(n-3) 0.2 0.3
20:5(n-3) 1.5 1.5
22:5(n-3) 0.1 0.3
22:6(n-3) 47.3 43.9

* SFA: saturated fatty acid, MUFA: monounsaturated fatty acid, PUFA: polyunsaturated fatty acid from n-6 and
n-3 series.

Inavea™ Pure Acacia Original was provided by Nexira (Rouen, France).
Acetic, formic, sulfuric and hydrochloric acids, sodium chloride (NaCl), potassium

chloride (KCl), and sodium carbonate (Na2CO3) were provided by Thermo Fisher Scientific
(Strasbourg, France). They also supplied the organic solvents used (analytical or HPLC
grades). As internal standards, 1,2-diheptadecanoyl-sn-glycero-3-phosphatidylcholine
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(PC 17:0), 1,2,3-triheptadecanoyl-sn-glycerol (TG 17:0), and heptadecanoic acid (FFA 17:0)
were obtained from Avanti Polar Lipids INC (Alabaster, AL, USA).

Table 2. Glyceridic composition of the microalgae oil.

Parameters

% of Total Lipids

Polymer 0.2
Triglyceride 97.2
Diglyceride <0.1

Monoglyceride 0.9
Free fatty acids and others (sterol, FAME *) 1.6

* FAME: fatty acid methyl esters.

Ketamine, xylazine, buprenorphine and sodium pentobarbital were provided by Ax-
ience (Pantin, France) and lidocaine was supplied by Ceva (Libourne, France). Pentobarbital
sodique (Exagon) and lidocaine (Xylovet) were provided by Ceva (Libourne, France).

Acetyl chloride, acetic acid, sodium chloride (NaCl), potassium chloride (KCl), and
sodium carbonate (Na2CO3) were provided by Thermo Fisher Scientific (Strasbourg,
France). They also supplied the organic solvents used, including acetonitrile, di-ethyl
ether, ethanol, heptane, hexane and methanol (analytical or HPLC grades). As the internal
standard, 1,2,3-triheptadecanoyl-sn-glycerol (TG 17:0) was obtained from Avanti Polar
Lipids INC (Alabaster, AL, USA).

2.2. Lipid Formulations

The algae oil was encapsulated by NEXIRA (Rouen, France) with gum acacia. Opti-
mization in term of process parameters was developed in accordance with the following
three main observations: droplet diameter, stability of the emulsion (in liquid form) and
oxidative status kinetics, as described below. Briefly, the oil phase was dispersed into
aqueous phase containing preliminary dissolved GA, using a shearing device (Turrax-T50,
10.000 rpm; 3 min/L). Then, the coarse O/W emulsion was homogenized (Gaulin-LAB
60–10 TBS, 1 pass, 2 stages 240/40 bars).

Final composition of the encapsulated oil thanks to the emulsion was 10, 20 and 70 gr/kg,
respectively, for algae oil, GA and water.

A direct visualization of the oil droplets was carried out extemporaneously and 5 days
after the emulsification process by using an optical microscope (Axiostar® with a water
immersion × 100 objective; Zeiss, Germany) connected to an Axiocam 208 color digital
video camera and controlled by the Zen Core software for image retrieval. The maximal
droplet size represented 3µm after oil emulsification and did not vary for at least 5 days
(Figure 1).
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The lipid oxidation was determined 3 days after emulsification with regard to the
peroxide and P-anisidine values (Table 3), determined by the French standardization
method (NF EN ISO 3960 and NF EN ISO 660, European claim 2568/91 and COI/T20/Doc
N◦34/Rev.1 2017, respectively) and did not show any particular oxidation state.

Table 3. Peroxyde and P-anisidine values.

