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Abstract: Genome-scale metabolic modeling is widely used to study the impact of metabolism on
the phenotype of different organisms. While substrate modeling reflects the potential distribution of
carbon and other chemical elements within the model, the additional use of omics data, e.g., tran-
scriptome, has implications when researching the genotype–phenotype responses to environmental
changes. Several algorithms for transcriptome analysis using genome-scale metabolic modeling
have been proposed. Still, they are restricted to specific objectives and conditions and lack flexibility,
have software compatibility issues, and require advanced user skills. We classified previously pub-
lished algorithms, summarized transcriptome pre-processing, integration, and analysis methods, and
implemented them in the newly developed transcriptome analysis tool IgemRNA, which (1) has a
user-friendly graphical interface, (2) tackles compatibility issues by combining previous data input
and pre-processing algorithms in MATLAB, and (3) introduces novel algorithms for the automatic
comparison of different transcriptome datasets with or without Cobra Toolbox 3.0 optimization
algorithms. We used publicly available transcriptome datasets from Saccharomyces cerevisiae BY4741
and H4-S47D strains for validation. We found that IgemRNA provides a means for transcriptome and
environmental data validation on biochemical network topology since the biomass function varies
for different phenotypes. Our tool can detect problematic reaction constraints.

Keywords: genome-scale metabolic modeling; transcriptomics; software engineering; Cobra Toolbox 3.0;
MATLAB; flux balance analysis; flux variability analysis; omics data analysis

1. Introduction

Advancements in genomics in the last decade have led to a rapid increase in published
genome-scale sequences of different organisms. Currently, there are over 2.2 × 108 available
genome sequence data samples (https://www.ncbi.nlm.nih.gov/genbank/statistics/on
(accessed on 6 May 2021). The growing genome data availability and technological advance-
ments in sequencing and mass spectrometry have contributed to increasing multi-omics
dataset generation. From a purely mathematical and statistical point of view, multi-omics
dataset analysis is still very challenging and lacks proper methods [1,2]. Genome-scale
metabolic models are comprehensive collections of known biochemical reactions catalyzed
by specific associated proteins coded by genes. They have been successfully used to explain
genotype–phenotype relationships for prokaryotic, eukaryotic, unicellular, and multi-tissue
organisms. Genome-scale metabolic modeling (GSM) has already proven to be successful,
leading to several significant breakthroughs in health and systems medicine fields [3–5],
biotechnology [6–8], and many other life science fields [9–11]. GSM is a method for analyzing
the phenotype responses of an organism by calculating flux distribution and other parame-
ters [12] to see the carbon distribution potential and environmental perturbation impact on
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the metabolism [13,14]. Despite the knowledge of genotype in GSM, phenotypic responses
are far from being fully understood. With advances in omics technologies, it has become
possible to quantitatively monitor gene transcription (high throughput sequencing), protein
expression (mass-spectrometry proteomics), and metabolomics data, narrowing this gap
between genotype and phenotype [15,16]. In contrast to gene set enrichment analysis, where
genes exhibiting similar biological characteristics are sorted and classified in clusters [17],
GSM-based integration methods also consider the interconnectivity of a biochemical net-
work, the steady-state assumption, and gene–protein–reaction (GPR) associations. This
allows the analysis of transcriptomics datasets to be performed in an interconnected manner
on the biochemical network topology [18] using the gene–protein–reaction rule. There are
two fundamental approaches to expression data integration in GSM: (1) directly integrating
transcriptome data into model flux bounds (DIRECT) or (2) distributing the reactions into
different categories based on transcriptome levels (DISTRIBUTE). The first DIRECT ap-
proach was developed by Åkesson [19]. They assumed that very low gene expression levels
are associated with non-flux reactions. Published later, E-Flux [20] allowed to integrate
quantitative transcriptome measurements directly into the model as the maximum possible
flux value (flux upper bound). However, the Gene Inactivity Moderated by Metabolism
and Expression (GIMME) [21] algorithm was made to distribute reactions into groups of
active and inactive by comparing the corresponding enzymatic gene expression levels to a
user-specified threshold and minimizing fluxes through inactive reactions.

