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Abstract: Atopic dermatitis is a chronic inflammatory skin disease in which the overproduction of
reactive oxygen species plays a pivotal role in the pathogenesis and persistence of inflammatory
lesions. Phototherapy represents one of the most used therapeutic options, with benefits in the
clinical picture. Studies have demonstrated the immunomodulatory effect of phototherapy and its
role in reducing molecule hallmarks of oxidative stress. In this review, we report the data present
in literature dealing with the main signaling molecular pathways involved in oxidative stress after
phototherapy to target atopic dermatitis-affected cells. Since oxidative stress plays a pivotal role in
the pathogenesis of atopic dermatitis and its flare-up, new research lines could be opened to study
new drugs that act on this mechanism, perhaps in concert with phototherapy.
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1. Introduction
1.1. Atopic Dermatitis Pathogenesis: Role of Oxidative Stress

Atopic dermatitis (AD) or atopic eczema is a relapsing–remitting inflammatory skin
condition that frequently occurs in children and has an immune-mediated etiopathogen-
esis [1]. Skin dryness and intense pruritus are the predominant symptoms. It affects
individuals of all age groups, although it often occurs from birth or in the first years of
life [2]. AD has a negative impact on quality of life (QoL) since it can cause pain, sleep
disturbances, and social and personal relationship impairment, with pruritus being the
symptom that most affects patients’ daily activities [3,4]. AD is characterized by immune
activation, marked epidermal hyperplasia, and defective barrier function, reflecting un-
derlying alterations in keratinocyte differentiation [5]. AD may be associated with high
serum levels of total and specific immunoglobulin E (IgE) against a given allergen (extrinsic
form) or with normal–low serum levels of IgE (intrinsic form) [6]. Genetic, immunological,
and environmental factors contribute to its pathogenesis [7]. A plethora of central ge-
netic mutations has been demonstrated in the pathogenesis of AD: mutations in structural
epidermal barrier proteins, mutations in functional proteins that maintain the epidermal
barrier, and mutations in factors that regulate the immune system. Skin barrier alterations,
with dysfunction of barrier-related proteins such as filaggrin (FLG), loricrin (LOR), and
involucrin (IVL), are the first steps that explain the subsequent sensitization against aller-
gens and the so-called “atopic march” in the “extrinsic” form of AD. Alteration of the skin
barrier is also related to alteration of the intercorneocyte lipid composition, with further
transepidermal water loss. This contributes to the skin dryness typical of AD patients and
increased penetration of allergens and pathogens [8]. This microenvironment contributes,
especially in the acute phase, to the activation of the immune system with a predominantly
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Th2-mediated reaction and the release of proinflammatory cytokines such as tumor necrosis
factor (TNF) and interleukins (IL-4, IL-9, IL-22) [8]. Epithelium-derived cytokines, such as
thymic stromal lymphopoietin (TSLP), IL-25 and IL-33 also act as alarmins after appropriate
stimulation, including oxidative stress (OS), and activate a Th2-mediated response in AD,
contributing to the inflammatory state of the skin [9]. The persistence of Th2 inflammation
and skin barrier disruption contributes to chronic inflammation and to the overproduction
of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. In addition
to this mechanism, the increase in ROS may also depend on other exogenous factors such
as solar radiation, pollution, psychological stress, and infections [8]. Staphylococcus aureus,
a pathogen that frequently causes skin infections and flares in patients with AD because
of the disruption the of skin barrier, above all filaggrin deficiency, can sustain skin inflam-
mation through ROS released by monocytes activated by the pathogen itself [8]. Over
time, the accumulation of ROS can eventually cause OS, namely an imbalance between the
generation of ROS and the mechanisms of the defense of the antioxidant system (AOS).
OS may be an intrinsic mediator of amplification and chronicity in AD, as well as in other
cutaneous and non-cutaneous diseases including psoriasis, asthma, cystic fibrosis, and
cancer [10–13]. On this topic, chronic inflammatory skin diseases, such as AD or psoriasis,
have been related to higher levels of OS markers during flare-ups and/or decreased antiox-
idant levels [14]. Studies on animals have demonstrated that OS negatively impacts dermal
and epidermal microenvironments at different levels. In epidermal keratinocytes, lipid
oxidation directly damages DNA, cellular enzymes, or cell membranes, whereas protein
and lipid oxidation in the stratum corneum result in skin barrier dysfunction and AD
exacerbation. Oxidative direct damage is compounded by the activation of immunological
mechanisms, such as the dermal expression of proinflammatory cytokines including IL-6,
IL-8, IL-9, and IL-33, and the activation of nuclear factor kappa-B (NF-κB) pathways, which
alters skin immune homeostasis and triggers skin inflammation. Finally, a role is played by
the pruritogenic stimulation, maybe via activation of transient receptor potential subtype
A1 (TRPA1) channels on primary sensory neurons and neurons in dorsal root ganglia
with activation of phosphorylation of extracellular signal-regulated kinase in the spinal
cord [15].