Parameters Oil Emulsion

Peroxyde value (mEq O2/kg) 1.5 ± 1.0 5.3 ± 2.1
P-anisidine value 5.1 7.1

2.3. Experimental Design: Animal and Surgical Procedures

Male Wistar rats (8 weeks-old, body weight 300–350 g) were obtained from Elevage
Janvier (Saint-Berthevin, France) and were randomly assigned to one of the two dietary
groups. Animals were treated in accordance with the European Communities Council
Guidelines for the Care and Use of Laboratory Animals (2010/63/EU). All experiments
conformed to the Guidelines for the Handling and Training of Laboratory Animals. The
experiments and procedures were approved by the French ministry, recorded under the
APAFIS n◦ 2017031014448864, and were carried out in compliance with the local ethics
committee in Bordeaux, France (CEEA50).

Rats were housed for at least 3 days before the experiment in a controlled environment,
with constant temperature and humidity, and with free access to food and water. The
day before surgery, rats were fed a fat-free diet (Epinay, France) and had free access to
water. On the day of surgery, each rat was placed under anesthesia by an injection of
ketamine/xylazine (100/10 mg/kg, respectively). The abdomen was incised transversely
on the left side. The organs were isolated to allow visualization of the main mesenteric
lymph duct. A polyethylene catheter (0.95 mm × 15 cm Biotrol, Paris, France) was inserted
into the lymphatic duct and secured by two ligatures, as described by Bollman et al. [55]
and Couëdelo et al. [13]. The abdomen was then sutured and the rats were placed in
individual restraining cages, in a warm environment with free access to water. To prevent
pain, rats received an intra-peritoneal injection of buprenorphine (0.02 mg/kg) 1 h before
and 2 h after surgery.

In each experiment, an equivalent amount of 12 mg and 380 mg of EPA and DHA,
respectively, from microalgae oil either in bulk phase or emulsified with GA) were adminis-
tered to rats (n = 8 rats per group) by one-shot oral gavage. Lymph was collected hourly for
6 h post feeding. At the end of the experiment, rats were euthanized by an intra-peritoneal
injection of sodium pentobarbital and lidocaine.

The sequential collection of lymph allows us to define the kinetics of intestinal ab-
sorption of n-3, according to their formulation (in bulk phase vs. emulsified with GA), as
well as the maximum lymphatic concentration (Cmax) and the time (Tmax), for which this
maximal concentration of n-3 PUFA has been reached.

2.4. Fatty Acid Profile and N-3 LC PUFA Composition in Lymph

Total fatty acid composition from lymph was directly obtained by the method de-
scribed by Lepage and Roy [56].

The resulting FA methyl esters (FAME) were analyzed by GC (TRACE GC, Thermo
Scientific, Waltham, MA, USA), equipped with a flame ionization detector (FID) and a
split injector. A fused-silica capillary column (BPX 70, 60 m × 0.25 mm i.d., 0.25 µm
film; SGE, France) was used with hydrogen as a carrier gas (inlet pressure: 120 kPa). The
split ratio was 1:33. The column temperature program was as follows: from 160 ◦C, the
temperature increased to 180 ◦C at 1.3 ◦C/min, and was maintained for 65 min before
increasing at 25 ◦C/min until 230 ◦C for 15 min. The injector and detector were maintained
at 250 ◦C and 280 ◦C, respectively. GC peaks were integrated using Chromquest software
(Thermofinnigan, Courtaboeuf, France). FA were quantified using tri-heptadecaenoic acid
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as an internal standard, and were added at 10% of the lipid weight before the (trans)
methylation procedure. As palmitic and oleic acids are major endogenous FA in the lymph,
only n-3 PUFA and myristic acid that were absent from the endogenous FA in lymph have
been studied during the postprandial kinetics of FA absorption.

2.5. Statistical Analysis

Data were expressed as mean values with their standard deviation (SD) and were
analyzed by XLStat software to evaluate the kinetics of absorption of n-3 LC-PUFAs,
EPA and DHA over the 6 h period following lipid administration. Moreover, it has been
determined through the kinetics curve (i) the area under the curve (AUC; expressed in
mg × h/mL) to assess the amount of n-3 LC PUFAs (EPA and DHA) absorbed and (ii) the
maximum lymphatic concentration of n-3 C-LC PUFAs (Cmax) and the maximum time
(Tmax) to reach it. Data were analyzed between the two groups on two unpaired points,
showing equality of variances (Shapiro–Wilk normality test). Intergroup comparisons were
made on the basis of their respective mean by the parametric Student’s t-test; p-values
lower than 0.05 were considered to be statistically significant.

