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Abstract: Polysaccharides isolated from Lentinula edodes are bioactive compounds with immunomod-
ulatory properties. In our previous studies from L. edodes mycelium, we have isolated a selenium(Se)-
enriched fraction (named Se-Le-30), a mixture of linear 1,4-α-glucan and linear 1,3-β- and 1,6-β-
glucans. In this study, we analyzed the effects of Se-Le-30 on the activation and proliferation of
human T lymphocytes stimulated by anti-CD3 and anti-CD3/CD28 antibodies (Abs) and on the
production of cytokines by peripheral blood mononuclear cells (PBMCs). Se-Le-30 had effects on T
cell proliferation induced by Abs against CD3 and CD28. It significantly inhibited the proliferation
of CD3-stimulated CD4+ and CD8+ T cells and enhanced the proliferation of CD4+ T cells stimu-
lated with anti-CD3/CD28 Ab. Moreover, Se-Le-30 downregulated the number of CD3-stimulated
CD4+CD69+ cells, CD4+CD25+ cells, as well as CD8+CD25+ cells, and upregulated the expression of
CD25 marker on CD4+ and CD8+ T cells activated with anti-CD3/CD28 Abs. Furthermore, Se-Le-30
enhanced the synthesis of IFN-γ by the unstimulated and anti-CD3/CD28-stimulated PBMCs, inhib-
ited synthesis of IL-2 and IL-4 by CD3-stimulated cells, and augmented the synthesis of IL-6 and IL-10
by unstimulated, CD3-stimulated, and CD3/CD28-stimulated PBMCs. Together, we demonstrated
that Se-Le-30 exerts immunomodulatory effects on human T lymphocytes. These observations are of
importance for the prospective use of Se-Le-30 in research or as a therapeutic compound.

Keywords: immunomodulation; Lentinula edodes; T lymphocytes; PBMC

1. Introduction

Lentinula edodes (Berk.) Pegler (shiitake mushroom) is a source of numerous bioactive
compounds of which the most valuable are polysaccharides [1]. L. edodes-derived polysac-
charides, especially β-glucans, are biological response modifiers (BRMs) with anticancer,
antimicrobial, and immunomodulatory properties [2]. Several randomized controlled
studies demonstrated that fungal β-glucans exhibit immune-enhancing effects without
causing noticeable adverse effects [3,4].

Lentinan is one of the widely studied polysaccharides from L. edodes. It is a highly puri-
fied β-(1→6) branched β-(1→3)-glucan with molecular weight (Mw) of 1.153 × 103 g/mol,
which is clinically used as an adjuvant in cancer therapies in some Asian countries [2].

It has been documented that the biological activity of fungal polysaccharides depends
on their source (mycelium or fruiting bodies), methods of extraction, composition, Mw,
branching degrees, and helical conformation [5–7]. Polysaccharides with higher Mw and
triple helical conformation show stronger biological activity, which may be explained by
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their ability to induce clustering of various receptors [6–8]. Similarly, the sugar composition
of polysaccharides affects their activity, for example, mannose, xylose, and arabinose have
been related to immunomodulatory effects on macrophages [9].

So far, a number of surface receptors have been found to interact with β-glucans,
including dectin-1 [10], complement receptor type 3 (CR3) [11–14], toll-like receptors (TLRs)
type 2/4/6 [13,15–18], lactosyceramide (LaCer) [13,19], and scavenger receptors [13]. Thus,
fungal polysaccharides, due to their ability of binding to multiple types of receptors on
a wide variety of immune cells, depending on their composition, conformation, and Mw,
may exhibit different biological effects and activate distinct signaling pathways.