The tool IgemRNA allows to use DIRECT and DISTRIBUTE transcriptomics data
integration approaches. IgemRNA is an open-access toolbox created for transcriptomics
data statistical and biochemical network topology-based analysis. IgemRNA was developed
in the MATLAB environment to utilize the up-to-date and most commonly distributed
GSM tool Cobra Toolbox 3.0 [22] and spreadsheet file (xls, xlsx) capabilities. IgemRNA
is designed to analyze the quantitative genome-scale transcriptome data measurements
like RNA-sequencing [23] and a targeted gene group transcriptome data, for example,
gene expression microarray analysis [24]. IgemRNA allows to analyze transcriptome data
directly or to integrate it into a metabolic model and perform optimization methods, such
as FBA [25,26] or FVA [27]. Metabolic models without omics data cannot reveal distinct
phenotype properties and can predict only the theoretical carbon and other chemical
element distribution within the model. Applying transcriptome data to a metabolic model
makes it possible to explain the phenotype properties in different stress and environmental
conditions [28]. Although various tools for omics data integration into GSM already
exist and have shown to be practical [29], they are not compatible. They use multiple
standards and programming environments (Supplementary file S1). These problems
have raised the need for a tool that combines most of the previously published basic
functionalities, can be used in conjunction with already available GSM tools, and allows
to select a variety of data integration, processing, analysis, and storage options in a user-
friendly way. IgemRNA has been designed to combine several functionalities of previously
published tools (Supplementary file S1), e.g., metabolic flux optimizations, transcriptome
data initialization, and integration methods. The access is provided via a graphical user
interface. Additionally, IgemRNA allows the inclusion of growth medium composition
data along with the transcriptome data from the same environmental conditions. However,
the main novelty is the built-in functions for transcriptome data pre-processing, including
gene mapping and thresholding, transcriptome non- and post-GSM-based optimization
statistical analysis, and the automatic comparison of data between different phenotypes.

2. Materials and Methods

IgemRNA is developed in the MATLAB programming environment. All function-
ality parts of the IgemRNA toolbox are open-access and freely available under the MIT
License. GUI window is created with MATLAB dialog() function, and all user interface
controls are added to the window using MATLAB uicontrol(). IgemRNA has dependencies
for the MATLAB-based GSM tool Cobra Toolbox 3.0 [22] functionality and spreadsheet
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file (xls, xlsx) capabilities to store the results. All IgemRNA functionalities are compatible
with MATLAB versions not older than 2014 (https://opencobra.github.io/cobratoolbox/
latest/installation.html (accessed on 6 May 2021)). IgemRNA is available on GitHub
(https://github.com/BigDataInSilicoBiologyGroup/IgemRNA (accessed on 11 April 2022))
and is designed for transcriptome data analysis with or without a metabolic model network
topology application.

2.1. IgemRNA Architecture Description

Cobra Toolbox 3.0 and spreadsheet data files (transcriptomics, metabolic model, op-
tional medium data) in xls or xlsx format are required to access all the functionality of
IgemRNA (Figure 1). IgemRNA uses different implemented methods and saves results in
spreadsheet files, depending on the user-selected transcriptome data processing methods
and analysis tasks. IgemRNA can also use the built-in methods Flux Balance Analysis (FBA)
and Flux Variability Analysis (FVA) in Cobra Toolbox 3.0 [30] to perform more complex
analysis on metabolic model network topology.
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2.2. Tools Functionality Description