3. Results
3.1. Influence of Using Gum Acacia as Emulsifier on the Intestinal Absorption of N-3 LC-PUFA
3.1.1. Total Fatty Acid Absorption

The amount of total fatty acids was determined over the time-kinetics from 1 to 6 h
after lipid administration, supplied by the algae oil either in bulk phase or emulsified with
GA (Figure 2); the AUC, Tmax and Cmax values were reported in Table 4.
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Figure 2. Kinetics of intestinal absorption of fatty acids (mg/mL lymph/g of lipid intake) in rats
submitted to a lymphatic duct’s fistula (n = 8 rats/group) and orally supplied with 200 mg of lipids
from an oil either in bulk phase (�) or emulsified with gum acacia (•) over a 6 h period. Data are
presented as their means ± standard deviation *. For the same time period, data are significantly
different between the two groups (p < 0.05; Student’s t-test).

When lipids are supplied by the oil in bulk phase, the lipid concentration in lymph
increased up to 6 h (Tmax) and reached a peak of FA absorption of 153 mg/mL lymph/g
lipid intake (Cmax). On the other hand, when the oil is emulsified with GA, the absorption
kinetics of fatty acids increased up to 4 h (Tmax) for a Cmax of 255 mg/mL lymph/g of
lipid intake. After the Tmax, the FA absorption decreased in lymph up to 6 h.

Considering the AUC data (Figure 2), the data demonstrated that the lipid emulsifica-
tion with GA (821 mg/mL/g of lipid intake.h) significantly improved (+120%; p < 0.05)
the bioavailability of FA in the lymph compartment compared to the oil provided in bulk
phase (375 mg/mL/g of lipid intake.h).
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Table 4. Summary data for the maximal concentration (Cmax; mg/mL), area under the curve (AUC;
mg/mL.h) and Tmax (h) for lymphatic main fatty acids in animals submitted to unemulsified versus
emulsified oil.

Oil GA-Emulsion

Total FA *
AUC * 375.1 820.9 $

Cmax * 153.6 254.9 £

Tmax * 6 h 4 h ¤

n-3 PUFA *
AUC 62.9 265.2 $

Cmax 41 91.1 £

Tmax 6 h 4 h ¤

EPA *
AUC 2.5 8.6 $

Cmax 1.3 2.8 £

Tmax 6 h 4 h ¤

DHA *
AUC 55.8 248.2 $

Cmax 38.4 86 £

Tmax 6 h 4 h ¤

Myristic acid
AUC 20.8 43.4 $

Cmax 11.2 14.9 £

Tmax 6 h 4 h ¤

FA: fatty acid, PUFA: polyunsaturated fatty acid from n-6 and n-3 series, EPA: eicosapentaenoic acid,
DHA: docosahexaenoic acid. AUC: area under the curve (mg/mL.h), Cmax: maximal concentration (mg/mL)
and Tmax maximal time to reach the Cmax value (h). Rats received a unique bolus of the oil in the following two
forms: either in bulk phase or emulsion; lymph was collected hourly for 6 h postprandial. Data are represented by
their mean ± standard deviation SD (n = 8 rats/group). Between the two forms of intake (oil or emulsion), means
marked with a different superscript (£,¤,$) are significantly different (* p < 0.05, Student’s t-test).

3.1.2. Lymphatic Recovery of N-3 PUFA

Due to the high content of n-3 in microalgae oil (43% DHA), the bioavailability of n-3
PUFA, EPA and DHA was monitored in the lymph compartment.