In our previous studies, we isolated a selenium(Se)-enriched lentinan analog (named
Se-Le-30) from L. edodes mycelial cultures. Structural studies demonstrated that obtained
fraction is a mixture of linear 1,4-α-glucan and linear 1,3-β- and 1,6-β-glucans with much
higher than lentinan Mw (3.62× 106 g/mol) [20]. We then analyzed the immunomodulatory
properties of this glucan on healthy human peripheral blood mononuclear cells (PBMCs).
We found that Se-Le-30 significantly inhibited the proliferation of PBMCs both when
stimulated with anti-CD3 monoclonal antibody (mAb, OKT3) ad upon allostimulation in a
mixed lymphocyte reaction (MLR), without causing cytotoxicity or reducing the TNF-α
production by CD3+ T cells. These preliminary results suggested that Se-Le-30 is a T cell-
selective immunosuppressant, which most likely acts through the modulation of signaling
via the T cell receptor (TCR)/CD3 complex. While antibodies against CD3 effectively
induce proliferation, however, in the absence of a costimulatory signal, proliferating T cells
can lose their function or undergo early apoptosis [21]. Therefore, in the present study, we
analyzed the effects of Se-Le-30 on the activation and proliferation of human T lymphocytes
stimulated by CD3 and CD3/CD28 Abs and on the production of cytokines.

2. Materials and Methods
2.1. Biosynthesis and Isolation of Se-Le-30

The L. edodes (Berk.) Pegler strain used in this study was American Type Culture
Collection 48085 (ATCC, Manassas, VA, USA). Sodium selenite (Sigma, Saint Louis, MO,
USA) was added to the culture medium to obtain a Se concentration of 30 µg/mL. L. edodes
mycelium was cultivated under the conditions described in the previous papers [20,22–24].
The mycelium was harvested by filtration, washed, and freeze-dried, and Se-Le-30 was
isolated by the modified Chihara method [25,26]. Its structural analysis was described in
detail in our previous paper [20].

2.2. PBMCs Isolation

Blood samples were collected by venipuncture into heparin-coated tubes. PBMCs
were isolated from 9 mL of whole blood using Histopaque-1077 (Sigma-Aldrich, Prague,
Czech Republic) according to the manufacturer′s instructions. Blood samples were ob-
tained from the Regional Blood Centre in Warsaw, Poland, under the approval of the
Bioethics Committee of the Medical University of Warsaw (no. KB/174/2017; updated
AKBE/186/2021).

2.3. Preparation for Flow Cytometry Analysis

Prior to flow cytometry assays, all antibodies, viability marker, and carboxyfluorescein
succinimidyl ester (CFSE) were titrated to obtain the highest signal-to noise ratio for
each fluorochrome. Fluorescence-Minus-One experiments were performed in order to
determine the cut-off value for the positive population for each marker. Prior to conducting
each experiment, an instrument quality control was performed. CFSE stock solution was
prepared according to the manufacturer′s instructions and stored in aliquots of 5 µL at
−20 ◦C for further use.
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2.4. Proliferation Assay

