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SHAP theory 

Shapley values were originally introduced to estimate the importance of contributions of an 
individual player in a collaborative team. Therefore, the total gain among players is distributed 
depending on the relative importance of their contributions to the final outcome of a game. 
Shapley values represent a unique reward for each participating player obtained through the 
assessment of contributions resulting from all possible orderings of players and their 
contributions.  

The Shapley value concept can be applied to explain individual predictions of ML models by 
applying the following analogies [24]:  

(1) The game a team engages in can be perceived as a prediction task for a single instance (e.g., a 
compound). The merit for this task is given by the difference between its prediction and the 
average prediction of all instances.  

(2) The players participating in the game are features values of the instance that cooperate (act jointly) 
to achieve the merit for the given prediction. The resulting Shapley value of a given feature is 
then obtained as the average contribution of a feature over all possible feature combinations.  

Accordingly, Shapley values account for the partition of contributions over individual features 
comprising a feature vector or set (such as a molecular representation). A key aspect of the 
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Shapley value concept is that not only the contribution of feature presence to a given prediction can be 
quantified, but also the contribution of feature absence [24,31]. 

For feature sets of increasing size, systematic calculations of Shapley values on the basis of all 
possible feature combinations become computationally demanding or infeasible. Therefore, for 
ML, a locally interpretable explanatory model has been introduced, which approximates Shapely 
values heuristically. This local methodology is termed Shapley Additive exPlanations (SHAP) [28] 

and can be perceived as an extension of the Local Interpretable Model-agnostic Explanations (LIME) 
approach [47]. 

The principal goal of an explanation model g is to locally approximate and thus simplify a 
complex model f that is difficult to understand. Additive feature attribution methods generate an 
explanation model via a linear function of binary variables, given by Equation 1: 

𝑔𝑔(𝑥𝑥′) =  𝜙𝜙0 + ∑ 𝜙𝜙𝑖𝑖𝑥𝑥′𝑖𝑖𝑀𝑀
𝑖𝑖=1            (1) 

where 𝑥𝑥′ ∈ {0,1}𝑀𝑀, M is the number of input features, and 𝜙𝜙𝑖𝑖 ∈ ℝ. The presence or absence of a 
feature value impacting the prediction yields a feature contribution (𝜙𝜙𝑖𝑖). Accordingly, a weight 
must be assigned to each variable for which the LIME methodology [4] can be applied and further 
extended. LIME generates the explanation 𝜉𝜉 of an instance x according to Equation 2: 

𝜉𝜉(𝑥𝑥) =  argmin
𝑔𝑔∈𝐺𝐺

ℒ(𝑓𝑓,𝑔𝑔,𝜋𝜋𝑥𝑥) + Ω(𝑔𝑔)         (2) 

where 𝐺𝐺  is a class of interpretable (linear) models, ℒ  is the loss function to minimize, 𝜋𝜋𝑥𝑥  the 
proximity measure between an instance z and x (kernel defining locality), and Ω(𝑔𝑔) an optional 
regularization term to limit model complexity.  

For the explanation of a given test instance x, the following procedure is applied: 

(i) Artificial samples are obtained by permuting features of the test instance x. 

(ii) These samples are weighted by the value of a kernel calculated for them and x. 

(iii) A model g is trained to predict f(x) with coefficients estimating feature importance.  

Accordingly, LIME builds a linear model g in a feature region proximal to the test instance, with 
ML model f typically being non-linear. The LIME approach provides the basis for the 
development of the kernel SHAP methodology, as explained in the following. 