• Total n-3 PUFA absorption

The kinetics of n-3 PUFA absorption in the lymph compartment has been determined
both qualitatively (Figure 3a: % of total fatty acids) and quantitatively (Figure 3b: mg/mL/g
lipid intake).
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Figure 3. Kinetics of intestinal absorption of n-3 PUFA ((a): % of total fatty acids and (b): mg/mL
lymph/g of lipid intake), in rats submitted to a lymphatic duct’s fistula (n = 8 rats/group) and orally
supplied with 200 mg of lipids from an oil either in bulk phase (�) or emulsified with gum acacia
(•) over a 6 h period. Data are presented as their means ± standard deviation *. For the same time
period, data are significantly different between the two groups (p < 0.05; Student’s t-test).

The data showed that lymph was gradually enriched in n-3 PUFA over the 6 h follow-
ing lipid administration, whatever the formulation.
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From a qualitative point of view (Figure 3a), n-3 PUFA represents up to 25% of the
total fatty acids when lipids are provided by the oil in bulk phase, and 32% when provided
by the emulsion. From a quantitative point of view (Figure 3b), the lymphatic absorption of
n-3 PUFA from native oil increased up to 6 h postprandial to reach a Cmax of 41 mg/mL/g
lipid intake, while in emulsion form, the absorption kinetics of n-3 PUFA reached faster
(Tmax = 4 h) a higher Cmax (91 mg/mL/g lipid intake).

The area under the curve (AUC) confirmed that the n-3 PUFA bioavailability was
significantly (p < 0.05) higher when the algae was emulsified with GA (265 mg/mL/g of
lipid intake.h), compared to the bulk phase (63 mg/mL/g of lipid intake.h).

• EPA absorption

Figure 4 shows the absorption kinetics of EPA in the lymph compartment over the 6 h
following lipid administration, both qualitatively (Figure 4a: % of total fatty acids) and
quantitatively (Figure 4b: mg/mL/g lipid intake).
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Figure 4. Kinetics of intestinal absorption of EPA ((a): % of total fatty acids and (b): mg/mL lymph/g
of lipid intake), in rats submitted to a lymphatic duct’s fistula (n = 8 rats/group) and orally supplied
with 200 mg of lipids from an oil either in bulk phase (�) or emulsified with gum acacia (•) over a 6 h
period. Data are presented as their means ± standard deviation *. For the same time period, data are
significantly different between the two groups (p < 0.05; Student’s t-test).

The data showed that lymph was gradually enriched in EPA over the 6 h following
lipid administration.

From a qualitative point of view, EPA represented up to 0.85% or 1% when lipids were
provided by the oil in bulk phase or emulsion with GA, respectively.

From a quantitative point of view, the lymphatic absorption of EPA from native oil
increased up to 6 h postprandial to reach a Cmax of 1.3 mg/mL/g lipid intake, while when
oil was emulsified with GA, the absorption kinetics of n-3 PUFA reached faster (Tmax = 4 h) a
higher Cmax (2.8 mg/mL/g lipid intake).

The AUC confirmed that the EPA bioavailability was significantly (p < 0.05) higher
with the emulsion form with GA (8.6 mg/mL/g of lipid intake.h), compared with the bulk
phase form of the oil (2.5 mg/mL/g of lipid intake.h).

• DHA absorption

Figure 5 shows the absorption kinetics of DHA in the lymphatic compartment over
the 6 h following lipid administration, both qualitatively (Figure 5a: % of total fatty acids)
and quantitatively (Figure 5b: mg/mL/g lipid intake).
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Figure 5. Kinetics of intestinal absorption of DHA ((a): % of total fatty acids and (b): mg/mL
lymph/g of lipid intake), in rats submitted to a lymphatic duct’s fistula (n = 8 rats/group) and orally
supplied with 200 mg of lipids from an oil either in bulk phase (�) or emulsified with gum acacia
(•) over a 6 h period. Data are presented as their means ± standard deviation *. For the same time
period, data are significantly different between the two groups (p < 0.05; Student’s t-test).

The data showed that the lymph was gradually enriched in DHA over the 6 h following
lipid administration. From a qualitative point of view, DHA represented up to 23.5 or 29.8%
when lipids were provided by the oil in bulk phase or emulsified with GA, respectively.