IgemRNA has seven different functional modules (Figure 2). IgemRNA modules include
access to the user-friendly interface with data input options, data initialization, and pre-
processing steps (gene mapping and thresholding) and executes user-selected non- and
post-optimization analysis tasks. Post optimization tasks utilize some Cobra Toolbox
3.0 functions (FBA, FVA). IgemRNA can be started by opening the MATLAB software,
navigating to the directory containing IgemRNA.m script, and running it. If any post-
optimization tasks have been selected in the graphical interface, IgemRNA will launch
Cobra Toolbox 3.0. The most time-consuming step is Cobra Toolbox 3.0 initialization with
the update function. Thereby, it is set to run without updates by default.
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The IgemRNA software allows choosing which transcriptome data, medium composi-
tion, and metabolic model files to load. Further, desirable GPR mapping and thresholding
procedures and optimization and analysis tasks can be selected. When all necessary options
have been selected, IgemRNA automatically determines which non- or post-optimization
functionalities will be executed. An essential part of IgemRNA is the graphical user inter-
face (GUI) module (Figure 2A), which collects information about uploaded data files and
selections for transcriptome data analysis and optimization tasks and passes these param-
eters to matching functional modules. The GUI window is opened using the MATLAB
dialog() function. User interface controls are added with the MATLAB uicontrol() function.
Depending on the input data files, specific functional modules are called afterward. The
optimization and post-optimization tasks modules will not run if only a transcriptome data
file is provided since they require a metabolic model (Figure 2).

The input data module accepts transcriptome, metabolic model, and medium com-
position data from uploaded files (Figure 2B). All input files must meet specified stan-
dards and criteria to be recognized by IgemRNA. Transcriptome data must be located in
a spreadsheet xlsx file, where gene names are under the GeneId column, and the mea-
sured transcriptome values are under the Data column. Gene names must be the same
as defined in the metabolic model. Allowed metabolic model data file types are sbml,
mat, and xlsx, and the structure should be the same as defined in Cobra Toolbox 3.0 [22].
Using BioPax, GPML, and SBML files older than the 3.0 version is possible by converting
them to the newest SBML 3.2 version using the online Systems Biology Format Converter
(SBFC https://www.ebi.ac.uk/biomodels/tools/converters/ (accessed on 11 April 2022))
beforehand. Uptake rates for substrates can also be defined by manual input. The medium
composition file contains data concerning the medium in which the organism grows, the
substrate uptake, and product reaction rates (mmol*g−1*h−1), and optionally a specific
growth rate (h−1) (Figure 4B).

The transcriptome pre-processing functionality module (Figure 2C) is responsible for
preparing transcriptome and metabolic model data for analysis and optimization tasks.
Pre-processing of transcriptome data relies mainly on decision parameters: gene mapping
and thresholding approach, and different combinations of these decisions influence data
processing results and biological data interpretation.

IgemRNA requires a threshold parameter that defines a border between differen-
tially expressed genes. Two types of thresholds exist: local and global. Local thresholds
are automatically calculated for each gene individually, given at least two samples of
transcriptomics data of the same condition. However, a global threshold is used as a
unique parameter that applies to all genes [31]. Different combinations of local and global
thresholds lead to different analysis and optimization results. IgemRNA allows users to
choose between three different thresholding approaches in the data pre-processing step
(Table 1) [31]:

• Global T1 (GT1): is designed to analyze the transcriptome datasets using one global
threshold. Example case shows that all transcriptome levels above 130 sequencing
reads per gene (for a detailed description, see Section 2.3) are considered expressed,
and others are considered suppressed. The global T1 threshold approach can be used
for one or several phenotype transcriptome datasets.

• Local T1 (LT1): is designed to analyze transcriptome datasets having one global
threshold value and a local rule. Local thresholds set a strict border for particular genes
based on their varying gene expression levels across multiple samples to determine
whether a gene is expressed or suppressed in a specific dataset. Local thresholds
are only applied to those genes with expression levels above the global threshold
since genes below the global threshold are automatically seen as suppressed. The
example case shows that all transcriptome levels defined by the global threshold
above 130 sequencing reads per gene are considered as possibly expressed, and below
130 sequencing reads per gene are considered suppressed. Local thresholds for specific

https://www.ebi.ac.uk/biomodels/tools/converters/
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genes determine expression or suppression for genes with expression levels above the
global threshold.