1.2. Marker of Oxidative Stress in Atopic Dermatitis

OS markers identified so far that are involved in AD are aryl hydrocarbon recep-
tor (AHR)/AHR-nuclear translocator (ARNT) system, nuclear factor-erythroid 2-related
factor-2 transcription factor (NRF2), myeloperoxidase (MPO) level/paraoxonase (PON)-1
activity [11].

1.2.1. AHR/ARNT-NRF2 Crosstalk

AHR/ARNT system is expressed in the skin. After binding several exogenous ligands,
AHR migrates into the nucleus and binds ARNT, thus leading to changes in gene transcrip-
tion. AHR/ARNT system fortifies the skin barrier by upregulating filaggrin expression.
Different AHR ligands can activate other nuclear pathways, with crosstalk between AHR
and the antioxidative nuclear factor E2-related factor 2 (NRF2) [16]. IL-4 and IL-13, cy-
tokines of the Th2-mediated response, inhibit the expression of skin adhesion molecules
through the phosphorylation of signal transducer and activator of transcription (STAT)-6.
This signaling pathway reduces, along with C-C motif chemokine ligand (CCL)-17 and
CCL22, the AHR-mediated transcription of FLG, LOR, and IVL [17]. The activation of
STAT6 also amplifies the recruitment of Th2 cells in AD skin lesions [18]. Evidence suggests
the role of some topical psoriasis treatments, such as coal tar, in blocking the expression of
STAT6 via the NRF2 signaling pathway, acting as ligands of AHR [19]. Besides, the link
between coal tar and AHR contributes to modifying the skin microbiome composition,
which has an important role in the pathogenesis of inflammatory skin diseases [19]. NRF2
also acts on activated macrophages reducing the activity of IL-1β and IL-6, resulting in an
anti-inflammatory effect [20]. Therefore, AHR appears to play a pivotal role in regulating
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the pathogenetic mechanisms of AD, being associated with significant interference with
Th2 cytokines, IL-4, and IL-13. Furthermore, the stimulation of AHR by agonists has been
found to promote immune tolerance through the differentiation of T-reg cells [19]. In fact,
single nucleotide polymorphisms (SNPs) of the AHR gene, modifying the activity of this
receptor and its antioxidant capacity, correlate with an increased risk of the onset of AD.
No relationship between NRF2 SNPs with AD pathogenesis has been found [21]. How-
ever, the AHR/ARNT axis appears to be involved in the development of pruritus in AD
since the ARNT gene encodes the neurotrophic factor artemin responsible for epidermal
hyperinnervation and pruritus [18].

