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Abstract: Mitochondria calcium is a double-edged sword. While low levels of calcium are essential to
maintain optimal rates of ATP production, extreme levels of calcium overcoming the mitochondrial
calcium retention capacity leads to loss of mitochondrial function. In moderate amounts, however,
ATP synthesis rates are inhibited in a calcium-titratable manner. While the consequences of extreme
calcium overload are well-known, the effects on mitochondrial function in the moderately loaded
range remain enigmatic. These observations are associated with changes in the mitochondria ultra-
structure and cristae network. The present mini review/perspective follows up on previous studies
using well-established cryo–electron microscopy and poses an explanation for the observable de-
pressed ATP synthesis rates in mitochondria during calcium-overloaded states. The results presented
herein suggest that the inhibition of oxidative phosphorylation is not caused by a direct decoupling
of energy metabolism via the opening of a calcium-sensitive, proteinaceous pore but rather a separate
but related calcium-dependent phenomenon. Such inhibition during calcium-overloaded states
points towards mitochondrial ultrastructural modifications, enzyme activity changes, or an interplay
between both events.

Keywords: bioenergetics; calcium overload; mitochondria; mitochondrial ultrastructure;
mitochondrial function; oxidative phosphorylation; mitochondrial ATP production; calcium phosphate;
calcium precipitates

1. Introduction: Mitochondrial Calcium—The Good and the Bad

ATP is coupled to nearly every reaction in the body and is necessary for an organism’s
survival. This essential energy metabolite is primarily produced by mitochondria in a process
known as oxidative phosphorylation. Oxidative phosphorylation is regulated in a manner
that ensures the optimal rate of mitochondrial ATP production. ATP breakdown products,
ADP, and inorganic phosphate (Pi) are the most potent regulators of oxidative phosphory-
lation. That said, calcium is also an important regulator but acts as a double–edged sword
regarding oxidative phosphorylation [1,2]. Calcium ions enter and leave mitochondria
through a variety of specialized channels and transporters in a tissue-specific manner [3].
Moreover, mitochondria possess a unique ability to accumulate massive quantities of cal-
cium in their matrix with devastating consequences [1,2,4,5]. While relatively low amounts
of calcium (0 < 40 nmol/mg mitochondria) are essential for energy production, high levels
of calcium (>500 nmol/mg) lead to the total collapse of energy homeostasis (Figure 1) [6].
In between, a state known as calcium overload (40–500 nmol/mg), calcium impairs oxida-
tive phosphorylation and presumably contributes to long–term organ dysfunction. These
ranges were identified using guinea pig cardiac mitochondria, and external effectors such
as cyclosporin A (CsA) can modulate them [2,7]. Thus, the regulation of mitochondrial
calcium content is of utmost importance for living tissue.
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Figure 1. Calcium overload. In low amounts, calcium enhances mitochondrial function by activating 

several Ca2+–sensitive catabolic enzymes. In moderate amounts, depressed rates of oxidative phos-

phorylation become observable. In extreme amounts, mitochondria become structurally compro-

mised and consume ATP in a futile attempt to restore homeostasis. 

In this intermediate calcium overloaded state, ATP synthesis is inhibited by total mi-

tochondrial calcium in a titratable manner [1,2,8]. This inhibition is relieved after calcium 

is removed from mitochondria if the total content is below 500 nmol/mg, and calcium 

removal only partially recovers ATP synthesis capacity at higher loads [5]. Phosphate fa-

cilitates mitochondrial calcium uptake but can ultimately lead to cell death via the mito-

chondrial permeability transition phenomenon [9,10]. While phosphate is thought to act 

as a permeability transition inducer, it may also serve a dual purpose as a desensitizer 

under certain conditions [11]. While the molecular details of the mitochondrial permea-

bility transition phenomenon are still debated, the current consensus revolves around the 

idea of the formation of a proteinaceous pore [12,13]. That said, the conditions required to 

open this pore in vitro are extreme and would result in irreversible cell death in vivo. 

Thus, it may not play a significant role in how calcium regulates energy metabolism in 

living tissue. There are numerous review articles discussing our current understanding of 

this phenomenon [14,15]. Discussed herein, and previously by our group [2,5], is an 

emerging idea that views this phenomenon from a different perspective which involves a 

conceptual link between mitochondrial ultrastructure and function. 

2. Materials and Methods 

Mitochondria isolation and protein quantification. Cardiac mitochondria were ob-

tained from Hartley albino guinea pig hearts weighting 350–450 g (4–6 weeks old). The 

animals were injected with heparin (500 units/mL) in the intraperitoneal cavity and sub-

jected to anesthesia with 4–5% isoflurane prior to guillotine decapitation. The heart was 

obtained following a thoracotomy procedure and perfused with a cold cardioplegia solu-

tion. The heart tissue was minced into ~10 mm pieces and homogenized using a handheld 

homogenizer at 18,000 rpm for 20 s. Mitochondria were isolated using differential centrif-

ugation as described in [2,5,7]. The mitochondrial protein quantification was performed 

using the BIO-RAD bovine serum albumin (BSA) standard set kit and the bicinchoninic 

acid (BCA) assay. The mitochondrial suspension was diluted to 40 mg/mL and kept on ice 

throughout the duration of the experiments (4–5 h). 