Isolated PBMCs were counted. Up to 1 × 107 cells were washed, resuspended in 1 mL
of RPMI 1640 medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) with 5% heat-
inactivated human serum (Sigma, Saint Louis, MO, USA) and transferred to a 14 mL Falcon
tube. Next, 110 µL of Phosphate-Buffered Saline (PBS, Gibco, Thermo Fisher Scientific,
Waltham, MA, USA) was added to 5 µL of CFSE stock solution. CFSE was added to the
cells suspension, vortexed, and incubated at 25 ◦C, for 7 min in the dark. After incubation,
cells were washed twice in PBS with 10% human serum. PBMCs (1 × 105 cells/well)
were cultured in 96-well flat-bottom plates (Greiner Bio-One, Kremsmünster, Austria)
for 5 days in the following variants: (1) cells stimulated with Dynabeads coated with
anti-CD3/CD28 Abs (ratio 2:5, Gibco, MA, USA); (2) cells stimulated with anti-CD3 Ab
(plates were pre-coated with 0.75 µg/mL of Ab, BD Pharmingen, San Diego, CA, USA);
and (3) unstimulated cells (control). PBMCs were incubated in the presence of Se-Le-
30 (100 µg/mL) or without polysaccharide adding an equivalent amount of water for
injection instead (control cultures). After 5 days, cells were collected and transferred to
4 mL polypropylene Falcon tubes, washed in PBS, and resuspended in 100 µL of 1:400
Zombie Violet™ stock solution (BioLegend, San Diego, CA, USA). Cells were incubated
for 20 min at room temperature in the dark and washed with 2 mL BD Pharmingen Stain
Buffer (BSA, BD Biosciences, San Jose, CA, USA). Next, they were resuspended in 100 µL
of Stain Buffer, and labelled with anti-CD3, anti-CD4, and anti-CD8 Abs (15 min at room
temperature in the dark). After incubation, cells were washed with 2 mL of Stain Buffer,
resuspended in 100 µL of PBS with 0.01% sodium azide (Sigma, Saint Louis, MO, USA), and
acquired with a DxFlex flow cytometer (Beckman Coulter, Brea, CA, USA) using CytExpert
software (Beckman Coulter). Flow cytometry data were analyzed using FlowJo software (v.
10.8.1; BD, Ashland, OR, USA). The division index was calculated as the total number of
divisions divided by the number of cells at the start of the culture. The proliferation index
was calculated as the total number of divisions divided by the number of cells that went
into division. The expansion index was calculated as the total number of cells divided by
the number of cells at the start of the culture. The replication index was calculated as the
total number of divided cells divided by the number of cells that went into division.

2.5. Activation Assay

For the activation assay 2 × 105 of PBMCs were seed on 96-well flat-bottom plates
(Greiner Bio-One, Kremsmünster, Austria) and cultured for 12, 24, and 48 h in the following
variants: (1) cells stimulated with anti-CD3/CD28 Abs (ratio 2:5, Gibco, MA, USA); (2)
cells stimulated anti-CD3 Ab (coated on plate wells, 0.75 µg/mL, BD Pharmingen, USA);
and (3) unstimulated cells (control cultures). PBMCs were incubated in the presence of
Se-Le-30 (100 µg/mL) or without polysaccharide with an equivalent amount of water for
injection. Cells were harvested after 12, 24, and 48 h, washed in 2 mL of Stain Buffer
(BSA, BD Biosciences, San Jose, CA, USA), and labeled with mouse anti-human CD3-PerCP
(Clone SK7, BD Biosciences, San Jose, California, USA), CD4-APC-Cy7 (Clone SK3, BD
Biosciences, San Jose, CA, USA), CD8-APC (Clone SK1, BD Biosciences, San Jose, CA, USA),
CD25-FITC (Clone 2A3, BD Biosciences, San Jose, California, USA), CD69-Brillant Violet
510 (Clone FN50, BioLegend, San Diego, CA, USA). PBMCs were incubated for 15 min
at room temperature in the dark, washed in 2 mL of bovine serum albumin (BSA), and
resuspended in 100 µL of PBS with 0.01% sodium azide. At least 2 × 104 CD3+ T cells
were acquired on Becton Dickinson FACSCanto II cytometer (BD FACSCanto II, Becton
Dickinson, NJ, USA). Data were analyzed using BD FACS Diva 6.1.3. software. Cell surface
expression of CD69 and CD25 (percentage) was analyzed in CD8+ and CD4+ T cells. For
information on the gating strategy see Supporting Information (Figure S1).

2.6. Multiplex Cytokine Profiling

Cytokines detection in cell culture supernatants was performed by Luminex® Multi-
plex Assay. 2 × 105 of PBMCs were cultured for 24 h in variants described above. Initially,
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dynabeads coated with CD3/CD28 Abs have been removed by a magnet. Cell cultures
were transferred to 4 mL polypropylene tubes and centrifuged. Cell-free supernatants were
recovered and stored at −80 ◦C for future analysis.