• Local T2 (LT2) is designed to use two global threshold values: upper and lower
thresholds. Transcriptome levels higher than the upper global threshold are considered
expressed genes and are active, and transcriptome levels below the lower global
threshold are considered inactive genes. All genes with expression levels between
the upper and lower global thresholds are considered possibly active. Local rules
for these genes are calculated across multiple gene expression datasets and applied
to determine their activity levels. The Local T2 thresholding approach can be used
if several transcriptome datasets are available. An example of Local T2 shows that
all gene expression levels above the upper global threshold of 130 sequencing reads
per gene are considered active. Gene expressions lower than the global threshold of
50 sequencing reads per gene are considered suppressed.

Table 1. Thresholding Options.

Approach Threshold Input Visual Representation Examples

Global T1

One global threshold:

1. exact value input
2. percentile input (25th,

75th, 90th . . . )
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Each threshold approach has unique properties and is included in IgemRNA. Global
threshold value input can be manual or automatic. In a manual input scenario, the user pro-
vides an exact expression value, whereas in an automated global threshold input scenario,
threshold values are calculated based on a user-provided percentile. Local thresholds are
always calculated automatically across multiple gene expression datasets during analy-
sis. The selection of a thresholding approach is required for both post-optimization and
non-optimization task cases.

Other important choice parameters are the Gene mapping approach and Constraining
options used only for post-optimization task execution. A metabolic model with GPR
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data is required, and gene mapping is performed using the GPR association. The most
straightforward case is one gene encodes one protein that catalyzes one reaction (one gene,
one protein, one reaction) in a metabolic model. However, the presence of enzyme complexes
(multiple genes, one protein), isozymes (multiple proteins, one function), and promiscuous
enzymes (one protein, multiple functions) in GSM makes these associations more complex,
and they are defined with Boolean AND/OR rules. For transcriptome data implementation
in GSM, several in silico gene mapping functions can be performed (Table 2):

Table 2. Gene Mapping Options.

Requirement Options

Reaction constraining options

Only irreversible reactions
All reactions
Non—essential gene deletion only
Meet minimum growth requirements

Gene mapping approach

AND/MIN and OR/MAX
AND/MIN and OR/SUM
AND/geometric mean and OR/MAX
AND/geometric mean and OR/SUM

• Minimum (MIN) AND operands in the GPR association are calculated by taking the
lowest gene expression value.

• Geometric mean (GM) [32] AND operands in the GPR association are calculated as the
geometric mean of the gene expression values.

• Maximum (MAX) OR operands in the GPR association are calculated by taking the
highest gene expression value.

• Sum (SUM) OR operands in the GPR association are calculated as the sum of all the
gene expression values.

Cobra Toolbox 3.0 has implemented several previously published transcriptome analy-
sis methods [22]. IgemRNA uses 4 methods to implement transcriptomics data on reactions
in the metabolic model:

• Only irreversible reactions function. Enzymatic reactions have three different directions in
metabolic models: irreversible, reversible, and backward irreversible. This approach con-
straints only irreversible and backward irreversible reactions in the respective direction.

• All reactions function constrains all reactions: irreversible and backward irreversible re-
actions in an oriented direction, but reversible reactions are constrained in
both directions.

• Growth not affecting gene deletion only option allows for the deletion of only those
genes with expression values below the given threshold and which deletion does not
affect growth. Cobra Toolbox 3.0 singleGeneDeletion analysis with the FBA method is
performed before executing gene deletion for those genes. Only if the returned output
grRatio by singleGeneDeletion function is equal to 1 (meaning that the wild type growth
is equal to the deletion strain growth) does the gene get deleted.

• Meet minimum growth requirements option allows constraining only those reactions
where the gene mapping end value (which is set as a reaction bound) is not below the
minimum growth requirements for that reaction. Minimum growth requirements are
obtained by creating another context-specific model where only the gene deletion and
medium exchange reaction constraining is applied to calculate the Cobra Toolbox 3.0
FBA (optimizeCbModel) minimization of growth.

