
Supplementary Material

0.1 Summary of Statistical Significant Testing
We utilize various statistical significance tests to rigorously compare meth-

ods and experimental settings. In summary, statistical significance is a mathe-
matical method of demonstrating the reliability of a statistic [1], given the null
hypothesis. In order to make decisions based on the results of any running
experiments, we may need to verify that a relationship actually exists between
the independent variables being studied. And different types of statistical
significant tests can help to identify this relationship.

A finding is considered statistically significant when it is extremely unlikely
to have occurred given the null hypothesis. More specifically, we define the
significance level of a study as α which is the probability that the study will
reject the null hypothesis if the null hypothesis is true. And the p-value ‘p′ of a
result is the likelihood of getting a result at least as extreme, given that the null
hypothesis is true. When p ≤ α, the finding is considered statistically significant.
For our statistical significance testing, we consider α = 0.05 according to the
definition standard [2]. The null hypothesis is rejected if the p-value of an
observed variable is less than or equal to the significance level. If the p-value
is greater than the significance level, we cannot conclude that a difference is
statistically significant.

0.2 Statistical Significance Tests Conducted in this Paper
Table S1 and S2 reports the results of the one-way Analysis of Variance

(ANOVA) test and its non-parametric equivalent; the Kruskal–Wallis test, and
Student’s t-test. In Table S1, we conduct each test on βCVAE-SPP. For each
model, we compare 2 groups that allow us to evaluate the impact of the input
dataset (res0.0-2.0 versus res0.0-3.0). Each group contains the EMD values
obtained over all five training dataset configurations; so each group contains 5
values. Each value is the EMD, measuring the distance between the LR-Score
distribution over the generated and the LR-Score distribution over the training
dataset. Table S2 follows the same procedure but instead of comparing two
extreme dataset, we compare 3 groups that allow us to evaluate the impact of
the input dataset (res0.0-2.0 versus res0.0-2.5 versus res0.0-3.0). And we conduct
each test separately on CVAE-SPP and βCVAE-SPP. In both table, we want to
determine whether there are any statistically significant differences between the
means of these two or more independent (unrelated) groups, where our null
hypothesis assumes that all means are equals.

Table S1 shows that when we compare βCVAE-SPP to itself by considering
less extreme (res0.0-2.0) and highest extreme (res0.0-3.0) dataset in terms of
noise and do this on average of distribution of LR-Score values obtained by 5
training dataset configurations using one-way analysis of variance (ANOVA)
and Student’s t-test, we found that in both cases, p ≤ α (reject the null hy-
pothesis) conclude that differences are statistically different, so we can say that
disentanglement helps when quality of the dataset decreases.

We present more results in Table S2 in such a way as to expose, if present,
any impact on generated data quality by the input datasets. Similar to the above
analysis, we relate the EMD values comparing the generated to the training
dataset over LR-Score. In order to analyze the impact of the input dataset, we
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compare 3 groups for each model (res0.0-2.0 versus res0.0-2.5 versus res0.0-3.0).
It contains all 5 training dataset configurations’ EMD values, which means
each group comprises 5 values. Table S2 shows that all obtained p-values are
under the α value; which implies that the means are different and that this is
statistically significant. This result holds by both the one-way ANOVA test and
the Kruskal-Wallis test. This result confirms our visual observations in the main
paper; that is, there are differences due to the three different input datasets.

Table S1: Statistical significance test over 2 groups of EMD values (over LR-
Scores of generated versus training dataset distributions) corresponding to
the 2 different input datasets (res0.0-2.0 and res0.0-3.0). Each group includes
EMD values over LR-Score distributions (generated versus training) obtained
from a model trained over each of the five training dataset configurations. The
Student’s t-test is included in the last column. P-values are shown. Those no
higher than 0.005 are highlighted in bold, indicating that there are statistically-
significant differences among the means of the three groups.

res0.0-2.0 vs res0.0-3.0
LR-Score

Model One way ANOVA T-test
P value P value

βCVAE-SPP 5 training dataset configs 0.0006 0.0006

Table S2: Statistical significance test over 3 groups of EMD values (over LR-
Scores of generated versus training dataset distributions) corresponding to the
three different input datasets. Each group includes EMD values over LR-Score
distributions (generated versus training) obtained from a model trained over
each of the five training dataset configurations. The test is repeated separately
for CVAE-SPP and βCVAE-SPP. The non-parametric version of the one-way
ANOVA test, the Kruskal Wallis test is included in the last column. P-values are
shown. Those no higher than 0.005 are highlighted in bold, indicating that there
are statistically-significant differences among the means of the three groups.

res0.0-2.0 vs res0.0-2.5 vs res0.0-3.0
LR-Score

Model One way ANOVA Kruskal-Wallis
P value P value

CVAE-SPP : 5 training dataset configs 0.0017 0.0131
βCVAE-SPP : 5 training dataset configs 0.0018 0.0103

The above analysis does not locate the differences among the means. To do
so, we conduct several post-hoc analyses after the null hypothesis is rejected,
which is related in Table S2. So, while controlling the experiment-wise error
rate, we apply post hoc tests to investigate differences between different group
averages.