Before analysis, Luminex calibration and verification were performed using MAGPIX
Calibration Kit and MAGPIX Performance Verification Kit (Merck Millipore, Darmstadt,
Germany). The concentration of IL-2, IL-4, IL-6, IL-10, and interferon (IFN)-γ was measured
on MAGPIX (Merck Millipore, Darmstadt, Germany) with Luminex- based bead array
MILLIPLEX® Human Cyto Panel A (Merck Millipore, Darmstadt, Germany) according to
manufacturer’s instructions. Standards and quality controls were run on the same plate as
analyzed supernatants. Data were analyzed using xPONENT software (Luminex Corp.,
Austin, TX, USA).

2.7. Cell Viability Assay

On 96-well flat-bottom plates, 2 × 105 of PBMCs were seeded (Greiner Bio-One,
Kremsmünster, Austria) and cultured for 24 h at 37 ◦C in a humidified atmosphere with 5%
CO2, in the presence of Se-Le-30 (100 µg/mL) and with an equivalent amount of medium
and water for injection as controls. After incubation, cells were harvested, washed in 2
mL of PBS, resuspended in 100 µL of Zombie Violet™ (BioLegend, San Diego, CA, USA)
stock solution at a ratio of 1:400, incubated for 20 min at room temperature in the dark,
then washed with 2 mL of Stain Buffer and labeled with mouse anti-human CD3 Ab (CD3-
PerCP, Clone SK7, BD Biosciences, San Jose, CA, USA) in 100 µL of Stain Buffer for 15 min.
Next, cells were washed in 2 mL of Stain Buffer, resuspended in 100 µL of PBS wit 0.01%
sodium azide, and acquired with DxFlex flow cytometer. For each variant, the percentage
of CD3+ T lymphocytes positive for Zombie Violet dye was recorded and compared to
control cultures.

2.8. Statistical Analysis

Statistical analysis of acquired data and their visualization were performed using
GraphPad Prism 9.4.0 (GraphPad Software). The normality of the data sets distribution
was tested using Kolmogorov-Smirnov, Shapiro-Wilk, Anderson-Darlin, D’Agostino, and
Pearson tests. The data set was considered to have a normal distribution when each of
the applied tests had a prediction value higher than 0.05. Determination for outliers was
performed using both ROUT (Q = 1%) and Grubbs’ (α = 0.05) methods. The Student t-test
was performed when the distribution of differences was normal, and the Wilcoxon test
was used when the distribution of differences was not normal. A p-value of < 0.05 (*) was
considered statistically significant, and p < 0.01 (**), or p < 0.001 (***) as highly significant.
Graphs are presented as mean ± SEM (standard error of the mean).

3. Results
3.1. Effects of Se-Le-30 on Human CD4+ and CD8 + T Cells Proliferation

The effects of Se-Le-30 on the proliferation of human T cells are shown in Figure 1.
Polysaccharide significantly inhibited the proliferation of CD4+ T cells stimulated with
anti-CD3 Ab (division index: p = 0.0003; proliferation index: p = 0.0003; expansion index:
p = 0.0141; replication index: p = 0.0095; percentage of cells divided: p < 0.0001) and
enhanced proliferation when cells were stimulated with anti-CD3/CD28 Abs (division
index: p = 0.0216; percentage of cells divided: p = 0.0033). Similarly, Se-Le-30 inhibited
the proliferation of CD8+ T cells stimulated with anti-CD3 Ab (division index: p = 0.0012;
proliferation index: p = 0.0123; expansion index: p = 0.0058; replication index: p = 0.0146;
percentage of cells divided: p < 0.0001) but had no effect on double stimulated CD8+ T cells
proliferation (p > 0.05). It must be noted that the mode of activation and possibly anti-CD3
Abs concentration was different for the stimulation with Abs against CD3 only and double
stimulation with Abs against CD3 and CD28.
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Figure 1. Effects of Se-Le-30 on the proliferation of human CD4+ and CD8+ T cells stimulated with
anti-CD3 Ab (top row) and anti-CD3/CD28 Abs (bottom row). PBMCs from 13 healthy donors
were stimulated and treated with Se-Le-30 (100 µg/mL) for 5 days. In each experiment, the division
index, proliferation index, expansion index, replication index, and percentage of divided cells were
calculated by using FlowJo software. Statistical differences were considered when p < 0.05. * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001. Points on bar charts represent experiments conducted with
individual donors.