From a quantitative point of view, the lymphatic absorption of DHA from native oil
increased up to 6 h postprandial to reach a Cmax of 38.4 mg/mL/g lipid intake, while
when the algae oil was emulsified with GA, the absorption kinetics of DHA reached faster
(Tmax = 4 h) a higher Cmax (86.0 mg/mL/g lipid intake).

The AUC confirmed that the DHA bioavailability was significantly (p < 0.05) higher
with the emulsion form (248 mg/mL/g of lipid intake.h), compared with the bulk phase
form of the oil (56 mg/mL/g of lipid intake.h).

• Absorption of the other main fatty acids from the oil

In addition to the interest of the n-3 PUFA contribution from the algae oil (emulsified or
not), three other fatty acids characterized the oil, including the acids myristic (C14:0:9.1% of
total fatty acids), palmitic (C16:0:21.4% of total fatty acids) and oleic (C18:1 n-9: 6% of total
fatty acids).

The lymphatic enrichment of these fatty acids during the postprandial kinetics was
possible only for myristic acid (0.7% of total fatty acids in lymph), as the two other fatty
acids are not negligible endogenous fatty acids in lymph (palmitic: 27% and oleic: 7.7% of
fatty acids in an alipidic lymph; internal data).

Figure 6 shows the absorption kinetics of myristic acid in the lymph compartment over
the 6 h post-feeding, both qualitatively (Figure 6a: % of total fatty acids) and quantitatively
(Figure 6b: mg/mL/g lipid intake).

The data showed that the lymph was gradually enriched in myristic acid over the 6 h
following lipid administration.

From a qualitative point of view, myristic acid represented up to 6.9% or 5.1% of total
fatty acids in lymph when lipids were provided by the oil in bulk phase or emulsified with
GA, respectively. When provided in GA based emulsion (Figure 6a), myristic acid reaches
a plateau later (T5h), compared to the bulk phase form (T3h).

From a quantitative point of view, the lymphatic absorption of myristic acid from
native oil increased up to 6 h postprandial to reach a Cmax of 11.2 mg/mL/g lipid intake,
while in emulsion form, the absorption kinetics of myristic acid reached faster (Tmax = 4 h)
a higher Cmax (14.9 mg/mL/g lipid intake).

The AUC of the myristic acid bioavailability was more than two times higher (p = 0.1)
when algae oil was emulsified with GA (43.4 mg/mL/g of lipid intake.h), compared to the
oil in bulk phase (20.8 mg/mL/g of lipid intake.h).



Biomolecules 2022, 12, 975 10 of 16

Biomolecules 2022, 12, x FOR PEER REVIEW 10 of 17 
 

The data showed that the lymph was gradually enriched in DHA over the 6 h follow-
ing lipid administration. From a qualitative point of view, DHA represented up to 23.5 or 
29.8% when lipids were provided by the oil in bulk phase or emulsified with GA, respec-
tively. 

From a quantitative point of view, the lymphatic absorption of DHA from native oil 
increased up to 6 h postprandial to reach a Cmax of 38.4 mg/mL/g lipid intake, while when 
the algae oil was emulsified with GA, the absorption kinetics of DHA reached faster 
(Tmax = 4 h) a higher Cmax (86.0 mg/mL/g lipid intake). 

The AUC confirmed that the DHA bioavailability was significantly (p < 0.05) higher 
with the emulsion form (248 mg/mL/g of lipid intake.h), compared with the bulk phase 
form of the oil (56 mg/mL/g of lipid intake.h). 
• Absorption of the other main fatty acids from the oil 

In addition to the interest of the n-3 PUFA contribution from the algae oil (emulsified 
or not), three other fatty acids characterized the oil, including the acids myristic 
(C14:0:9.1% of total fatty acids), palmitic (C16:0:21.4% of total fatty acids) and oleic (C18:1 
n-9: 6% of total fatty acids). 

The lymphatic enrichment of these fatty acids during the postprandial kinetics was 
possible only for myristic acid (0.7% of total fatty acids in lymph), as the two other fatty 
acids are not negligible endogenous fatty acids in lymph (palmitic: 27% and oleic: 7.7% of 
fatty acids in an alipidic lymph; internal data). 