We apply the Dunn’s multiple comparison test with the Benjamini-Hochberg
method and the Holm-Bonferroni method to investigate differences between
group means in Table S3. Table S4 shows the results of applying post-hoc Tukey
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HSD test and Table S5 for T-test Pairwise Comparison. All the tables relate all
pairwise comparisons across the input datasets and the highlighted p-values
indicate statistically-significant differences.

Table S3: Post-hoc analysis over EMD values (over LR-Score generated versus
training dataset distributions) obtained over the training dataset configurations,
comparing all pairs of input datasets. The analysis is carried out separately for
CVAE-SPP and βCVAE-SPP. The panel relates Dunn’s test using the FDR 2 stage
Benjamini-Hochberg method. The right panel indicates Dunn’s test using the
Holm-Bonferroni method. P-values are shown. Those no higher than 0.005 are
highlighted in bold, indicating statistically-significant differences among the
means of the groups under comparison.

Post Hoc Dunn’s Test (CVAE-SPP : 5 different configs on training dataset), α=0.05
FDR 2 stage Benjamini-Hochberg Method Holm-Bonferroni Method

LR-Score (Training, Generated)
Dataset res0.0-2.0 res0.0-2.5 res0.0-3.0 Dataset res0.0-2.0 res0.0-2.5 res0.0-3.0

P value P value
res0.0-2.0 1.0000 0.2958 0.0067 res0.0-2.0 1.0000 1.0000 0.0266
res0.0-2.5 0.2958 1.0000 0.0066 res0.0-2.5 1.0000 1.0000 0.3998
res0.0-3.0 0.0067 0.0066 1.0000 res0.0-3.0 0.0266 0.3998 1.0000
Post Hoc Dunn’s Test (βCVAE-SPP : 5 different configs on training dataset), α=0.05

FDR 2 stage Benjamini-Hochberg Method Holm-Bonferroni Method
LR-Score (Training, Generated)

Dataset res0.0-2.0 res0.0-2.5 res0.0-3.0 Dataset res0.0-2.0 res0.0-2.5 res0.0-3.0
P value P value

res0.0-2.0 1.0000 0.1598 0.0037 res0.0-2.0 1.0000 1.0000 0.0112
res0.0-2.5 0.1598 1.0000 0.0141 res0.0-2.5 1.0000 1.0000 0.0851
res0.0-3.0 0.0037 0.0141 1.0000 res0.0-3.0 0.0112 0.0851 1.000

Table S3 shows that when CVAE-SPP is employed, the Benjamini-Hochberg
method shows that there are statistically-significant differences between the
res0.0-3.0 and the res 0.0-2.5 input datasets (we abuse terminology here, as
the comparison is between means of EMD values obtained by trained models)
and between the res0.0-3.0 and the res 0.0-2.0 input datasets. No statistically-
significant differences are observed between the res0.0-2.0 and the res 0.0-2.5
input datasets. When the Holm-Bonferroni method is employed, the only
statistically significant difference is between the res0.0-3.0 and the res 0.0-2.0
input datasets. These observations are replicated in their entirety over the
results obtained by βCVAE-SPP.

The results in Table S4 using Tukey HSD post hoc analysis and in Table S5
using T-test Pairwise Comparison support the same conclusion as in Table S3
using Benjamini-Hochberg method show that there are statistically-significant
differences between the res0.0-3.0 and the res 0.0-2.5 input datasets . Taken
altogether, they suggest that indeed the input dataset impacts the quality of the
generated data with regards to the realism of long-range contacts; statistically-
significant differences are observed when the resolution worsens from 2.0Å to
3.0Å. These results clearly relate that dataset quality has an impact over the
quality of data generated by a model.

Then we focus on for a specific dataset, whether the differences between
CVAE-SPP and βCVAE-SPP are statistically significant or not. For each dataset,
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Table S4: Post-hoc analysis using Tukey HSD test over EMD values (over LR-
Score generated versus training dataset distributions) obtained over the training
dataset configurations, comparing all pairs of input datasets. The analysis
is carried out separately for CVAE-SPP (top panel) and βCVAE-SPP (bottom
panel). Column 1 and 2 indicate datasets, and Column 3 shows compares means
between group 1 and 2. In Colum 4, P-values are shown. Those no higher
than 0.005 are highlighted in bold, indicating statistically-significant differences
among the means of the groups under comparison.Columns 5 and 6 shows the
lower and upper mean values. Columns 7 indicates whether the null hypothesis
can be rejected or not. Boldface font indicates rejection of the null hypothesis.