3.2. Effects of Se-Le-30 on Human CD4+ and CD8 + T Cells Activation

Upon T cell activation, several of their cell surface markers are upregulated. CD69 is
a very early marker, which can be detected on the surface of T cells 2–3 h after activation.
CD25 (interleukin-2 receptor, IL-2R) is an early activation marker, with increased cell
surface expression 12–24 h after activation [27].

The effect of Se-Le-30 on the presence of CD69 marker on T cells is presented in
Figure 2. When cells were stimulated with anti-CD3 Ab, the polysaccharide significantly
decreased the percentage of CD4+CD25+ T cells after 12, 24, and 48 h (p = 0.059, p = 0.0253,
and p = 0.0219, respectively). When cells were stimulated with CD3/CD28 Abs, Se-Le-30
upregulated the percentage of CD4+CD69+ T cells after 24 and 48 h of culture (p = 0.0080,
and p = 0.0015, respectively). The number of anti-CD3-stimulated CD8+ cells expressing
the CD69 marker did not change after 12, 24, and 48 h of culture (p > 0.05), however,
polysaccharide upregulated the percentage of anti-CD3/CD28-stimulated CD8+CD69+ T
cells after 24 and 48 h of culture (p = 0.0065, and p = 0.0090, respectively).

The effect of Se-Le-30 on the presence of CD25 marker on T cells is presented in
Figure 3. When cells were stimulated with anti-CD3 Ab, the polysaccharide significantly
decreased the percentage of CD4+CD25+ T cells after 12, 24, and 48 h (p = 0.059, p = 0.0253,
and p = 0.0219, respectively). When cells were stimulated with CD3/CD28, Abs Se-Le-
30 increased the percentage of CD4+CD25+ T cells after 24 h and 48 h (p = 0.0032, and
p = 0.0090, respectively). The number of anti-CD3-stimulated CD8+ cells expressing the
CD25 marker did not change after 12 and 48 h of culture (p > 0.05) but slightly increased
after 24 h of stimulation (p = 0.0501). Conversely, when cells were stimulated with anti-
CD3/CD28 Abs, Se-Le-30 increased the percentage of CD8+CD25+ T cells (after 24 h:
p = 0.0039, and after 48 h: p = 0.0095).
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Figure 2. Effects of Se-Le-30 on human CD4+ and CD8+ T cells activation. PBMCs from nine
healthy donors were stimulated with anti-CD3 Ab or anti-CD3/CD28 Abs and treated with Se-Le-30
(100 µg/mL) for 12, 24, or 48 h. The expression of the CD69 marker on the surface of CD4+ and
CD8+ T cells was detected by flow cytometry. * p < 0.05; ** p < 0.01. Points on bar charts represent
experiments conducted with individual donors.
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CD8+ T cells was detected by flow cytometry. * p < 0.05; ** p < 0.01. Points on bar charts represent
experiments conducted with individual donors.

