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Abstract: Although database search tools originally developed for shotgun proteome have been
widely used in immunopeptidomic mass spectrometry identifications, they have been reported to
achieve undesirably low sensitivities or high false positive rates as a result of the hugely inflated
search space caused by the lack of specific enzymic digestions in immunopeptidome. To overcome
such a problem, we developed a motif-guided immunopeptidome database building tool named
IntroSpect, which is designed to first learn the peptide motifs from high confidence hits in the
initial search, and then build a targeted database for refined search. Evaluated on 18 representative
HLA class I datasets, IntroSpect can improve the sensitivity by an average of 76%, compared to
conventional searches with unspecific digestions, while maintaining a very high level of accuracy
(~96%), as confirmed by synthetic validation experiments. A distinct advantage of IntroSpect is
that it does not depend on any external HLA data, so that it performs equally well on both well-
studied and poorly-studied HLA types, unlike the previously developed method SpectMHC. We
have also designed IntroSpect to keep a global FDR that can be conveniently controlled, similar
to a conventional database search. Finally, we demonstrate the practical value of IntroSpect by
discovering neoepitopes from MS data directly, an important application in cancer immunotherapies.
IntroSpect is freely available to download and use.

Keywords: immunopeptidome; mass spectrometry; database search; motif; search space

1. Introduction

The study of immunopeptidome, which is the collection of peptides presented on a
cell surface by major histocompatibility complex (MHC) molecules, is invaluable to the
development of next-generation vaccines and immunotherapies against autoimmunity,
infectious diseases and cancer [1–8]. Usually, the identification of immunopeptidome by
mass spectrometry (MS) is carried out with standard database search tools [9,10], such
as MS-GF+ [11], Comet [12], X!Tandem [13] and MaxQuant [14]. These tools, however,
originally tailored to shotgun proteome, may bring a risk of low sensitivity when used in
immunopeptidome [15–17]. In shotgun proteome, the proteins are treated by digestive en-
zymes in the experiment, and the cleavages that occur only at specific sites can significantly
reduce the space available for the database search. When it comes to immunopeptidome,
the proteins are not digested in the experiment, but are digested by proteasome in the
cells with non-specific cleavages, resulting in a huge search space [18–23]. Previous studies
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have confirmed that the overly inflated search space will reduce the statistical power and
sensitivity in database search [24–26].

Conventional database search for immunopeptidome consists of the following steps:
generating search space by unspecific digestion, assigning the spectra of MHC-bound
peptides to their sequences and scoring and filtering assignments by a certain false discov-
ery rate (FDR) [27,28]. In order to increase the sensitivity of immunopeptidome database
search, two classes of computational methods have been developed: the first class, includ-
ing MSrescue [21], DeepRescore [22] and MHCquant [29], aims to optimize the scoring and
filtering of assignments, and will be referred to as post-processing tools in this manuscript;
the second class, SpectMHC [18], aims to optimize the generation of search space, and
will be referred to as database building tools. SpectMHC builds the targeted search space
based on HLA-peptide binding predictions, which is trained from existing HLA-binding
peptide databases. Its performance will be heavily influenced by the accuracy of the cor-
responding binding prediction, which may not work well for poorly-studied HLAs [21].
Furthermore, SpectMHC combines the iterative searches of unspecific digestion database
and HLA-binding peptide database, making it infeasible to calculate a global FDR [30],
which is important for controlling the overall error rate [31].

Here we developed a novel motif-guided immunopeptidome database building tool
named IntroSpect to increase the sensitivity of immunopeptidome detection. IntroSpect
trains data-efficient PSSM models based on the high scoring peptides identified by con-
ventional database search and builds a targeted database to carry out refined search. In
the remainder of this paper, we will detail the development of IntroSpect, demonstrate its
superior performance over existing database building tools and show how it can be used
to identify neoepitopes from MS data directly. We believe our freely available, open-source
tool makes a valuable contribution to advance the field of immunopeptidomics.

2. Materials and Methods
2.1. Generation of Cell Lines

The K562 and HCT116 cell lines were obtained from ATCC (American Type Culture
Collection, Manassas, VA, USA), and the K562 cell line was engineered to express a single
HLA-allele as described previously [32]. In short, it was transduced using a highly efficient
retroviral vector coding HLA-A*11:01. The vectors were transfected into a 293T packaging
cell line, and replication-defective virus supernatants were harvested. After infection of
K562 cells with the supernatant, antibody-directed flow cytometry sorting was done to
obtain cells with high expressions of HLA-A*11:01. Cells were grown in T75 flasks to a
density of 1 × 109 cells before harvesting for experiments.