Non-optimization tasks module is the most straightforward transcriptome analysis mod-
ule, which does not require additional Cobra Toolbox 3.0 functionality or a metabolic model.
This module includes three predefined different transcriptome data analysis methods:

• Filter high- and low-expression genes: this method uses chosen threshold data and sorts
genes into high-expression and low-expression datasets.
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• Filter low-expression genes: this method uses chosen threshold parameters, filters
genes with expression levels below the supplied thresholds, and returns them as
non-expressed datasets.

• Filter up-/down-regulated genes between phenotypes: This method uses chosen threshold
data and filters up- and down-regulated genes from two or more transcriptome
datasets. The gene names must match in all datasets. The resulting data are passed to
the Spreadsheet module (Figure 2G).

• Cobra Toolbox module is called before post-optimization tasks to calculate FBA and
FVA results using Cobra Toolbox 3.0 functions (Figure 2E). This module requires a
metabolic model.

Post-optimization task module is the IgemRNA advanced transcriptome analysis module
that uses metabolic models and analyses them with Cobra Toolbox 3.0. The module applies
all transcriptome data pre-processing functions (Figure 2C). Each function then has several
options, resulting in a different analytical approach. The novelty of IgemRNA compared
to other tools (Supplementary file S1) is the post-optimization module that has several
functions for analyzing context-specific models:

• Filter non-flux reactions: this functionality filters out enzymatic reactions that do not
carry a flux because the coded gene transcription levels are below the chosen threshold
value in the pre-processing module (Figure 2C).

• Filter rate-limiting reactions: This functionality finds maximum reaction rates equal
to the calculated GPR value based on gene expression data. The function uses the
FVA optimization method to calculate the minimal and maximal rate value for each
reaction and then filters reactions with upper bounds of the same value as the FVA
maximal results.

• Flux shifts between phenotypes: this function compares minimal and maximal fluxes (calculated
by FVA) between different phenotypes or datasets, calculating ratios between them.

All functionalities generate results, which are passed to the Spreadsheet module.
Results Module saves all non- and post-optimization analysis results in spreadsheet

files (xls or xlsx).
IgemRNA is available on GitHub (https://github.com/BigDataInSilicoBiologyGroup/

IgemRNA) (accessed on 11 April 2022).

2.3. RNA Sequencing Data Analysis

A publicly available and previously published [33] gene expression dataset from
Saccharomyces cerevisiae BY4741 strain and mutant strain H4-S47D were used for analysis.
Reads were aligned using STAR aligner [34] and assigned to genomic features using
featureCounts [35]. Statistical comparisons between samples were made using edgeR [36].
The workflow is publicly available on the Galaxy platform [37,38]: https://usegalaxy.eu/
u/karlispleiko/w/rna-seq-kp-fromgeosingle-read (accessed on 11 April 2022).

3. Results
3.1. The Comparison of Available Transcriptome Data Integration Tools

Before designing and implementing the IgemRNA software, we reviewed existing
transcriptome analysis methodologies. We discovered many previously published methods
and sorted them according to a variety of parameters. To classify transcriptome analysis
methods, we chose to categorize them by the following attributes: method name (1), does
the method returns a context-specific model (2), thresholding method (3), gene mapping
approach (4), requirements to run (5), if it is actively maintained (6), 3rd party software
availability (7), and accessibility to build-in statistical analysis methods (8).

These methods differ in terms of their functionality and data pre-processing ap-
proaches. The method proposed by Åkesson [19] assumes that very low gene expression
levels are associated with no flux reactions. The GIMME (Gene Inactivity Moderated by
Metabolism and Expression) [21] method compares two transcriptome datasets, determines