1.2.2. PONs

Lipid oxidation and damage of the keratinocytes and stratum corneum are involved
in the processes of barrier disruption of the skin in AD. PON is a group of enzymes with
paraoxonase activity, which act as antioxidants and consequently have anti-inflammatory
effects in various diseases such as atherosclerosis and cardiovascular diseases. They hy-
drolyze lipid peroxidation products generated during OS. PON1, 2, and 3 have been
identified and they are involved in a plethora of diseases, such as PON3 in the pro-
cess of atherosclerosis [22]. Compared to PON1 and PON3, PON2 contributes to innate
immunity by destroying bacterial signaling molecules that promote bacterial prolifera-
tion [23]. PON1 activity takes place within the high-density lipoprotein (HDL)/apoliprotein
A1(ApoA1)/PON1 complex in regulating immune responses. ApoA1 regulates the balance
between Th17 and Tregs and improves mitochondrial functions. Lipid peroxidation of
HDL is the expression of the dysregulation of the OS mechanisms, and it is carried out
by the enzyme MPO, released in circulation by activated leukocytes. Alteration of anti-
oxidative mechanisms in AD patients is supported by the finding of high levels of MPO,
low levels of circulating PON1, and significantly increased MPO/PON1 ratio [24]. These
findings suggest that patients with chronic AD have an altered lipid profile and reduced
PON1 levels [25] which protect the immune cell membrane from lipid peroxidation and
mitochondria from circulating oxidized lipoproteins and oxidative damage [20].

Dermal inflammation is the hallmark of AD in affected areas, which could be en-
hanced by OS. OS can activate nuclear factor kappa- B (NF-κB) pathways to induce gene
expression and synthesis of antioxidant enzymes. NF-κB pathway activation also induces
the expression of proinflammatory cytokines, such as IL-6, IL-8, IL-9, and IL-33, which in
turn enhances dermal inflammatory infiltrate and histamine release in the affected skin,
thus worsening symptoms. OS can directly damage epidermal keratinocytes through DNA
damage, damage to cellular enzymes, or damage to cell membrane structures through
lipid oxidation. Epidermal edema or spongiosis and disrupted stratum corneum represent
the consequence of these intracellular changes [25]. Figure 1 represents the mechanisms
through which OS acts in AD.
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Figure 1. Oxidative stress causes direct damage to the cell membrane and DNA which leads to
skin barrier defect. Furthermore, the activation of the NF-κB pathway leads to the release of IL-6,
IL-8, IL-9, and IL-33. The defect of the skin barrier causes inflammation of the dermis and release of
histamine and itching, leading in turn to an increased release of IL-6, IL-8, IL-9, and IL-33. All these
mechanisms determine a further increase in the release of ROS, establishing a vicious circle that is
self-maintaining. Created with BioRender.com.