2.2. Purification of HLA-I Peptides

HLA-I peptides were obtained from K562 and HCT116 cells as described previ-
ously [33]. In brief, 1 × 109 cells were dissociated using 40 mL of lysis buffer with 0.25%
Sodium deoxycholate, 1% n-octyl glucoside, 100 mM PMSF and protease inhibitor cocktails
in PBS at 4 ◦C for 60 min. Lysate were further cleared by 30 min centrifugation at 14,000× g.
Cleared lysate were immunoaffinity purified with pan-HLA class I complexes antibody
covalently bound to Protein-A Sepharose CL-4B beads. Beads were first washed with
10 column volumes of 150 mM NaCl, 20 mM Tris HCl (buffer A), then 10 column volumes
of 400 mM NaCl, 20 mM Tris HCl, then 10 volumes of buffer A again, and finally with
10 column volumes of 20 mM Tris HCl, pH 8.0. The HLA-I molecules were eluted at room
temperature using 0.1 N acetic acid. Eluate were then loaded on Sep-Pak tC18 cartridges
(Waters, 50 mg) and washed with 0.1% TFA. The peptides were separated from HLA-I
complexes on the C18 cartridges by eluting with 30% ACN in 0.1% TFA and concentrated
to 20 µL using vacuum centrifugation. Finally, a 5 µL sample was used for MS analysis.
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2.3. LC-MS/MS Analysis of HLA-I Peptides

HLA-I peptides of K562 and HCT116 cells were separated by HPLC (15 cm-long,
75 µm inner diameter columns with ReproSil-Pur C18-AQ 1.9 µm resin) and eluted into
an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific, Waltham, MA
USA). Peptides were separated with a gradient of 2–30% buffer (80% ACN and 0.5% acetic
acid) at a flow rate of 250 nL/min over 65 min. MS was performed using data-dependent
acquisition (DDA) mode. MS1 scans were conducted at a resolution of 120,000 over a scan
range of 350–1500 m/z with a target value of 3 × 106. Based on MS1 scans, MS2 scans were
conducted at a resolution of 60,000 at 100 m/z with a target value of 1 × 105. Fragment ion
was produced by higher energy collisional dissociation (HCD) at 28% collision energy with
a precursor isolation window of 2 m/z.

2.4. Sequencing and Analysis

For HCT116 cell line, DNA extractions, libraries construction and sequencing (pair-
end 100 bp) were conducted according to protocols of MGISEQ-2000 platform (BGI-
Shenzhen, China). RNA-Seq data of the HCT116 cell line were downloaded from the
NCBI (SRR4228899). Low-quality reads were removed with SOAP nuke [34] v1.5.6. DNA-
Seq data were processed by minimap2 [35] v2.11 for read alignment and GATK [36] v3.7.0
for variant analysis. RNA-Seq data were processed by HISAT [37] v2.1.0 for read align-
ment, GATK [36] v3.7.0 for variant analysis and RSEM [38] v1.3.0 for transcript quantifi-
cation. Mutations were called with respect to the reference genome and those with more
than 1% population frequency in dbSNP databases were removed, resulting in a total of
6220 SNVs (single nucleotide variants) and 1679 INDELs (insertions and deletions). A total
of 480,905 potential neoepitopes (9–11 mers) were generated from the sequences with these
SNVs and INDELs.

2.5. Mass Spectrometry Database Search

The remaining MS/MS datasets were downloaded from public databases (B721.221,
MSV000080527 [39] in MassIVE; Train1~Train63, MSV000082648 [40] in MassIVE; Jurkat,
PXD011723 [21] in PRIDE). The raw files of public and inhouse MS data were converted
to mgf files using ProteoWizard msConvertGUI [41]. For the conventional search, the
database contains 161,521 Uniprot [42] human protein entries (20 December 2017) and 245
frequently observed contaminants, such as human keratins, bovine serum proteins and
proteases. Additionally, 480,905 potential neoepitopes mentioned earlier were added to the
database when searching the HCT116 datasets. For IntroSpect search, the database contains
the peptides that passed the filtering of PSSM models and the peptides identified by con-
ventional search. For SpectMHC search, the database contains the peptides with BA rank
score ≤2%, predicted by netMHCpan4.1. The MS-GF+ search tool (release 17 July 2018)
was separately employed to search the above databases against the various MS datasets.
Parameters of MS-GF+ are: variable modifications, N-terminal acetylation (42.010565 Da)
and methionine oxidation (15.994915 Da); enzyme, unspecific cleavage (no cleavage for
IntroSpect and SpectMHC search); precursor ion tolerance, 10 ppm; peptide length, 9–11;
and charge, 2–5. The Percolator [43] (version 3.02.0) post-processing tool was applied for
the estimation at the peptide level of <1% FDR after database search. From the pout.tab
output file generated by Percolator, assignments to the contaminants were eliminated. The
parameter settings of the MaxQuant and Comet search tools are consistent with those of
MS-GF+ mentioned above.