3.3. Effects of Se-Le-30 on Cytokines Production by PBMCs

The effects of Se-Le-30 on cytokines secretion by PBMCs are shown in Figure 4. Polysac-
charide had no influence on IFN-γ secretion by anti-CD3-stimulated PBMCs (p > 0.05), how-
ever, significantly upregulated its secretion in anti-CD3/CD28-stimulated cells (p = 0.0026).
Moreover, it was observed that Se-Le-30 inhibited the secretion of IL-2 and IL-4 by anti-
CD3-stimulated cells (p = 0.0170, and p = 0,0310, respectively), with no significant effect
on anti-CD3/CD28-stimulated cells (p > 0.05). In addition, Se-Le-30 was found to increase
the secretion of IL-6 and IL-10 by PBMCs in anti-CD3-stimulated and anti-CD3/CD28-
stimulated cells (for IL-6 p < 0.0001, and p < 0.0001, respectively; for IL-10 p = 0.0003,
p < 0.0001, respectively).
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Figure 4. Effects of Se-Le-30 on cytokines secretion by PBMCs. PBMCs from 13 healthy donors
were stimulated with anti-CD3 Ab and anti-CD3/CD28 Ab and treated with Se-Le-30 (100 µg/mL)
for 24 h. The levels of secreted cytokines in the culture medium (pg/mL) were determined with
a Luminex-based multiplex assay. (A–C): the levels of IFN-γ; (D,E): the levels of IL-2; (F,G): the
levels of IL-4; (H–J): the levels of IL-6; (K–M): the levels of IL-10. Please note the differences in Y
scale values between the stimulation panels, especially for IL-2. * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001. Points on bar charts represent experiments conducted with individual donors.

3.4. Effect of Se-Le-30 on Human CD3+ T Cells Viability

The effects of Se-Le-30 on T cells viability are shown in Figure 5. Polysaccharide did
not reduce CD3+ T cells viability after 24 h of culture. The percentage of dead cells did not
differ statistically between control cultures and Se-Le-30 cultures.
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Figure 5. Effect of Se-Le-30 on CD3+ T cell viability. Evaluation of CD3+ T-cell viability after 24h
culture with Se-Le-30 (100 µg/mL), with an equivalent amount of water for injection (H2O) or culture
medium (control), was performed using Zombie Violet™ staining by flow cytometry. Cells were
considered dead when they showed high violet fluorescence at 450 nm. Repeated measures one-way
ANOVA test, p = 0.2076. Points on bar charts represent experiments conducted with individual donors.

4. Discussion

Over the past few years, multiple studies have confirmed that various L. edodes polysac-
charides can modulate the immune system through the activation of numerous signaling
pathways. We have previously demonstrated that Se-Le-30, a selenium-enriched lentinan
analog, significantly inhibited the proliferation of human T cells stimulated with anti-CD3
Ab [20,26,28]. In the present study, we have further compared the effects of Se-Le-30 on the
activation and proliferation of human T lymphocytes stimulated by CD3 or CD3/CD28
Abs, as well as on their secretion of cytokines. The results of this study not only confirmed
our previous observations regarding anti-CD3 Ab stimulation, but also demonstrated that
when lymphocytes were stimulated with a dual signal (i.e., anti-CD3/CD28 Abs), Se-Le-30
enhanced their activation and proliferation: it increased the percentage of divided CD4+

T cells and their division index (please see Figure 1). These findings are in line with the
results described by Wang et al. [29], who reported that lentinan, a β-1,3-branched β-1,6-
D-glucan, increased the number of CD3+CD4+ and CD3+CD8+ T cells in patients with
non-small cell lung cancer treated with chemotherapy. Moreover, this glucan inhibited
the synthesis of IL-10, and enhanced IFN-γ. Conversely, our study indicated that Se-Le-30
increased the secretion of both IL-10 and IFN-γ in CD3/CD28-stimulated cells. In another
randomized study, L. edodes was administered orally to healthy young adults and it was
shown that fungus ingestion resulted in an increase in the proliferative potential of T lym-
phocytes, upregulated the expression of CD69 activation marker on T cells, and enhanced
the production of IL-10 [30]. Similarly, it has been found that L. edodes extract consumption
increased the plasma levels of IL-10 in healthy men exposed to exercise-induced skeletal
muscle damage, but had no effect on the levels of IL-6 [31]. In the present study, we have
found that Se-Le-30 increased IFN-γ secretion by PBMCs, which is consistent with data
obtained in a study in patients receiving L. edodes mycelia extract combined with cancer
immunotherapy [32]. Similarly, elevated serum IFN-γ levels were reported in a group of
healthy adults administered rice bran fermented with L. edodes [32]. However, in contrast
to our findings, there was no evidence of an effect of L. edodes on the regulation of IL-2,
IL-4, and IL-10 secretion [33]. Another well-studied polysaccharide obtained from the
mycelium of L. edodes is AHCC®, an active hexose-correlated compound which contains
20% of α-1,4-glucans [34]. Similar to Se-Le-30, AHCC® was found to increase the secretion
of IFN-γ and TNF-α by CD4+ and CD8+ T cells of healthy adults [35]. Moreover, this glucan
increased the proliferation of CD8+ T cells in adults receiving the influenza vaccine [36].
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On the other hand, some studies did not confirm the effect of L. edodes β-glucans on
cytokines secretion in humans [37,38]. However, it should be noted that in these studies,
the source of β-glucans was orally administrated substances, which might suggest that this
type of administration might be ineffective to induce the effect of regulating the secretory
activity of PBMCs.