2. Atopic Dermatitis Treatment
2.1. Topical, Systemic, and Biological Treatment

First-line therapy for the acute management of AD includes topical corticosteroids
(TCS) whose long-term use is however limited by a plethora of possible side effects, in-
cluding localized skin atrophy, telangiectasias, perioral dermatitis, and iatrogenic acne [26].
Hence, it derives non-steroidal alternatives, among them topical calcineurin inhibitors
(TCIs), such as tacrolimus and pimecrolimus, which are approved for short-term or inter-
mittent administration in patients who have previously failed on, or have contraindications
to, TCSs [27,28]. TCIs lead to the inhibition of T cell activation and to the downregulation
of pro-inflammatory cytokines, with a consequent immunosuppressive action [27]. TCIs
can cause local adverse effects such as skin burning and irritation, even if they do not cause
the risk of local atrophy [26]. Among the non-steroidal alternatives, phosphodiesterase
4 (PDE4) inhibitors are being largely used. They increase the levels of cyclic adenosine
monophosphate in AD skin thus reducing the expression of proinflammatory cytokines.
Crisaborole 2% ointment has been demonstrated to be safe and effective [29,30], whereas
roflumilast cream, another anti-PDE4 inhibitor, already approved for psoriasis therapy,
is under clinical investigation for AD treatment [31]. In addition, difamilast ointment
completed phase III trials in both the adult and pediatric populations, with a statistically
significant improvement in AD-related lesions compared to the control group [32]. As
already said, cytokines implicated in AD pathogenesis, such as IL-4, IL-13, and IL-31, signal
through the intracellular janus kinase (JAK)-STAT pathway and share activation of JAK1,
suggesting the value of JAK inhibitors (JAKi) as a promising therapeutical approach [33].
Among them, the topical cream of ruxolitinib, a JAK1/JAK2 inhibitor, represents a new
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promising topical tool for short-term chronic treatment for patients with mild to moderate
AD [34]. Delgocitinib ointment, a pan-JAK inhibitor, is the world’s first approved topical
JAKi for the treatment of AD both in adults and children [35]. Finally, tapinarof cream
1%, an AHR agonist, is being studied for the treatment of AD, showing a significant im-
provement in the signs and symptoms of the disease [36–38]. Switching to oral therapies,
oral corticosteroids are effective options but can only be used for a few weeks due to
their long-term side effects. The utility of oral cyclosporine and azathioprine has been
well-documented in children and adults with moderate to severe AD refractory to topical
therapy [27]. In recent years, medicine has been increasingly developing toward target
therapy, with the progressive use of biological drugs that selectively block the cytokines
and inflammatory pathways responsible for the disease. Dupilumab, the first biological
drug approved by the FDA for moderate-to-severe AD, binds to the IL-4Ra, inhibiting IL-4
and IL-13 signaling, and has demonstrated an improvement of at least 75% on the Eczema
Area and Severity Index (EASI), on pruritus, and QoL as compared to placebo [39]. It is
now known that IL-13 expression is much higher and more frequently detected in AD skin
lesions than IL-4, suggesting that IL-13 could also be an excellent biological target [40]. On
this topic, lebrikizumab and tralokinumab, two monoclonal antibodies (mAb) antagonizing
IL-13, have demonstrated encouraging clinical efficacy against moderate to severe AD with
an excellent safety profile, although they presented a higher risk of conjunctivitis than
placebo [41]. In addition to the widely used mAb, other biologics are currently being tested,
including an antibody that selectively targets and inhibits IL-31, named nemolizumab [42].
IL-31 is a proinflammatory cytokine that plays a crucial role in mediating pruritus through
overexpression of its receptors on sensory nerves [43]. In two phase 3 trials, nemolizumab
has achieved an improvement in pruritus and signs of AD for up to 68 weeks [44]. The last
FDA-approved treatments are upadacitinib, baricitinib, and abrocitinib, three oral JAKi
which show impressive efficacy [42]. They all met primary and secondary endpoints in
several studies for moderate to severe AD, proving themselves as promising drugs in the
next generation of targeted therapy. Their exceptional effectiveness and speed of action,
evaluated with the reduction in EASI, are balanced by a favorable safety profile in clinical
studies, with adverse effects reported from mild to moderate; however, data on real-life
experience are needed to highlight long-term security, duration, and efficacy [35].

2.2. Phototherapy
2.2.1. Ultraviolet Sources

When first-line treatments are unsatisfactory, phototherapy can serve as an efficient
option for the management of AD [2]. Phototherapy, classified as “Strength of Recom-
mendation B” and “Level of Evidence II” for the treatment of AD, should be reserved for
patients with acute and chronic DA, where behavioral measures, TCS, and TCIs have not
yielded clinical benefits. Monotherapy or combination therapy with topical or systemic
agents represent the two possible uses. [6,45]. However, numerous factors can limit pho-
totherapy’s usefulness and effectiveness, especially because it requires cycles of bi-weekly
sessions, so it can be difficult for patients who live far from centers equipped with this tech-
nology [46]. Ultraviolet irradiation can be classified as ultraviolet A (UVA) with the longest
wavelengths between 320 and 400 nm, followed by ultraviolet B (UVB) (290–320 nm), and
ultraviolet C (UVC) (200–290 nm). UVA is divided into ultraviolet A1 (UVA1, 340–400 nm)
and ultraviolet A2 (UVA2, 320–340 nm). The UVB phototherapy is further divided into
broadband UVB (BB-UVB, 90–320 nm) and narrowband UVB (NB-UVB, 311–313 nm) [2].
Other forms of phototherapy for AD include psoralen ultraviolet A (PUVA) therapy and
UVA1 cold light therapy. PUVA is a photochemotherapy, which consists of UVA radiation
with either oral administration of psoralens or topical administration [2]. Compared to
other UV phototherapies, NB-UVB has been shown to be more clinically tolerable with
fewer side effects compared to other UV phototherapies. NB-UVB causes reduced ex-
pression of pro-inflammatory cytokines, downregulation in antigen presentation through
inhibition of Langerhans cell activity, and consequent suppression of the lymphocytes
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T-mediated skin immune system [45]. In addition to AD, this therapy is also indicated for
the treatment of psoriasis, parapsoriasis, mycosis fungoides, renal and hepatic pruritus,
vitiligo, acute and chronic graft versus host disease, and other skin diseases [46].