2.6. Gibbs Clustering of HLA-I Peptides

The peptides identified by a conventional database search were clustered into various
groups using GibbsCluster-2.0 Server [44], with the following parameters: number of
clusters, 1–6; motif length, 9; max deletion length 2; max insertion length 0; number of
seeds for initial conditions, 5; penalty factor for inter-cluster similarity, 0.8; weight on small
clusters, 5; use trash cluster to remove outliers, enable; threshold for discarding to trash,
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2; and number of iterations per sequence per temperature step, 10. The peptides in the
clusters with the highest KLD were retained for further analysis.

2.7. PSSM Model Training and Filtering

Based on the clusters, we built PSSM models as described previously [45] to learn the
corresponding sequence motifs for peptides in different groups. Briefly, each element Pai
in the PSSM matrix is the likelihood of a specific amino acid a at a given position i. We
calculated Pai as follows

Pai = log
Fai + ω

Ba
,

where Fai denotes the frequency of a specific amino acid at the specific position in the
peptides identified by conventional search; Ba denotes the frequency of the specific amino
acid from a background database (such as Uniprot human protein database); and ω is a
value generated from a Dirichlet distribution [46] to avoid overfit, which is equivalent to
adding a small number of ‘pseudo counts’ to the effective observations. To filter the whole
proteome database to generate a targeted one, we define the motif score of a given peptide
as the sum of the Pai at each site in the PSSM, and only kept those with a motif score greater
than 0.3.

2.8. Synthetic Peptide Validation

A total of 118 randomly selected peptides from K562 dataset were synthesized and
analyzed under the same MS conditions with K562 HLA I peptides. The mirror plots of
spectra between synthetic peptides and eluted peptides were generated by PDV [47]. To
validate a peptide which could be presented by MHC-I complex, the following criteria were
considered: (i) the variation of retention time between precursor ions was less than 3 min;
(ii) the pattern and retention time were matched between synthetic and target peptides
with no less than 5 product ions.

2.9. Peptide Pearson Correlation Coefficient (PCC) Calculation

To quantify the similarity between two sets of peptides with the same length, we
calculated the Pearson Correlation Coefficient (PCC) of the amino acid frequencies between
them. For a given position i, we first calculated the empirical probability mass functions
(pmfs) of the amino acid distributions in both the first (x) and second (y) sets. The PCC
between these two random variables Xi and Yi, PCCXiYi, is then computed as

PCCXiYi =
cov(Xi, Yi)

σXi σYi

,

where cov is the covariance and σ’s are the standard deviations.

2.10. Code Availability

We have made IntroSpect available on GitHub: https://github.com/BGI2016/IntroSpect
(accessed on 9 April 2022). This is a command-line tool written in Perl, which requires
GibbsCluster v2.0 preinstalled, in Darwin (Mac) or Linux platforms. The tool takes an input
protein FASTA database and peptides identified by a conventional search and outputs
targeted database which could be used for refined high-sensitivity identification.

3. Results
3.1. The Development of IntroSpect

In order to reduce the overly inflated search space caused by unspecific digestions, we
adopted a strategy of motif-guided digestion in IntroSpect. The motif-guided digestion
leads to a small and targeted database in which the peptides that are extremely unlikely to
be present in a given sample will be filtered out. Peptides that do exist in the sample will
obtain higher q values due to less competition, making it easier for real peptides to stay

https://github.com/BGI2016/IntroSpect
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after FDR filtering. Therefore, IntroSpect can achieve higher statistical power and identify
more peptides at the same FDR.