Mitochondrial quality control. The mitochondrial respiratory control ratio (RCR) was 

determined using an Oxygraph 2k (Oroboros Instrument Corp., Innsbruck, Austria) by 

loading 2 mL of a respiratory buffer containing 130 mM KCl, 5 mM K2HPO4, 20 mM 3-(N-

Figure 1. Calcium overload. In low amounts, calcium enhances mitochondrial function by activating
several Ca2+–sensitive catabolic enzymes. In moderate amounts, depressed rates of oxidative phos-
phorylation become observable. In extreme amounts, mitochondria become structurally compromised
and consume ATP in a futile attempt to restore homeostasis.

In this intermediate calcium overloaded state, ATP synthesis is inhibited by total
mitochondrial calcium in a titratable manner [1,2,8]. This inhibition is relieved after calcium
is removed from mitochondria if the total content is below 500 nmol/mg, and calcium
removal only partially recovers ATP synthesis capacity at higher loads [5]. Phosphate
facilitates mitochondrial calcium uptake but can ultimately lead to cell death via the
mitochondrial permeability transition phenomenon [9,10]. While phosphate is thought to
act as a permeability transition inducer, it may also serve a dual purpose as a desensitizer
under certain conditions [11]. While the molecular details of the mitochondrial permeability
transition phenomenon are still debated, the current consensus revolves around the idea of
the formation of a proteinaceous pore [12,13]. That said, the conditions required to open
this pore in vitro are extreme and would result in irreversible cell death in vivo. Thus,
it may not play a significant role in how calcium regulates energy metabolism in living
tissue. There are numerous review articles discussing our current understanding of this
phenomenon [14,15]. Discussed herein, and previously by our group [2,5], is an emerging
idea that views this phenomenon from a different perspective which involves a conceptual
link between mitochondrial ultrastructure and function.

2. Materials and Methods

Mitochondria isolation and protein quantification. Cardiac mitochondria were ob-
tained from Hartley albino guinea pig hearts weighting 350–450 g (4–6 weeks old). The
animals were injected with heparin (500 units/mL) in the intraperitoneal cavity and sub-
jected to anesthesia with 4–5% isoflurane prior to guillotine decapitation. The heart was
obtained following a thoracotomy procedure and perfused with a cold cardioplegia solu-
tion. The heart tissue was minced into ~10 mm pieces and homogenized using a handheld
homogenizer at 18,000 rpm for 20 s. Mitochondria were isolated using differential centrifu-
gation as described in [2,5,7]. The mitochondrial protein quantification was performed
using the BIO-RAD bovine serum albumin (BSA) standard set kit and the bicinchoninic
acid (BCA) assay. The mitochondrial suspension was diluted to 40 mg/mL and kept on ice
throughout the duration of the experiments (4–5 h).

Mitochondrial quality control. The mitochondrial respiratory control ratio (RCR) was
determined using an Oxygraph 2k (Oroboros Instrument Corp., Innsbruck, Austria) by
loading 2 mL of a respiratory buffer containing 130 mM KCl, 5 mM K2HPO4, 20 mM
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3-(N-morpholino) propanesulfonic acid (MOPS), 1 mM MgCl2, 1 mM ethylene glycol-bis(β-
aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), and 0.1% (w/v) BSA at a pH of 7.1
and 37 ◦C. Before the addition of 0.1 mg/mL mitochondria, 5 mM sodium pyruvate and
1 mM L–malate (pH 7.0) were added. All the following experiments were performed using
the described conditions and buffer. Following the addition of 0.1 mg/mL mitochondria.
the leak state was recorded for 5 min. Here, we define leak state as the rate of oxygen
consumption by the mitochondria in the presence of substrate and absence of ADP. At
5 min, a bolus of 500 µM ADP was added to determine the maximum ADP-stimulated
respiratory rate. The mitochondrial quality was assessed by computing the RCR obtained
by dividing the maximal ADP–stimulated respiration rate by the leak respiration rate. Only
Mitochondria with RCR values greater than or equal to 16 met the quality criteria and used
for experiments.