2.2.2. Phototherapy Immunomodulatory Effects

As already mentioned, AD is characterized by immune and barrier abnormalities on
which NB-UVB exerts its positive effects, thus suppressing the Th2, Th22, and Th1 immune
pathways, and through the normalization of epidermal hyperplasia and differentiation,
with the consequent elimination of inflammatory leukocytes and Th2/Th22-associated
cytokines and chemokines and expression of barrier proteins [47]. Furthermore, photother-
apy causes downregulation of cytokines, such as IL-5, IL-13, and IL-31, supporting the
hypothesis that these molecules play a crucial role in the pathogenesis of AD and, therefore,
may represent possible targets for phototherapy [43]. Moreover, phototherapy induces
T-cell apoptosis and dendritic cell reduction [6]. In fact, the T-cell response in the skin
of AD patients is predominantly Th2/Th22 even if patients with chronic disease develop
a sizable pool of pathogenic Th1. In AD, IL-4 drives IgE secretion mediates recruitment
of eosinophils, and attenuates filaggrin expression, whereas IL-22 inhibits keratinocyte
maturation. UVB therapy has been demonstrated to improve barrier function by increas-
ing the expression of filaggrin, involucrin, and AMP. Initially, patients experience strong
suppression of the Th2/Th22 axis after NB-UVB exposure and, controversially, a decrease
in intralesional IL-10 expression [48]. On this topic, IL-10 showed upregulated mRNA
expression in both lesional AD and non-lesional AD skin compared with healthy skin,
which decreased with NB-UVB. Although IL-10 is implicated in the anti-inflammatory
response, its role in AD has been interpreted as part of the predominant Th2 microen-
vironment, increased levels of IL-10 have been postulated to indirectly contribute to the
AMP deficiency in patients with AD, potentially accounting for an increased propensity
for infections. Higher IL-10 expression levels were reported in the skin of patients with
chronic AD compared with the acute stage, possibly because of an upregulation of the
receptors by interferon-gamma (IFN-γ) [49,50].Clinically, the effects of phototherapy have
been further demonstrated by the fact that 70% of AD patients received significantly fewer
TCS during the 12-month window after finishing NB-UVB, compared to the 12-month
window before starting [51]. Phototherapy with medium-dose UVA1 irradiation exerts a
significant antipruritic effect, decreases the severity of the disease, and improves the QoL
of AD-affected patients. From this, it follows that this technique can be used as a safe and
effective treatment [52].

2.2.3. Role of Phototherapy during COVID-19 Pandemic

In the last triennial, coinciding with the pandemic period experienced, the role of
phototherapy has gained even more importance because of its therapeutic polyhedric-
ity [53]. Assuming strict adherence to revised procedures for the effective and safe use of
phototherapy along with new approaches that improve patient compliance in this historical
era, probably the most interesting aspect investigated concerns its antiviral activity [54].
One of the earliest reviews on the subject by Hanna et al. pointed out that, although the
antiviral efficacy of ultraviolet blood irradiation (UBI) remained controversial due to the
reduced penetrating ability of radiation, indirect confirmation of its potential comes from
the effectiveness of Amotosalen/UVA light in minimizing the risk of transfusion-related
MERS-CoV transmission through its ability to completely inactivate MERS-CoV in human
platelet concentrates [55]. In subsequent work, the same research group confirmed the
effectiveness of UV light in reducing MERS-CoV titer below the detection limit in human
platelets [56]. Further confirmation of the antiviral potential of photochemotherapy comes
from the finding of photoinactivation potential in plasma with Amotosalen and 3 J/cm2 of
UVA light of six RNA-enveloped viruses, including SARS CoV [57]. Beyond the newly ex-
plored therapeutic potential, the promising role of phototherapy is also related to its choice
as a viable therapeutic alternative to immunomodulating/immunosuppressive drugs used
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in AD and similar conditions whose use should be limited because of their ability to impact
vaccine-induced immune responses [58–61] and for their suppressive action on intrinsic
antiviral immunity [62–64] except for dupilumab, whose evidence of use in the pandemic
era is reassuring [65–67].