Searching with IntroSpect includes four steps (Figure 1a). Step 1 is to import the
conventional protein database and MS raw data into the search engine and obtain peptides
that pass 1% FDR filtering. These high-confidence peptides are then clustered into groups
by GibbsCluster2.0 in step 2, and peptides in the same group are used to train a position-
specific scoring matrix (PSSM) model to learn their motifs. In step 3, the PSSM model is
used to score each peptide in the conventional database and peptides with PSSM score > 0.3
(the default threshold of IntroSpect), as well as those with FDR < 1% in the first round, are
combined to become the new search space. Step 4 runs the second-round search against
this new, targeted database to identify peptides that pass 1% FDR as the final output.
Unlike previous multi-round search strategies [18–20] where different rounds of results are
combined, we decide to add the first-round peptides directly into the targeted database
for the second (and final) round search, so that a global FDR can be obtained. As we will
show later, the vast majority of first round peptides will still appear in the final results.
Steps 2 and 3 are written in Perl to form the IntroSpect package, while steps 1 and 4 are left
to the users to decide how to build the conventional database and to run the search engine
of their choice. Users can also adjust the threshold of PSSM Score or the range of peptide
lengths to make IntroSpect suitable for different experiments.
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Biomolecules 2022, 12, 579 6 of 18

ba

c
q

-v
a

lu
e

PSMs

P
e

p
ti

d
e

s

1% FDR

Fr
e

q
u

e
n

c
e

Motif  Learning

S
M

P
SK

A LT HI

q
-v

a
lu

e

PSMs

P
e

p
ti

d
e

s

1% FDR

Original database Targeted database

Model training

Filtering

Conventional 
Search

IntroSpect
Search

mz

mz

Cells pMHC Peptides MS data

IntroSpect
database building

MS-GF+

Comet

10,000

Method Conventional SpectMHC IntroSpect

7500

5000

2500

B7
21

.2
21

Tr
ai

n5
5

Tr
ai

n5
0

Tr
ai

n1
3

Tr
ai

n2
8

Tr
ai

n2
2

Tr
ai

n1

Tr
ai

n4
5

Tr
ai

n3
3

Tr
ai

n9

Tr
ai

n6
3

Tr
ai

n3
2

Tr
ai

n4
8

Tr
ai

n1
0

K5
62

Tr
ai

n2
9

Ju
rk

at

Tr
ai

n6
2

0

6000

4000

2000

0

tr

tr

B721.221
100%

50%

0%

Train32

Jurkat

Train29

Train9

Train33

K562

Train1 Train62

Train48

Train50

Train55

Train22

Train10

Train13

Train28

Train63

Train45

tr

tr

B721.221
20%

10%

0%

Train32

Jurkat

Train29

Train9

Train33

K562

Train1 Train62

Train48

Train50

Train55

Train22

Train10

Train13

Train28

Train63

Train45

Samples

Pe
pt

id
es

Database size

Identified spectra

Method Conventional SpectMHC IntroSpect

immunopeptidome irrelevant peptides

Figure 1. IntroSpect improves peptide identification sensitivity by reducing the search space. (a) The
flowchart of the conventional database search and IntroSpect database search. (b) IntroSpect and
SpectMHC decreased the database size and increased the proportion of identified MS/MS spectra
with MS-GF+. The database size is calculated as the number of 9–11 mer peptides in the database.
(c) IntroSpect and SpectMHC significantly increased the identified peptides with MS-GF+ and Comet
search engines, while IntroSpect consistently outperformed SpectMHC in terms of sensitivity.

3.2. IntroSpect Can Identify Substantially More Peptides

To evaluate IntroSpect, we tested its performance on 18 MHC class I immunopep-
tidome datasets (Table 1). In order to facilitate the comparison of different data sets, only
9–11 mer peptides were analyzed in the test [48,49]. We first used MS-GF+ as the search
engine, in tandem with Percolator for 1% FDR filtering and ran IntroSpect, SpectMHC and
conventional database search to identify peptides on these datasets. The databases gener-
ated by IntroSpect are much smaller than the conventional database, accounting for only
0.52 to 3.16% of the latter (Figure 1b), and are also considerably smaller than those generated
by SpectMHC (2.22 to 14.75%). Moreover, the IntroSpect database search resulted in higher
proportions of identified spectra (2.65% to 18.22%) than the conventional database search
(1.11 to 12.07%) and SpectMHC database search (1.61% to 14.81%) under the same FDR (Fig-
ure 1b). The improvements on the number of identified peptides were even more significant:
on average, IntroSpect identified 76.50% more peptides than conventional search (p = 1.1 ×
10−5, the Wilcoxon test) and 23.17% more than SpectMHC (p = 0.04) (Figure 1c). Similar
results were obtained when testing on Comet (Figures 1c and S1), another popular search
engine: IntroSpect identified 200.00% (p = 2.6 × 10−6) more peptides than those of con-
ventional search and 87.61% more than SpectMHC (p = 0.0082) on average. We also tested
IntroSpect on 3 of the 18 datasets with MaxQuant, and it can identify 98.01% more peptides
than those of conventional database search and 87.16% more than SpectMHC (Figure S2).
As expected, we observed that the identified peptides obtained higher MS/MS scores and
lower q-values in general due to the reduction of irrelevant peptides (Figures S3 and S4).
In order to focus on the differences between IntroSpect, SpectMHC and the conventional
search, the results in the following sections were obtained by using only one search tool
(MS-GF+).
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Table 1. Summary of immunopeptidome data sets.