https://github.com/BigDataInSilicoBiologyGroup/IgemRNA
https://github.com/BigDataInSilicoBiologyGroup/IgemRNA
https://usegalaxy.eu/u/karlispleiko/w/rna-seq-kp-fromgeosingle-read
https://usegalaxy.eu/u/karlispleiko/w/rna-seq-kp-fromgeosingle-read
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active and inactive genes, and minimizes low-expression reactions, thus keeping objective
function above a set value. The iMAT (Integrative Metabolic Analysis Tool) [39] allows
the integration of transcriptomic and proteomic data into metabolic models. This method
groups reactions into high-, moderate- and low-expression and maximizes the high- while
minimizes the low-expression reactions. MADE (Metabolic Adjustment by Differential Ex-
pression) [40] uses two or more datasets of gene expression data across multiple conditions,
creates a sequence of binary expression states to find statistically significant changes in gene
expression measurements, and determines high-/low-expression reactions. The TIGER
(Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation) [41] soft-
ware platform facilitates the conversion of GPR associations into a mixed-integer linear
program (MILP), which is used to constrain a metabolic model.

The resulting model combines GPR associations with a transcriptional regulatory
network and can be further specified using gene expression data. E-Flux [20] constraints
upper bounds for reactions classified as low-expression based on a given threshold and
expression data. PROM (probabilistic regulation of metabolism) [42] is used for integrating
genome-scale transcriptional regulatory networks into metabolic networks. The algorithm
calculates the probability that a gene is active with respect to its transcription factor as
specified by expression data. It then constrains the maximum reaction flux by a factor of this
probability. The application of transcriptional regulatory networks and in metabolic model-
ing has also been outlined by TRFBA (transcriptional regulated flux balance analysis) [43].
This tool uses gene expression data from various perturbations as continuous variables
and constrains reaction upper bounds to link transcriptional regulatory and metabolic
networks. The INIT (Integrative Network Inference for Tissues) algorithm [44] maximizes
reactions based on a qualitative confidence score and minimizes reactions associated with
low expression. In addition, this method allows a small net accumulation rate for internal
metabolites to prevent the removal of necessary reactions. Lee-12 [45] integrates absolute
gene expression data directly into the objective function of a constraint-based model in-
stead of constraining the fluxes. The biological objective function is replaced by a function
that minimizes the deviation between gene expression levels and the fluxes. mCADRE
(Context-Specificity Assessed by Deterministic Reaction Evaluation) [46] instead introduces
a core set of reactions that must be present and active based on gene expression data and
non-core reactions determined based on gene expression and connectivity evidence. This
method also runs a test to ensure the basic functionality of the generated models and was
successfully applied to reconstruct 126 human tissue genome-scale draft models. Fang-
12 [47] is used to predict flux distribution for a perturbed state based on the differences in
gene expression levels relative to a reference condition with precalculated flux distribution.
This method also allows minor variations in biomass composition for the perturbed state.

Similarly, ∆FBA (deltaFBA) [48] also estimates differences between two conditions
only by calculating the flux differences between the conditions, and it does not require the
specification of an objective. RELATCH (relative change) [49] uses gene expression and
fluxomic data from a reference state to estimate metabolic changes in a perturbed state
for which there is no expression data available. Flux distribution for the perturbed state
is calculated by minimizing the adjustment to the reference state. The TEAM (Temporal
Expression-based Analysis of Metabolism) [50] method estimates time-course flux profiles
using temporal gene expression patterns by combining dFBA (Dynamic Flux Balance Anal-
ysis) and the GIMME algorithm. It calculates the flux distribution at each time point and
uses flux sum minimization to find the optimal solution. The GX–FBA (Gene-expression
FBA) [51] method that integrates gene expression data into flux balance analysis uses the
deviation in gene expression levels between a reference state and a perturbed state to define
flux constraints for the perturbed state.

Akkeson, GIMME, E-Flux, and ∆FBA use only one global threshold for gene activity
determination. PROM employs a predefined 33rd percentile threshold from the average
value. INIT has an optional minimum flux threshold and positive/negative weights for
each reaction. TEAM calculates the threshold from the M3D microarray dataset database.
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iMAT sets two different global thresholds as lower and upper bounds. Meanwhile, MADE
and TRFBA do not have thresholding.