3. Atopic Dermatitis and Other Chronic Inflammatory Cutaneous Diseases

In addition to AD, OS role has been demonstrated in several chronic cutaneous
diseases, including psoriasis, vitiligo, alopecia areata (AA), lichen planus, pemphigus
vulgaris, and skin cancers [68–72]. On this topic, psoriasis is a chronic, immune-mediated
inflammatory cutaneous disease, mainly characterized by the presence of erythematous
plaques, covered by white scales, especially localized over the extensor zones [73]. Psoriasis
shares many features with AD, including immune activation and epidermal hyperplasia.
However, major differences in immune polarization exist between these diseases. Although
psoriasis is considered a Th1/Th17 disease, AD is predominantly a Th2/Th22-polarized
disease with some component of Th1 polarization in the chronic phase and a relative
impairment of the Th17 pathway [5]. However, as in DA, the involvement of OS-related
molecules and long-lasting inflammation in the induction of keratinocyte proliferation and
differentiation has emerged. Being directly exposed to environmental factors, the skin is
a major source of free radicals that play a vital role in defending against microorganisms,
when at low concentrations. However, when free radical levels increase, they seem to
play a role in DNA alteration, cell protein degradation, lipid oxidation, cell apoptosis,
tissue damage, impaired T-helper cells response, and subsequent IL-17 secretion, as all
these stages are essential in the induction and persistence of psoriasis [74]. Switching
to AA, the antioxidant/oxidant balance perturbation represents a trigger mechanism in
its pathogenesis, together with emotional and environmental stress. AA is characterized
by circumscribed non-scarring hair loss patches, mainly localized in the scalp. Even if
its pathogenesis is not totally clear, it is now considered a chronic autoimmune disorder
with autoaggressive T cells directed against the anagen hair follicles at the histological
examination. Lipid peroxides, a hallmark of OS, and their breaking-down products such
as malondialdehyde (MDA) can affect normal cells whose levels strongly correlate with
lipid peroxidation levels [75]. Higher thiobarbituric acid-reactive substances (TBARS)
levels in plasma, erythrocytes, and scalp biopsies were found in AA patients compared to
controls [68,75,76]. Moreover, TBARS tissue levels appeared to be higher in the early phase
of the disease and correlated to its gravity. MDA levels in serum and tissue were found
to be higher in patients with AA compared with control subjects, and strongly correlated
with the severity and longevity of the disease [68].

OS also plays a role in vitiligo, a chronic autoimmune skin disease, characterized
by milky white patches mainly localized in visible areas [72,77]. In vitiligo, melanocytes
show poor antioxidant capacity due to alterations in antioxidant mechanisms, such as AHR
and NRF2/ heme oxygenase-1(HO-1) system, which result in high levels of superoxide
dismutase and low levels of catalase [78]. AHR polymorphisms might play a role in Treg cell
differentiation, IL-10, IL-17, and IL-22 expression, thus contributing to vitiligo pathogenesis.
Higher levels of IL-10 in the serum of tacrolimus-treated patients have been correlated with
reduced melanocyte degradation and reduced symptoms. AHR-null mice have been shown
to exhibit down-expression of IL-10. The relationship between IL-22 and AHR is known,
as the activity of IL-22 is dependent on AHR ligation, whereas the relationship between
AHR and IL-17 is so far being defined [19]. Additionally, the role of the NRF2/ Kelch-like
ECH-associated protein (KEAP1)-HO-1 pathway in counteracting OS in vitiligo is widely
recognized, corroborated by the positive influence of NRF2 polymorphisms [79,80]. This
pathway results in antioxidant reactions, though vitiligo melanocytes have reduced HO-
1 expression and detoxifying enzymes release, due to reduced nuclear translocation of
NRF2 [81–83]. This is demonstrated by the increased susceptibility of vitiligo melanocytes
to the oxidative insult induced by hydrogen peroxide, which triggers autoimmune and
apoptotic phenomena, thus leading to the onset and progression of vitiligo [84]. These
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remarks have contributed to the current interest in identifying NRF2 modulators as a
possible therapeutic strategy [85].