Dataset Source Spectra HLA Alleles

K562 Inhouse 64,572 transduced to express only A*11:01
B721.221 Public 39 111,662 transduced to express only A*02:07

Jurkat Public 21 670,119 A*03:01, B*07:02, C*04:01, A*03:01, B*35:03, C*07:02
Train1 Public 40 84,453 A*11:01, B*27:02, C*03:03, A*11:01, B*55:01, C*05:01
Train9 Public 40 88,437 A*11:01, B*51:01, C*01:02, A*68:01, B*56:01, C*07:02

Train10 Public 40 170,101 A*29:02, B*44:03, C*04:01, A*29:02, B*35:01, C*16:01
Train13 Public 40 128,712 A*01:01, B*08:01, C*07:01, A*03:01, B*35:01, C*04:01
Train22 Public 40 273,039 A*31:01, B*08:01, C*12:03, A*03:01, B*38:01, C*07:01
Train28 Public 40 192,712 A*03:01, B*35:03, C*03:03, A*03:01, B*51:01, C*04:01
Train29 Public 40 175,619 A*03:02, B*44:03, C*03:03, A*26:01, B*35:02, C*16:01
Train32 Public 40 123,863 A*29:02, B*44:03, C*07:02, A*03:01, B*07:02, C*16:01
Train33 Public 40 463,383 A*02:03, B*15:02, C*08:01, A*68:01, B*15:13, C*08:01
Train45 Public 40 178,449 A*31:01, B*44:02, C*05:01, A*01:01, B*67:01, C*12:03
Train48 Public 40 468,069 A*24:02, B*18:01, C*07:02, A*25:01, B*07:02, C*12:03
Train50 Public 40 142,681 A*33:03, B*44:03, C*07:06, A*68:01, B*35:01, C*04:01
Train55 Public 40 281,891 A*01:01, B*08:01, C*07:01, A*24:02, B*08:01, C*07:01
Train62 Public 40 168,243 A*02:01, B*44:02, C*05:01, A*68:01, B*44:02, C*07:04
Train63 Public 68 329,221 A*31:01, B*44:02, C*05:01, A*02:01, B*27:05, C*02:02

3.3. IntroSpect Achieved a Similar Accuracy as Conventional Search

Here we focused on results obtained from MS-GF+ on 3 of the 18 datasets, B721.221,
K562 and Jurkat, to analyze the accuracy of peptides identified by IntroSpect, while results
on more datasets and from other search engines are shown in the Supplementary Material
(Figures S5–S8). We first compared the proportion of identified peptides predicted to be
binders by both IntroSpect and conventional search, a strategy that has been previously
applied to check for the quality of MS data [21,22,39,50]. We predicted the binding affinity
(BA) rank of peptides using netMHCpan 4.0 [51], and drew the histogram of BA rank
values for all identified peptides, with a zoomed-in panel for binders (BA rank < 2.0%,
Figure 2a). Note that SpectMHC was not included in this analysis, since netMHCpan
has already been used when building the targeted database. For all three datasets, most
peptides identified by both IntroSpect and conventional search were predicted as binders,
and the overall distribution is quite similar, with those identified by IntroSpect having
slightly more binders (95.56 vs. 93.71% for Jurkat, 92.74 vs. 91.69% for K562 and 93.26 vs.
90.67% for B721.221).