Post Hoc Tukey HSD, FWER=0.05 Test (CVAE-SPP 5 training dataset configs)
LR-Score (Training, Generated)

Dataset (Group 1) Dataset (Group 2) Mean Diff. P-Value Lower Upper Reject
res0.0-2.0 res0.0-2.5 0.0056 0.9 -0.0425 0.0537 False
res0.0-2.0 res0.0-3.0 0.077 0.0029 0.0289 0.1252 True
res0.0-2.5 res0.0-3.0 0.0714 0.005 0.0233 0.1195 True

Post Hoc Tukey HSD, FWER=0.05 Test (βCVAE-SPP 5 training dataset configs)
LR-Score (Training, Generated)

Dataset (Group 1) Dataset (Group 2) Mean Diff. P-adjust Lower Upper Reject
res0.0-2.0 res0.0-2.5 0.0127 0.712 -0.0306 0.056 False
res0.0-2.0 res0.0-3.0 0.0722 0.0021 0.0288 0.1155 True
res0.0-2.5 res0.0-3.0 0.0595 0.0084 0.0162 0.1028 True

Table S5: Post-hoc analysis using T-test Pairwise Comparison test for critical
values of mean differences over EMD values (over LR-Score generated versus
training dataset distributions) obtained over the training dataset configurations,
comparing all pairs of input datasets. The analysis is carried out separately
for CVAE-SPP (top panel) and βCVAE-SPP (bottom panel). Columns 1 and 2
indicate datasets as group 1 and 2. Column 3 shows the coefficient, and Column
4 shows the standard error between groups 1 and 2. In Column 5, P-values
are shown. Those no higher than 0.005 are highlighted in bold, indicating
statistically-significant differences among the means of the groups under com-
parison. Column 6 indicates whether the null hypothesis should be rejected or
not; Boldface font indicates rejection.

T-test Pairwise Comparison (CVAE-SPP 5 training dataset configs), α=0.05
LR-Score (Training, Generated)

Dataset (Group 1) Dataset (Group 2) Coef. Std Err. Pvalue-hs Reject-hs
res0.0-2.0 res0.0-2.5 0.0056 0.0180 0.7598 False
res0.0-2.0 res0.0-3.0 0.0770 0.0180 0.0032 True
res0.0-2.5 res0.0-3.0 0.0714 0.0180 0.0037 True

T-test Pairwise Comparison (βCVAE-SPP 5 training dataset configs), α=0.05
LR-Score (Training, Generated)

Dataset (Group 1) Dataset (Group 2) Coef. Std Err. Pvalue-hs Reject-hs
res0.0-2.0 res0.0-2.5 0.0126 0.0162 0.4503 False
res0.0-2.0 res0.0-3.0 0.0721 0.0162 0.0024 True
res0.0-2.5 res0.0-3.0 0.0594 0.0162 0.0065 True
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Table S6: Statistical significance between CVAE-SPP and βCVAE-SPP models
for each 3 datasets res0.0-2.0 (first row), res0.0-2.5 (second row) and res0.0-3.0
(third row) are determined through different statistical significance test at α
=0.05. Column 1 lists the individual dataset for CVAE-SPP and βCVAE-SPP
models comparison. Column 2 shows the "P-value" using the one-way ANOVA
test, Column 3 using the Student’s t-test, Column 4 using the Kruskal–Wallis
test and Column 5 using the Mann-Whitney U test. We recall that LR-Score
measures the number of long-range contacts in a distance matrix (normalizing
by the number of CA atoms). And for both VAE models, we have considered
all 5 different configurations on the training dataset.

CVAE-SPP vs βCVAE-SPP : 5 different configs on training dataset
LR-Score

Dataset One way ANOVA T-test Kruskal Mann Whitney Reject-hs
P value

res0.0-2.0 0.3409 0.3409 0.3472 0.4033 False
res0.0-2.5 0.5707 0.5707 0.3472 0.4033 False
res0.0-3.0 0.0624 0.0624 0.0758 0.0946 False

we compare 2 sets or groups of input. The distribution of the average of LR-Score
values on 5 different configurations on the training dataset using CVAE-SPP
model is the first set of input for a given dataset, and the distribution of the
average of LR-Score values on 5 different configurations on the training dataset
using βCVAE-SPP is the second set of input for that dataset. Table S6 shows
for each of the datasets (in row), we compare the distribution of the average of
LR-Score values on 5 different configurations on the training dataset between
CVAE-SPP and βCVAE-SPP models using different statistical significance tests
and found that those difference are not statistically significant.

So we can conclude that differences across various datasets per model are
statistically significant, whereas differences between models on any individual
dataset are not statistically significant.

References

[1] Sirkin, R.M. Statistics for the social sciences; Sage, 2006.

[2] Sproull, N.L. Handbook of research methods: A guide for practitioners and
students in the social sciences; Scarecrow press, 2002.

5


	Summary of Statistical Significant Testing
	Statistical Significance Tests Conducted in this Paper