Figure 6 shows the absorption kinetics of myristic acid in the lymph compartment 
over the 6 h post-feeding, both qualitatively (Figure 6a: % of total fatty acids) and quanti-
tatively (Figure 6b: mg/mL/g lipid intake). 

 
Figure 6. Kinetics of intestinal absorption of myristic acid ((a): % of total fatty acids and (b): mg/mL 
lymph/g of lipid intake), in rats submitted to a lymphatic duct’s fistula (n = 8 rats/group) and orally 
supplied with 200 mg of lipids from an oil either in bulk phase ( ) or emulsified with gum acacia 
(•) over a 6 h period. Data are presented as their means ± standard deviation *. For the same time 
period, data are significantly different between the two groups (p < 0.05; Student’s t-test). 

The data showed that the lymph was gradually enriched in myristic acid over the 6 
h following lipid administration. 

From a qualitative point of view, myristic acid represented up to 6.9% or 5.1% of total 
fatty acids in lymph when lipids were provided by the oil in bulk phase or emulsified 
with GA, respectively. When provided in GA based emulsion (Figure 6a), myristic acid 
reaches a plateau later (T5h), compared to the bulk phase form (T3h). 

From a quantitative point of view, the lymphatic absorption of myristic acid from 
native oil increased up to 6 h postprandial to reach a Cmax of 11.2 mg/mL/g lipid intake, 
while in emulsion form, the absorption kinetics of myristic acid reached faster (Tmax = 4 
h) a higher Cmax (14.9 mg/mL/g lipid intake). 

Figure 6. Kinetics of intestinal absorption of myristic acid ((a): % of total fatty acids and (b): mg/mL
lymph/g of lipid intake), in rats submitted to a lymphatic duct’s fistula (n = 8 rats/group) and orally
supplied with 200 mg of lipids from an oil either in bulk phase (�) or emulsified with gum acacia
(•) over a 6 h period. Data are presented as their means ± standard deviation *. For the same time
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4. Discussion

The objective of this study aimed to follow the impact of encapsulating n-3 PUFA from
a microalgae oil with a natural emulsifier, gum acacia (GA), on the lymphatic bioavailability
of n-3 PUFA. GA is a polysaccharide insoluble fiber, widely used for decades in food
formulations to emulsify and stabilize lipid emulsions. GA has been also described to
protect n-3 PUFA from oxidation, possibly due to its ability to coat the lipid droplets.
Nevertheless, this specificity of GA to form a resistant crown-like shape around the lipid
droplets could prove to be a brake on the lipolysis step, and therefore reduce the fatty
acid absorption at the gut level. However, in vitro studies denoted a positive impact
of GA on FA absorption. As far as we know, the use of GA as a surfactant has not yet
been described in a complete scheme of digestion and absorption to support the previous
in vitro investigations.

To answer this question, lipids were supplied to rats with a lymphatic duct fistulation
in two physical forms of presentation, either in bulk phase or emulsified with GA. The
FA absorption was followed during 6 h kinetics with a peculiar interest for DHA for its
proven nutritional properties in human health. Lymph is the compartment of choice for
studying the bioavailability of DHA since after digestion, lipids are directly absorbed
through the enterocytes to enter the lymphatic way before being metabolized by the liver.
The proportion of DHA is negligible in the lymph compartment since it represents less
than 0.3% of total fatty acids in the interprandial period [17].