HLA-binding motifs were further visualized with iceLogo [52,53], and representative
9-mers from IntroSpect and conventional database search were displayed in Figure 2b
as having high similarities. We also obtained peptides of the corresponding HLA allele
from IEDB [54] and compared them with those obtained by us, and the results showed
that the sequence motifs of our datasets were highly consistent with those from IEDB
(Figure S9). To quantify the similarities of the HLA-binding motifs, we used the Pearson
Correlation Coefficients between the amino acid frequencies (PCCaaf) of peptides averaged
over all positions. The average PCCaaf of all positions (All) and each anchor position (P2,
P3, P9) [55–58] are all greater than 0.95 (Figures 2c and S7).
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Figure 2. Immunopeptides from IntroSpect and conventional database search are very similar. (a) The
histogram of predicted BA rank values of peptides identified by conventional and IntroSpect search:
the peptides in separate panels are predicted to be strong or weak binders (BA rank < 2%), with
their percentages marked on the panel. (b) The sequence logos of immunopeptides in three datasets
(B721.221-A*02:07, K562-A*11:01 and Jurkat-B*07:02) identified by the conventional and IntroSpect
search. (c) Amino acid frequencies at each position for peptides identified by the conventional and
IntroSpect search.
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Finally, to validate the peptides identified by IntroSpect, we randomly selected a list
of peptides for experimental verification from the K562 dataset. A total of 118 peptides
(91 peptides identified by both methods and 27 peptides newly identified by IntroSpect
proportionally) were synthesized and analyzed under the same MS acquisition conditions
as that of K562 cell line. The spectra of synthetic peptides with the highest PSM scores were
then compared to the spectra of eluted peptides from K562 cell line in the experiment to
confirm or reject the peptide identity. We found that 97.80% of the peptides (89 out of 91)
identified by both methods and 96.30% of those (26 out of 27) detected by IntroSpect can
only be confirmed by spectral validation (Table 2). Tests on Comet and MaxQuant yielded
similar results (Table S1). Collectively, these results demonstrate that IntroSpect can not
only identify many more peptides, but also achieve an accuracy that is on par with the
conventional search method.

Table 2. Randomly selected peptides identified by IntroSpect and conventional database search were
confirmed by spectral validation.

Software Source Identified Selected for
Synthesis

Confirmed
Positive

Precision
(%)

MS-GF+
Both conventional

and IntroSpect 2385 91 89 97.80

IntroSpect only 993 27 26 96.30

3.4. IntroSpect Inherits the Results of Conventional Database Search

In MS data analysis, spectra provide the raw evidence for identified peptides. There-
fore, the essence of newly identified peptides by IntroSpect is a reassignment of the spectra
not recognized in conventional search. Based on IntroSpect’s methodology, we hypothe-
sized that the identified spectra and peptides from IntroSpect would cover the vast majority
of those from conventional search. Indeed, when we calculated the overlap of both iden-
tified spectra and peptides from the two methods, the overlapped spectra or peptides
accounted for more than 99% of those identified by the conventional method in three
datasets (Figure 3a). Moreover, there were on average 48% of spectra and 44% of peptides
identified by IntroSpect alone. We further observed that part of the unique spectra (6 to
58%) identified by IntroSpect matched to peptides (17 to 88%) already identified by con-
ventional search, boosting the evidence of these previously identified peptides, Figure 3b).
We call them refined peptides, which are those that can be identified in the conventional
search but are assigned extra spectra by IntroSpect. The proportions of refined peptide
matched to 1 spectrum, 2 spectra and >2 spectra are 21%, 21% and 58% respectively in
conventional search, while the corresponding proportions are 0%, 10% and 90% respectively
in IntroSpect search (Figure 3c). Both lines of evidence, i.e., the overlap between IntroSpect
and conventional search and the added support of IntroSpect identified spectra for refined
peptides, showed the high consistency between these two search strategies and validated
our design choice of not simply aggregating different rounds of iterative search, which
rendered the extra benefit of a unified global FDR.
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Figure 3. The high consistency of identified spectra and peptides between conventional and In-
troSpect search. (a) Most of the spectra (top panel) or immunopeptides (bottom panel) detected
by conventional method can be identified through IntroSpect. Regions 1, 2 and 3 denote spectra
(top panel) or immunopeptides (bottom panel) detected by conventional only, both, or IntroSpect
only. The percentages are calculated based on the total number of peptides or spectra identified by
both methods. The gray boxes on the right panel denote cell lines. (b) A fraction of spectra newly
identified by IntroSpect were matched to peptides previously identified by conventional search
(refined peptides). These refined peptides were indicated in dark shades. (c) The number of assigned
spectra for refined peptides increased substantially.
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3.5. The Database Generated by IntroSpect Is Smaller and More Targeted Than SpectMHC