Data on the immunomodulatory effects of glucans isolated from L. edodes in humans
are limited, however, numerous studies have been conducted to evaluate its properties
in animal models. Chen S. et al. demonstrated that three polysaccharide fractions with
different molecular weights isolated from L. edodes reverted immune suppression in mice
and upregulated splenic T lymphocytes proliferation in response to Concanavalin A and
LPS [5]. The polysaccharide with the lowest molecular weight of 14-35 kDa was found to be
the most effective [5]. In another study, the immunomodulatory properties of the synthetic
analogue of lentinan basic unit- glucohexose have been analyzed. It was demonstrated
that it upregulated CD69 expression on CD4+ and CD8+ T lymphocytes and increased the
number of IFN-γ producing CD8+ T lymphocytes in mice [39]. These results are consistent
with our study in humans. Most studies on the immunomodulatory properties of lentinan
and its analogues have shown its immune-enhancing properties, however, there are some
reports suggesting the immunosuppressive activity of L. edodes polysaccharides as well.
McCormack and colleagues demonstrated that lentinan reduced serum levels of IL-4, IL-6,
and IL-10 in rats [40]. Moreover, it was found that this drug enhanced the expansion of
CD8+ T lymphocytes, which is similar to our findings in humans [41].

So far, numerous polysaccharide-binding receptors have been identified in immune
cells, thus L. edodes polysaccharides can modulate the immune response by various signal-
ing pathways. Dectin-1 is one of the most studied receptors responsible for the recognition
of β-glucans and delivering activation signals [42]. Dectin-1 is expressed on numerous
immune cells, including T and B lymphocytes, macrophages, dendritic cells, and neu-
trophils [10] and recognizes both β-(1→3) and β-(1→6) glucans [42]. Activation of dectin-1
by β-glucans stimulates phagocytosis, reactive oxygen species (ROS) production, NFκB-
mediated cytokine secretion (including IL-1β, IL-2, IL-8, IL-10, IL-12, TNF-α), synthesis of
chemokine CXCL2, differentiation of naive CD4+ T lymphocytes into Th1 and Th17, and
activation of CD8+ T lymphocytes [43]. Complement receptor 3 (CR3) is expressed on neu-
trophils, monocytes, natural killer (NK) cells, CD8+ T cells, as well as activated CD4+ T cells
and likewise has been implicated in the recognition of β-glucans [44,45]. Activation of CR3
upregulates phagocytosis and degranulation of cytotoxic CD8+ T cells [12]. TLRs are a fam-
ily of pattern recognition receptors (PRRs) that recognize pathogen-associated molecular
patterns (PAMPs) [46]. TLR2 is expressed on monocytes, neutrophils, B cells, and activated
T cells [47] and acts as a costimulatory receptor that regulates cell proliferation [48,49].
TLR4 is highly expressed in monocytes [50], but is also involved in T cell development and
differentiation [50,51]. TLR6 is mainly expressed on neutrophils and monocytes and is as-
sociated with NF-kappa-B activation and cytokines secretion [52,53]. LaCer is expressed on
neutrophils and triggers cells response via NF-κB-like factor pathway, leading to oxidative
burst [54] and production of macrophage inflammatory protein(MIP)-2 [55].