4. Potential Targets of Oxidative Stress during Phototherapy in Atopic Dermatitis

A study on the effects of UVA conducted in BALB/c mice identified that sulforaphane
is associated with OS and may have a role in treating photoaging through the reduction
in matrix metalloproteinase-1 (MMP-1) and activation of NRF2, which controls epidermal
inflammation. It is therefore concluded that sulforaphane exerted a therapeutic effect in
the AD mouse model by the activation of the NRF2/HO-1 axis. The present study also
found that the phosphorylation of JAK2/STAT3 and the expression levels of IL-6, IL-1β,
and TNF-α were reduced in the SFN-treated group compared with the AD group [86].
Significant data regarding the relevant influence of this treatment regimen on AHR/ARNT
and MPO level/PON1 are not yet available in the literature. Instead, much of the evidence
regarding the impact of phototherapy on markers of OS in AD can be attributed to the
cytoprotective role of NRF2. Despite their low energetic properties, the biological impact
of UVA1 on human skin is not negligible because of their penetration properties and the
OS that they are able to induce on a massive scale, thus affecting the skin as a whole [87].
In their recent review, Bernerd et al. highlight the role of NRF2 in partially counteract-
ing UVA1-induced OS through upregulation of NRF2 target genes: heme oxygenase 1
gene (HMOX1), thioredoxin reductase 1 (TXNRD1), NAD(P)H quinone dehydrogenase 1
(NQO1), ferritin light chain (FTL), glutamate-cysteine ligase regulatory subunit (GCLM),
aldo-keto reductases 2/3 (AKR1C2 and AKR1C3), showing the validity of such involvement
both in vivo and in a three-dimensional reconstructed human skin model [88]. Interestingly,
the same defense mechanisms induced by OS in the dermis and completely differentiated
epidermis also concern cancer cells, suggesting in this sense a multi-cytotype protective role
of the NRF2 pathway in coping with the photoinduced OS. Broekgaarden et al. attribute to
at least five interconnected pathways the survival mechanisms of cancer cells following
photodynamic therapy (PDT) or similar approaches such as ultraviolet light irradiation.
Among these NRF2 seems to be a fundamental trigger in restoring the redox balance, thus
promoting a prolonged survival of tumor cells [89]. The mechanism by which this happens
would see the direct involvement of PDT in oxidizing the NRF2-binding domain of KEAP1,
bound to the cytoplasmic cytoskeleton, promoting the cytoplasmic accumulation of free
NRF2 which oxidized, it acquires nuclear translocation capabilities, where, dimerizing
with activator protein 1 (AP-1), binds to antioxidant response element (ARE) sequences,
then triggering the transcription of genes involved in the synthesis of antioxidant agents
and the removal of harmful oxidation products. The dissociation of the NRF2-KEAP1
complex is simultaneously reinforced by additional phosphorylation mediated by Jun
N-terminal kinase (JNK)-1, induced by PDT [89]. Among the NRF2/AP-1 target genes, the
HMOX1 gene encoding HO-1 is in turn upregulated by hypoxia-inducible factor 1 (HIF-1),
another transcriptional factor induced by PDT. HO-1 acts as an antioxidant both directly,
neutralizing some species of ROS, and indirectly, promoting the formation of bilirubin from
heme [89]. It must, however, be clarified that not all ultraviolet radiations indiscriminately
determine NRF2-mediated signaling activation. In contrast to the aforementioned action
of UVA, several pieces of evidence would seem to correlate UVB exposure with reduced
NRF2 activity and thus with the expression of its target genes in normal human epidermal
keratinocytes and melanocytes, as well as in dermal fibroblasts [90]. Such poor activating
or even inhibitory power of the NRF2 signaling pathway has been related to the ability of
UVB photons in inducing direct DNA damage, consequently inhibiting or delaying the
activation of NRF2-driven genes and in parallel promoting, in the absence of such survival
mechanisms, OS-induced apoptosis or rather an inflammation-dependent cell death (pyrop-
tosis) elicited by NLR family pyrin domain containing 3 (NLRP3) inflammasome activation
in keratinocytes after sensing UVB-induced DNA damage [91]. Table 1 summarizes the
main OS markers involved in cytoprotective pathways and damaging cell mechanisms.
The main actions of UVR are represented in Figure 2.
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Table 1. Study characteristics.