Previous studies have suggested that small, targeted databases are beneficial for MS
database search 15. Here we have shown that IntroSpect does have a smaller database,
and is more sensitive than SpectMHC (Figure 1b,c). However, since IntroSpect learns
motifs from the initial search results while SpectMHC learns motifs from external data, we
suspect that their targeted databases differ by more than just size. To investigate this, we
adjusted the thresholds of IntroSpect and SpectMHC to obtain pairs of target databases
with the same size for the K562 cell line, which has been engineered to express a single
HLA-A*11:01 allele. All the generated databases of different sizes were used to identify
peptides for the K562 dataset, and IntroSpect still had apparent advantages over SpectMHC
in terms of the numbers of identified peptides (Figure 4a). Furthermore, although the
overlap between the databases by the two methods was small (~20%), the overlap between
the identified peptides was large (~80%), and the number of peptides solely identified
by IntroSpect was about 10 times more than that by SpectMHC across different database
sizes (Figure 4b). Clearly, these results indicate that the database generated by IntroSpect
is more targeted, or of higher quality, when used in MS database search, compared with
that of by SpectMHC. This is likely because motifs learned from the same MS data (as in
IntroSpect) are a better match than those learned from external data (as in SpectMHC).
To quantify, we calculated the average PCCaaf at all positions between the peptides in
the databases and those identified by SpectMHC or IntroSpect, and IntroSpect has higher
PCCaaf’s across different database sizes (Figures 4c and S10). We also computed the same
quantity across all three datasets with the default thresholds (PSSM score > 0.3 for IntroSpect
and NetMHCpan rank < 2% for SpectMHC) of SpectMHC and IntroSpect and observed the
same trend (Figure 4d).
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Figure 4. IntroSpect generates a smaller and more targeted database than that of SpectMHC. (a) The
line plot compares the numbers of identified peptides by SpectMHC and IntroSpect on databases
with various matching sizes. The data point with an asterisk corresponds to the motif score of 0.3, the
empirically chosen optimal threshold for IntroSpect. (b) The bar plot shows the relationship between
the databases and identified peptides of IntroSpect and SpectMHC on databases with various sizes.
(c) The line plot comparing the PCCaaf by SpectMHC and IntroSpect search on databases with various
sizes. (d) PCCaaf at P2, P3, P9 and all positions between the databases and identified peptides by
SpectMHC, IntroSpect and conventional search on the three datasets (B721.221, K562 and Jurkat).

3.6. IntroSpect Identified More Neoepitopes Than Conventional Method

Having established the superior performance of IntroSpect, we next applied it to a key
application in immunology, which is to directly identify neoepitopes from MS profiling of
the immunopeptidome. This is a very challenging problem, since neoepitopes are typically
of low abundance. However, due to the practical importance of neoepitopes in cancer
immunotherapies, great efforts have been made to identify them in the past, going beyond
the standard MS techniques, such as manual inspections of MS spectra without stringent
FDR filtering [59], or experimentally altering the antigen processing machinery (APM)
components to increase the abundance of neoepitopes [60–63].

Here we generated immunopeptidome, as well as sequencing data for the HCT116
cell line, by standard experimental techniques, and focused on comparing the abilities of
conventional search and IntroSpect in identifying neoepitopes. Based on the sequencing
data of HCT116, we first generated all 9–11 mer potential neoepitopes and added them to
the Uniprot database, and performed a conventional and IntroSpect search, as described
previously. As before, IntroSpect was able to identify substantially more peptides than con-
ventional search (2742 versus 1435), but more importantly, 7 neoepitopes were identified by
IntroSpect versus 4 by conventional search, about a two-fold increase (Figure 5a, Table S2).
As expected, the q-values of these 7 neoepitopes were significantly reduced in IntroSpect,
compared with a conventional search (Figure 5b). We also manually inspected the sup-
ported spectra of these 7 neoepitopes, and they are all of high quality (Figures 5c and S11).
To further examine the quality of these identified neoepitopes, we exhaustedly searched
for established experimental evidence of them, including ligand presentation, qualitative
binding and IFNg release assay [54]. We were able to find previous evidence for 1 of the
4 neoepitopes identified by conventional search, but all 3 additional neoepitopes discovered
by InstroSpect (4 of 7 in total). In addition, we also performed the test by SpectMHC. Its
identified peptides were 1/4 less than IntroSpect (2024 versus 2742), and it identified one
less neoepitope than IntroSpect (6 versus 7, Figure S13).
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Figure 5. IntroSpect identified more neoepitopes than conventional search. (a) Flowcharts indicating
key steps involved in neoepitope discovery. (b) Percolator q-values of neoepitopes identified by both
methods are plotted. Underlined peptides have support in other studies. (c) Spectra of neoepitope
candidates assigned by IntroSpect with assay support. Peaks represent b ions in green, y ions in
orange and precursor ions in dark grey. (d) The numbers of neoepitopes identified by the two
methods under different FDRs.