The binding of β-glucans to dectin-1 affects both CD8+ T lymphocytes and CD4+ T
lymphocytes activation, resulting in enhanced granzyme production in CD8+ lymphocytes
and differentiation of CD4+ into Th1 and Th17 phenotype [56,57]. Binding of β-glucans to
CR3 results in the activation of phagocytes and NK cells, which promotes phagocytosis
and cytotoxic degranulation. This may help to overcome tumor resistance to these forms of
effector mechanism and lead to higher secretion of IL-6 and IFN-γ [12]. It has been sug-
gested that 1,4-α-d-glucans do not affect macrophages via CR3 binding [58], but activation
of T lymphocytes up-regulates expression of CR3 [44,45]. Interestingly, it was found that
blocking the CD11b subunit of CR3 contributed to T lymphocyte proliferation inhibition
after stimulation with anti-CD3 Abs [44]. Evidently, this finding allows us to hypothesize
that Se-Le-30 might block CR3 and thus inhibit the proliferation of T lymphocytes when
stimulated with anti-CD3 Ab only. Especially considering that CR3 expression on T lym-
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phocytes is enhanced after activation. Dual CD3/CD28 stimulation would also be affected,
but less significantly. This might be reflected in a higher division index and percentage of
divided cells, while having no impact on other proliferation indexes.

There is growing evidence that polysaccharides derived from L. edodes interact with
TLRs present in immune cells [15,16,59]. A study of 28 polysaccharides from different
origins has shown that they interact with TLR4 and stimulate IL-10, while having no effect
on IL-6 [18]. One recent study indicates that novel L. edodes polysaccharides (named MPSSS)
may interact with cells via the TLR4/JNK pathway, which resulted in decreased secretion
of vascular endothelial growth factor C (VEGF-C) [16] and/or interacts with TLR4-NF-κB
pathway [15,60]. Another study on sparan, a 6-branched 1,3-β-D-glucan, demonstrated that
this polysaccharide interacts with TLR4. Moreover, it was shown that sparan upregulated
phosphorylation of ERK, p38, and JNK, and enhanced nuclear translocation of NF-κB
p50/p65 in dendritic cells [59]. Indeed, (1,4)-α-d-glucans have been observed to interact
with TLR6 receptors [58] and TLR4 in MyD88/IKK/NFκB pathway [61].

As mentioned above, dectin-1, CR3, and TLRs are implicated in the recognition of
β-glucans by immune cells. Interestingly, recent research has shown that β-glucans may
stimulate an immune response by binding to CD28 on the surface of T cells and that this
stimulation is potentiated by CD3 activation. Cormer and colleagues explored interactions
of β-1,3 glucans with the CD28 receptor and found that glucan molecules insert themselves
into a channel on the surface of CD28 and moreover diffuse around the receptor, coming
into contact with different regions of the protein [62]. This is another potential mechanism
underlying the observed immunomodulatory effects of Se-Le-30.

5. Conclusions and Future Perspectives

Se-Le-30, a fraction of polysaccharides isolated from mycelium of L. edodes is a mixture
of linear 1,4-α-glucan and linear 1,3- and 1,6-β-glucans. In vitro models demonstrated
that Se-Le-30 exerts immunomodulatory effects on human T lymphocytes, however, the
direction of its biological activity depends on the type of cell stimulation.

Moreover, it has been revealed that Se-Le-30 upregulated the production of IL-6 and
IL-10 in PBMCs, regardless of the type of stimulation. Human PBMCs include lymphocytes,
NK cells, monocytes, and dendritic cells, therefore, it is possible that other than T cell popu-
lation is responsible for the observed activity. Future studies focusing on the mechanism of
action of Se-Le-30, including identification of intracellular signaling pathways, as well as
in vitro analyses with purified CD3+ T cells and other PBMC cell types are warranted.
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