Shapley values account for the distribution of feature contributions to a model’s prediction for a 
given test instance. To determine the contribution of a feature i, all operations by which a feature 
might be added to the set (𝑁𝑁!) and a summation over all possible sets (𝑆𝑆) must be carried out. For 
any feature sequence, the marginal contribution by adding feature i is given by [𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖})−
𝑓𝑓(𝑆𝑆)]. The resulting quantity is weighted by the number of combinations available to form the set 
prior to addition of feature I, i.e., (|𝑆𝑆|!), and the order in which remaining features might be added, 
i.e., ((|𝑁𝑁| − |𝑆𝑆| − 1)!). Hence, the importance of a given feature i is defined by Equation 3: 

𝜙𝜙𝑖𝑖 = 1
𝑁𝑁!
∑ |𝑆𝑆|! (|𝑁𝑁|− |𝑆𝑆| − 1)! [𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖})− 𝑓𝑓(𝑆𝑆)]𝑆𝑆⊆𝑁𝑁\{𝑖𝑖}       (3) 
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Shapley values thus represent a unique way of dividing a model’s output among feature 
contributions satisfying three axioms: local accuracy (or additivity), consistency (or symmetry), and 
nonexistence (or null effect). 

Additive feature attribution methods typically do not consider two properties that are of high 
relevance for assessing feature importance including local accuracy and consistency. The SHAP 
formalism was devised to take these axiomatic properties into account [28]. The property local 
accuracy ensures that the sum of individual feature attributions is equal to the original prediction 
because SHAP allocates the model prediction across contributing features. Furthermore, 
consistency ensures that feature importance correctly accounts for different models on a relative 
scale. Hence, if a change in a feature value has larger impact on model A than model B, feature 
importance should be larger in A. These properties can be accounted for by representing feature 
importance as SHAP values [28]. 

A weighting procedure for artificial samples is a key aspect for connecting Shapley values to the 
LIME approach. In LIME, heuristic choices are made to select ℒ, Ω(𝑔𝑔), and 𝜋𝜋𝑥𝑥. By contrast, the 
SHAP method introduces a special kernel function that is related to the Shapley value definition, 
assuming that feature weights follow the two axioms of interpretability. Specifically, SHAP uses 
the following procedure for interpreting an instance x: 

(i) Training data are organized by k-means clustering and the k samples are weighted by the 
number of training instances they represent. These samples constitute a background data 
set of given feature values. 

(ii) Artificial samples are obtained by replacing features of the test instance x with the values 
from the background data set. 

(iii) These artificial samples are weighted by the value of the SHAP kernel calculated for each 
and x. 

(iv) A weighted linear regression model g is trained to predict f(x). The model coefficients are 
Shapley values corresponding to feature importance estimates.  

Sampling all possible feature subsets is avoided through permutation of the feature vector by 
setting features on and off. A feature is assigned a large weight if its replacement with an artificial 
value leads to a significant change in model output. Weights of artificial samples are determined 
as the number of feature addition sequences of a given subset by the SHAP kernel. Coefficients 
from local linear regression provide feature weights as Shapley values, which indicate how 
important a feature is for a given prediction including the direction (sign) of feature influence. 
The expected explanatory value is calculated as the mean of the model output probability (or 
numerical value) over training set instances. For a given instance, the model output is then 
calculated as the sum of the expected (base) value and all SHAP feature values. 

For an individual instance (compound), SHAP calculations yield quantitative feature 
contributions that support (positive value) or oppose (negative value) a given prediction. The 
sum of positive and negative contributions including the base value of the model (expected value, 
obtained as the mean feature importance value of training instances) results in a class label 
probability. Depending on the compound, different numbers of features might make positive or 
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negative contributions of varying magnitude, as accounted for by SVs. Importantly, SHAP 
analysis also quantifies contributions of features that are absent in a test instance. This ability is 
of critical relevance because the absence of specific features might be responsible for a given 
prediction just as much as the presence of another.  

The SHAP theory section was in part adapted from [24] (our open access publication). 

 
 
Supplementary Figure S1. SHAP analysis. For an exemplary compound, positive (red) and 
negative (blue) SHAP feature contributions yield a probability P of multi-target activity. In this 
case, contributions from all but one feature present in the compound are positive. The sum of the 
base value of the classifier (0.5) and all feature importance values results in a probability of multi-
target activity of 0.98. The figure was adopted from [31]. 

 