In this study, we clearly demonstrated that, regardless of its physical form of presentation,
the consumption of algae oil significantly favored the fatty acid enrichment. The DHA reached
a high level of enrichment in the lymph, i.e., 24 and 30% of total fatty acids, when lipids
were provided in bulk phase and emulsion form, respectively. In addition, the lymphatic
FA profile obtained after lipid administration denoted that the lymphatic enrichment in FA
reflects the FA composition of dietary lipids, as previously reported elsewhere [13,57–59].
In order to increase the bioavailability of fatty acids, improving the lipolysis step is of
importance and can be modulated by emulsified lipids. Indeed, physical characteristics
and interfacial properties of the emulsion play an essential role in lipolysis. In this context,
the role and the nature of the emulsifier used in lipid formulation is crucial. Recent works
have highlighted the importance of the nature of the emulsifiers used in the emulsification
process to improve or inhibit the lipolysis step and fatty acid absorption [12,17,60,61]. It
is clear that lecithin-based emulsions favorably impact the digestion step at the root of an
enhanced FA bioavailability, whereas casein or Tween 80 decreased FA bioavailability by
reducing the lipolysis rate [13,18,62,63]. This could be mostly explained by a modification
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of the physical characteristic of the lipid droplets, such as the interfacial area and properties
that are different according to the surfactant used during the emulsification process. In our
study, algae oil was emulsified with GA, chosen for its capacity as an emulsifying agent
and protector against the n-3 PUFA oxidation. GA, as a natural emulsifier, had not yet been
studied in vivo and has been included in comparative studies but is particularly lacking.

In this study, we clearly demonstrated that the GA-based lipid-emulsion significantly
increased in the lymph compartment, the AUC values for FA, and the DHA levels (+345%)
compared to the bulk phase form. In fact, the AUC values were two times higher for total
fatty acids and myristic acid and a 3.5 to 4 fold increase for longer chain n-3 FA, including
EPA and DHA, respectively. Our results are consistent with previous works performed on
animal [13,17,35,64] and human [14] models, demonstrating that lipid bioavailability was
highly related to their lipid formulation [62,63]. Notably, various authors showed that the
bioavailability of n-3 PUFA was two times higher when oils were provided in emulsion
form compared to the bulk one [13,14,17,65]. These studies highlighted the interest of
lecithin as an emulsifier to improve the bioavailability of alpha linolenic acid (ALA). In
our study, the DHA-AUC was more favorable when emulsifying microalgae oil with GA
(factor 4), compared to the AUC obtained for ALA when flaxseed oil was emulsified with
lecithin (close to a factor of 2 [12,13,17]).

The increased AUC values were all the more true by the improvement of the Cmax
values for both, total fatty acids and the overall n-3 PUFA. Compared to the oil in bulk
phase, the emulsification of algae oil with GA improved 2.5 to 3 fold the Cmax, for both
total fatty acids and the overall n-3 PUFA and by 25% the Cmax of myristic acid. These
results are in agreement with the kinetic studies carried out on another n-3 PUFA, ALA,
which also show an improvement in Cmax values (factor 1.5 with lecithin), but to a lesser
extent compared to the Cmax DHA obtained in our study (factor 2.2 with GA). Our data
revealed the interest for using GA to stabilize lipid formulations but also to improve the
bioavailability of lipid of interests, such as n-3 LC PUFA.

Lipid digestion process is considered to be a limiting step in the bioavailability of fatty
acids. GA has the particularity of protective coating all around the lipid droplets, which
gives it an antioxidant property, particularly with regard to n-3 LC-PUFA. Studies based on
pickering emulsions have showed that an anti-oxidant particle was more effective when it
was located at the lipid interface rather than located within the lipid droplet [47,66]. However,
this specific structure, by forming a coat around the lipid structure, also provides peculiar
resistance to acidic pH, as observed during the gastric phase. Indeed, some hydrocolloids
are resistant to enzymatic degradation in the stomach and small intestine, which allow
them to retain their polymeric form throughout the stomach and small intestine. In this
context, GA could have a putative inhibitory effect on the lipolysis step, and thus ultimately
reduce the absorption of the fatty acids of interest provided by the microalgae oil. It has
been reported that physicochemical factors of dietary fiber can affect nutrient absorption.
For example, based on recent data, dietary fiber located in the upper gastrointestinal tract
would decrease the rate of intestinal absorption of nutrients and can be detrimental due to
the reduction absorption of essential micronutrients [67,68].