All transcriptome analysis and optimization methods require a metabolic model and
one or more transcriptome datasets. However, some algorithms require more complex ex-
perimental data or software to run. For iMAT and GIMME, a specified objective function is
needed, while MADE needs access to a mixed-integer linear program solver (like GUROBI)
and more than one transcriptome dataset. Multiple gene expression datasets states are
also necessary to perform PROM, whereas TRFBA and ∆FBA E-Flux requires a function
to convert gene expression levels into fluxes. PROM, TIGER, and TRFBA are developed
to apply not only transcriptome environmental and genetic perturbation datasets, but
also transcriptional regulatory networks. RELATCH method requires transcriptome and
fluxomics datasets from the same conditions. The more advanced method TEAM uses
initial composition data and temporal transcriptome and biomass composition data.

Along with different data integration approaches, an attribute not less important is
the software availability and regular maintenance. For example, Lee-12 [45] has claimed its
availability in Cobra Toolbox, but it is not found in the latest Cobra Toolbox 3.0 version.
TIGER serves as a software platform for three previously published methods: GIMME,
iMAT, and MADE. However, unfortunately, the platform is not maintained anymore. To our
best knowledge, GIMME, iMAT, INIT, TEAM (only for microarray experiments), mCADRE,
TRFBA, and ∆FBA are maintained regularly.

Most of the published methods are designed for particular modeling cases. They are
not flexible for other scenarios since they require complex experimental data (fluxomics,
multiple transcriptome datasets, or temporal data) or the integration of transcriptional
regulatory networks. Later published transcriptome analysis approaches are considered
ineligible for unified manuscript classification criteria.

IgemRNA is a novel tool that has combined many previously listed pre-processing and
different transcriptome analysis methods. It allows the analysis of transcriptomics data
together with or separately from metabolic models to find high- and low- expression genes
or reactions and compare them with other phenotype datasets. IgemRNA has implemented
more advanced pre-processing functions by combining several previously listed methods.
It includes three thresholding, four gene mapping, and four reaction constraining options.

IgemRNA is compatible with MATLAB-based software and optionally uses Cobra
Toolbox 3.0 functionality. Compared to previously mentioned methods, IgemRNA facilitates
multiple thresholding and gene mapping approaches and several constraining options
for transcriptome data integration into metabolic models. The additional feature is the
possibility for the end-user to select different types of reactions (based on their flux and
constraints) to extract from the result context-specific models. More advanced analysis
methods in IgemRNA also include data comparison between different phenotypes. On
top of that, all previously mentioned options can easily be selected via the graphical
user interface.

3.2. IgemRNA Demonstration

The main novelty within this paper is the IgemRNA tool itself, combining multiple
critical decisions and options for transcriptomics data analysis and integration in metabolic
models. The graphical interface of IgemRNA makes data entry and pre-processing (thresh-
olding, gene mapping) easier for the end-user (Figure 3). Another valuable feature of
IgemRNA is the possibility for the user to choose which data analysis tasks to perform,
including both non-optimization and post-optimization tasks.
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After running the main IgemRNA script IgemRNA.m, a dialog box is opened where
it is necessary to select the transcriptomics data file (xls or xlsx format) in the file upload
section (Figure 3A). The transcriptomics data should be organized into two columns GeneId
and Data (Figure 4B), where GeneId corresponds to the genes in the metabolic model if one
is supplied. The transcriptomics data file can consist of multiple RNA-seq samples of the
same conditions as well as different phenotypes. Therefore, the phenotype and sample
name must appear as the sheet name since this name will be used in the result files and for
selecting phenotypes for comparison (Figure 3F,G).
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Having selected a transcriptomics data file, the non-optimization tasks section (Figure 3F)
becomes visible. Having chosen a GSM of Cobra Toolbox 3.0 available formats, the post-
optimization tasks section (Figure 3G) becomes visible. Optionally, a medium data file (xls
or xlsx format), where all the needed reactions and their upper and lower bounds are listed
(Figure 4A), can be supplied in the file upload section (Figure 3A).