Topic Author, Reference Os Marker Cytoprotective Mechanism Cellular Damage
Mechanism

UVA1 Bernerd et al. [31] NRF2
Upregulation of NRF2 target genes:

HMOX1, TXNRD1, NQO1, FTL, GCLM,
AKR1C2, AKR1C3

//

PDT Broekgaarden et al. [32] NRF2

Activation of JNK and NRF2-KEAP1
dissociation. Activation of ARE sequences
by NRF2-AP1 and transcription of NRF2

target genes. Upregulation of HMOX1
HIF-1-mediated genes.

//

UVB Ryšavá et al. [33] NRF2 //
Direct DNA damage

and downregulation of
NRF2 target genes

UVB Vieyra-Garcia et al. [34] // // NLRP3 inflammasome
activation

Cancers 2021, 14, 5315 4 of 11

Figure 2. proportion of non-serious/Grade <3 AEs for pediatric patients receiving antiangio-
genic drugs as monotherapies (drugs assessed in less than 20 patients or not reporting both non-
serious/Grade <3 AEs).

Figure 3. Overall proportion of serious (Panel A) and non-serious AEs (Panel B) for bevacizumab
and lenvatinib plus chemotherapy (no strata by chemotherapy combinations).

Figure 2. UVR modulation on the expression of cytoprotective genes. The figure shows the dia-
metrically opposite effects of UVA and UVB. UVA-mediated oxidation acts on two different levels
by promoting the intracytoplasmic accumulation of free NRF2 which, once oxidized, translocates
to the nucleus where, dimerizing with AP-1, it acts as a transcriptional activator of cytoprotective
genes. Further upregulation of HMOX-1 is provided by the oxidation of HIF-1. UVB-mediated
oxidation indirectly inactivates the transcription of cytoprotective genes through direct DNA dam-
age. The lack of this cytoprotective action in turn results in NLRP3 inflammasome activation and
consequent pyroptosis.



Biomolecules 2022, 12, 1904 10 of 13

5. Conclusions and Future Perspectives

This study aims to evaluate the role of OS in AD, linking it with the possible antioxidant
mechanisms of phototherapy as a therapeutical choice. The dosage of OS-related molecules
could prove useful to recognize the activity and severity of various chronic conditions,
such as atopic eczema and psoriasis, and to evaluate, not only clinically, the response to
systemic therapies, with the aim of identifying potential interactions among ROS that still
need further evaluation. Furthermore, these findings could be useful in developing novel
therapeutical approaches which could include using antioxidants, possibly together with
already validated drugs, in order to obtain complete clearance of the disease and improve
the QoL of affected patients. Since OS plays a pivotal role in the pathogenesis of AD and
its flare-up, new lines of research could be opened for the study of new drugs that act
on this mechanism, perhaps in concert with phototherapy. Of course, it is imperative to
conduct further studies evaluating the correct pathways triggered or inhibited by them,
to produce safer results and comprehensive treatments for patients suffering from such
burdensome diseases.
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