In light of our lymphatic results, marked by a significant enrichment in lipid and DHA,
this crown-like shape, formed by GA, does not seem to have any impact on the overall
lipolysis step or to reduce the absorption of fatty acids. Herein, the improved bioavailability
was linked to the broader interface generated by emulsification, which plays a crucial role in
the catalysis reaction. As an interfacial enzyme, pancreatic lipase needs a certain oil/water
interface area to operate [23,60,69,70], where the number of the lipid droplets and also their
diameter take part. The surface is important for the physical stabilization of emulsions
and is linked to the properties of the interfacial layer of the emulsion. In our study, by
using GA as an emulsifier, we provided an emulsion with 3µm maximum lipid droplet
size. It has been reported in vitro and in vitro studies that fine emulsions with “small”
lipid droplets (diameter < 1 µm) were hydrolyzed faster by pancreatic lipase compared
to coarse ones (>20 µm) [24,31,71]. The micrometer size of the GA-emulsion improved
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the lipid interface and makes it available to favor the accessibility of lipase onto the lipid
droplets, accelerating the lipolysis of n-3 LC. Thus, the greater the surface area, the greater
and faster the TG hydrolysis [25,72–74]. The crown-like shape obtained with GA seems
to preserve the micronic lipid structure during the lipolysis step, which is essential for
pancreatic lipase without hindering its accessibility at the lipid interface. GA is one of the
most favorable candidates in emulsifiers for improving the granulometry and stability of
PUFA formulations by limiting coalescence, particularly during pH variations, as observed
in vivo during gastrointestinal digestion [29,52].

On another hand, we determined the hourly fatty acid uptake and the peak of FA
absorption with regard to the kinetics of lipid absorption in lymph. By considering the
shape of the kinetic curve, we observed that the Tmax obtained at 6 h postprandial was later
compared to the Tmax previously observed for vegetable oils (4 h postprandial) [13,17,18].
This delay could be explained by the steric hindrance steric induced by n-3 LC PUFA, which
limits the enzymatic access [23,57] and slows down the in vitro lipolysis [69,75]. Indeed, the
activity of digestive lipases, as pancreatic lipase, mainly depends on the composition and
interfacial properties, but also on the FA nature [15], which conditions the lipolysis level.
According to some studies, medium chain FA are privileged substrates for lipases, whereas
n-3 LC-PUFA interferes with the access of the enzyme on the lipid interface, resulting in a
dramatically impaired lipolysis rate, and thus FA intestinal-absorption [58,69,76]. In our
study, as a matter of fact, the lymphatic absorption of dietary DHA showed that during
the lipid digestion process, pancreatic lipase was not inhibited by the steric conformation
of DHA from algae oil but induced a reduced or delayed catalytic reaction, compared to
shorter or less unsaturated FA chains in vegetable oils [69,75].

However, when algae oil was emulsified with GA, the peak of FA absorption was earlier
for the emulsion (Tmax = 4 h postprandial) than that observed for bulk oil (Tmax = 6 h
postprandial) and similar to that previously observed for emulsified vegetable oil (Tmax = 4 h
postprandial) [13]. These studies highlighted that the process of lipid emulsification might
advance the peak of lymphatic absorption of shorter lipid chains both in rats [13,17] and in
humans [14,64]. They also reported that the emulsification process improved not only the
ALA bioavailability (by a factor 2) but also the rate of appearance in the lymph, marked by an
earlier Tmax of 1 h.

GA has demonstrated a benefit regarding the bioavailability of nutritional lipids.
This benefit requires further studies in humans for confirmation and investigation in
chronic approaches.

5. Conclusions

To conclude, our data clearly demonstrated that lipid emulsification with GA amelio-
rated quantitatively and qualitatively the lymph status in n-3 PUFA by a factor of 4.2, and
more significantly than with soy lecithin, which was the emulsifier that best improved lipid
bioavailability in the comparative studies [12]. The lymph quantity of other triglycerides
as myristic acid was also improved by a factor of 2.1. Lipidic formulation with GA and
the achievement of a micrometric droplet mesh size represents a promising interest in
improving its bioavailability.
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