Becker et al. recently proposed to use 5AZA to treat the HCT116 cell line to enhance
its antigen presentation ability, and identified a number of extra neoepitopes based on
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this technique [63]. Interestingly, while conventional search with our data was not able to
identify any of the neoepitopes discovered by Becker et al., IntroSpect was able to identify
two of them (SLMEQIPHL under 1% FDR and QTDQMVFNTY under 5% FDR). When
studying neoepitopes, researchers routinely use more relaxed FDRs to obtain more sensitive
results. Therefore, we also tested the same strategy in our comparison (Figure 5d). As
expected, both methods can discover more neoepitopes with more relaxed FDRs (with the
potential cost of higher false positive rates), but more importantly, IntroSpect can discover
the same number of neoeptitopes with previous assay support, which indicates more
reliable results, with a much lower FDR. For example, all 5 neoepitopes with previous assay
support can be discovered by IntroSpect with a 5% FDR, but conventional search needs a
20% FDR to uncover them all. This shows that IntroSpect is valuable in reducing the time
and labor cost of experimental validation in neoepitope screening studies.

4. Discussion

Currently, high-throughput immunopeptidome profiling is usually based on an MS
database search, but the lack of specific digestion leads to low sensitivity. Here, we devel-
oped IntroSpect, a motif-guided immunopeptidome database building tool, to overcome
this challenge. By testing on diverse immunopeptidome datasets, we showed that Intro-
Spect could significantly increase the sensitivity of identification compared with not only
conventional searches but also a previously developed database building tool, SpectMHC,
while maintaining a high accuracy. It is also worth mentioning that it can be easily combined with
existing post-processing tools, as well to potentially achieve further performance improvement.

However, IntroSpect is not without limitations. Currently, IntroSpect may only be suit-
able for improving traditional search engines. For example, we also tested IntroSpect with
the popular de novo-assisted database search tool PEAKS [64–66], and the improvement is
quite limited, with an average of less than 10% (Figure S12). In addition, the current PSSM
model is peptide length and HLA allele-specific, which means that the high-confidence
peptides identified in the initial search must be further subdivided for model training.
When the peptides identified from a conventional search are relatively few, say <500, the
training set of a certain length and HLA allele might be too small to effectively train the
corresponding PSSM model, and in such cases, SpectMHC could perform better. One
way to address this limitation is to adopt deep learning techniques to leverage existing,
large scale MS data to pre-train length independent sequence models, and then adapt the
pre-trained models to specific experiments by transfer learning, which remains to be our
future work. The motif scores, which only serve as an empirically chosen threshold to filter
out highly unlikely peptides, could also be better utilized. One way to do so is to assign
weighted prior probabilities for different peptides based on their motif scores when doing
database search, similar to what has been developed in the constrained de novo sequencing
approach by Li et al. [67].

Nonetheless, we believe the simple and effective strategy implemented in IntroSpect
has significantly moved the quality of MS profiled immunopeptidome analysis forward,
and opened the door to apply this exciting MS technique in broader scenarios, such as in
understanding non-canonical or post-translationally modified immunopeptides [68,69].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom12040579/s1, Figure S1. IntroSpect decreases the database
size and increases the proportion of identified MS/MS spectra with Comet; Figure S2. Peptides
identified by IntroSpect, SpectMHC and the conventional search with MaxQuant; Figure S3. The
q-value distribution of conventional search and IntroSpect search; Figure S4. The score distribution of
conventional search and IntroSpect search; Figure S5. The histogram of predicted BA rank values
of peptides identified by the conventional and IntroSpect search with MS-GF+ on more datasets;
Figure S6. The histogram of predicted BA rank values of peptides identified by the conventional and
IntroSpect search with Comet; Figure S7. Amino acid frequencies at each position of the peptides
identified by the conventional and IntroSpect search with MS-GF+; Figure S8. Amino acid frequencies
at each position of the peptides identified by the conventional and IntroSpect search with Comet;

https://www.mdpi.com/article/10.3390/biom12040579/s1
https://www.mdpi.com/article/10.3390/biom12040579/s1


Biomolecules 2022, 12, 579 15 of 18

Figure S9. The sequence logo comparison of immunopeptides in various datasets by conventional
search, IntroSpect search and from IEDB; Figure S10. The comparison of PCCaaf at each position
between IntroSpect and SpectMHC; Figure S11. Spectra of neoepitope candidates; Figure S12.
Peptides identified by IntroSpect, SpectMHC and the conventional search with PEAKS; Figure S13.
Neoepitopes identified by IntroSpect, SpectMHC and the conventional search in the HCT116 dataset;
Table S1. Randomly selected peptides identified by IntroSpect and conventional database search with
Comet and MaxQuant were confirmed by spectral validation; Table S2. The neoepitope candidates
identified from HCT116 cell line; Table S3. The effect of clustering number on the performance
of IntroSpect.
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