The following four dialog sections (Figure 3B–E) contain options for data pre-processing.
The thresholding approach (Figure 3B) and global threshold value selection (Figure 3C) options
determine methods for transcriptomics data pre-processing to split genes into high- and
low-expression groups. It is possible to choose one of three thresholding approaches,
namely Global T1 (GT1), Local T1 (LT1), or Local T2 (LT2) (see 2.2 threshold parameter).
Depending on the selected approach, the user is then asked to enter one or two global
threshold values, which can be supplied as a percentile or an exact value. Gene mapping
approach (Figure 3D) and constraining options (Figure 3E) determine methods for transcrip-
tomics data integration in a metabolic model. The gene mapping approach specifies what
operations to use for mapping gene expression data to gene-protein-reaction (GPR) as-
sociations (see 2.2 Gene mapping), whereas constraining options allow to constrain only
irreversible or all reactions. Moreover, it is possible to constrain reactions (see 2.2 Constrain-
ing options) by deleting only non-essential genes and the satisfy biomass objective function
minimal resources value.

Non-optimization tasks (Figure 3F) allows to filter high- and/or low-expressed genes,
export results in spreadsheet and compare gene expression data between phenotypes.

Post-optimization tasks combine transcriptomics data and a metabolic model to extract
data on reaction levels. It is possible to filter non-flux and rate-limiting reactions and
calculate reaction flux shifts between different phenotypes. An objective function is required
to perform optimizations on the metabolic model. Since post-optimization tasks use some
of the Cobra Toolbox 3.0 functions, the user is also asked to choose how to start Cobra
Toolbox: with or without updates.

To validate IgemRNA, we used the Saccharomyces cerevisiae genome-scale metabolic
model [52] version 8.4.0 [53] and transcriptome datasets [33]. We performed high-throughput
genetic screenings that provide a novel global map of the histone residues required for tran-
scriptional reprogramming in response to heat and osmotic stress in steady-state growth
conditions. All validation details are found in Supplementary file S2.

To perform test cases provided in this user manual, simply run scripts via MAT-
LAB environment. For example, TestCase_determineGeneActivity.m script will run a non-
optimization task filter for high- and low-expression genes in Supplementary file S2.

4. Discussion and Conclusions

Having summarized several transcriptome data processing tools, we found that many
are case-specific and allow users to select only a few possible data pre-processing and
analysis functions. Recently proposed tools are not widely used due to the complexity of
required input data, such as tools that facilitate time-series or genome-scale metabolomics
data that are not widely accessible or use their own unique FBA modified functions or
different 3rd party software.

We sorted out methods and algorithms providing flexibility and the possibility of
application in a wide range of experimental scenarios and implemented them in the newly
developed transcriptome analysis tool, IgemRNA. The main contributions of the gene
expression and metabolic analysis tool are a user-friendly graphical interface, the tackling
of compatibility issues by combining several data pre-processing and integration methods
in MATLAB environment, allowing the end-user to select different types of reactions (based
on their flux or constraints) to extract and filter from the result models, and the novel
algorithms for the automatic comparison of transcriptome data from different phenotypes
with or without Cobra Toolbox 3.0 optimization algorithms.

We found that IgemRNA provides a means for transcriptome and environment data
validation on biochemical network topology since the biomass function varies for different
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phenotypes. The software can detect problematic reaction constraints to loosen their
bounds and achieve a steady state. IgemRNA, in contrast to gene set enrichment analysis,
additionally validates transcriptomics measurement quality, where minimal metabolic
network connectivity and flux requirements must be fulfilled. Otherwise, transcriptome
data quality is questionable.

In general, the IgemRNA tool combines unique data entry, initialization, optimization,
and analysis algorithms that significantly facilitate manual work for the end user with
the integration of transcriptomics and environmental data into metabolic models, and
thus presents great potential to increase novel scientific discoveries in research concerning
different organisms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12040586/s1, Supplementary file S1: Classifying previously
published transcriptome data integration in GSM methods. Supplementary file S2: User manual
documentation for the IgemRNA. All IgemRNA test data and scripts are found at https://github.
com/BigDataInSilicoBiologyGroup/IgemRNA (accessed on 11 April 2022).
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