Calcium effects on mitochondrial respiration. To assess the effects of calcium on
mitochondrial function, leak state was recorded after the addition of 5 mM sodium pyruvate
and 1 mM L–malate and 0.1 mg/mL mitochondria. At 5 min, water vehicle, 25 µM CaCl2,
or a 50 µM CaCl2 bolus was injected into the oxygraphy chamber. For the zero Ca2+

conditions, 1 mM EGTA was present throughout the experiment. When the water vehicle
is used, it is important to note that 4 µM residual Ca2+ from buffer contaminants is initially
present. At 10 min, a 500 µM ADP bolus was injected to induced maximal ADP-stimulated
respiration rates.

Cryo–electron microscopy (cryo–EM) sample vitrification and tomographic acquisi-
tion. Isolated mitochondria were suspended at a concentration of 0.1 mg/mL in 2 mL
of respiration buffer containing 5 mM sodium pyruvate and 1 mM L–malate. At 5 min,
water vehicle, 1 mM EGTA, 25 µM CaCl2, or a 50 µM CaCl2 bolus was injected into the
oxygraphy chamber. For the cyclosporin A (CsA) treatment, 1µM CsA was added to the
suspension before the addition of mitochondria. At 10 min, 5 µL samples were pipetted
from the mitochondrial suspension and deposited on Quantifoil R2/2 holey carbon grids
pretreated with a Pelco EasiGlo glow discharge unit for 1 min. The grids were set on a
Vitrobot Mark IV chamber with automated temperature regulation (4 ◦C), blotting (3 s),
and humidity control (100%). Samples were blotted to thin the water layer, plunged into
liquid ethane, then transferred and stored in liquid nitrogen until imaging. The imaging
and tomographic acquisition was collected using a FEI Talos Artica at 200 keV in low-dose
conditions on a Falcon 3EC direct electron detector with an electron dose of ~2 e−/Å2 per
tilt image. The tomographic images were collected at 22,000 x magnification obtaining a
final product of 4.7 Å/pixel with a total electron dose of ~100 e−/Å2.

Tomogram alignment and 3D reconstruction. Motion correction was performed on
each individual micrograph using Motioncor2 v1.2.6 with an index factor of 7. The tilt
series alignment was performed using IMOD v4.9.12 and the Simultaneous Iterative Re-
construction Technique (SIRT) feature with 7–10 iterations. The 3D reconstruction tracings
were performed using IMOD (3dmod) drawing tool functionality [16].

Statistics. All data were analyzed and plotted using MATLAB 2022a (Mathworks, Inc.,
Natick, MA, USA). The data are presented as a mean standard deviation for a sample size
of n ≥ 8.

3. Calcium Homeostasis, Entry, and Exit Pathways

Mitochondrial calcium homeostasis is primarily regulated by three pathways: the
mitochondrial calcium uniporter (MCU), sodium/calcium/lithium exchanger (NCLX), and
calcium hydrogen exchanger (CHE). The MCU is the dominant uptake pathway and is
comprised of a heteromeric protein complex composed of various subunits including the
mitochondrial Ca2+ uptake family (MICU 1, 2, and 3), essential MCU regulator (EMRE),
MCU regulator 1 (MCUR1), MCU dominant-negative β–subunit (MCUb), and the solute
carrier 25A23 (SLC25A23) [17]. These subunits form a complex on what appears to be
an on-demand basis [17–20]. While an in–depth review on the molecular structure and
function of these subunits are beyond the scope of this mini review/perspective, we would
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like to refer our readers to references [17,19,20]. Other pathways for Ca2+ uptake including
the rapid mode calcium uptake and ryanodine receptors are also speculated to play an
important role under certain conditions [21–23]. The MCU channel has a high affinity for
Ca2+ (Kd ≤ 2 nM); however, it has a low half-activation constant (K0.5~20 mM) [24]. As
a result, the MCU is less active at lower concentrations of calcium (0.1–1 µM) and more
active at higher extramitochondrial calcium loads [21]. The efflux pathways are primarily
controlled by the NCLX and CHE. The NCLX is an electrogenic exchanger that swaps
3 Na+ (or Li+) for 1 Ca2+ [25,26]. Consequently, this reaction is electrogenic and sensitive to
the mitochondrial membrane potential. Under physiological conditions, the CHE swaps
calcium out for protons in the matrix in a manner that is presumed to be an electroneutral
ratio of 1 Ca2+ per 2 H+ [27]. The calcium hydrogen exchanger functions independently of
sodium and is present at much lower activities in tissues with high energy demand [28].
For instance, the CHE is dominant in the liver and other relatively quiescent tissues, while
NCLX is predominant in the heart, brain, and other high activity tissues [29–34].

Under basal conditions, cytosolic Ca2+ concentrations are maintained in the 100 nM
range [35]. For cardiomyocytes and skeletal myocytes, the range of global or average
cytosolic Ca2+ concentrations during peak contraction that mitochondria are exposed to
fall within 1 µM but can peak two to three times higher under stimulatory conditions [36].
That said, some mitochondria are exposed to higher concentrations (~10–100 µM) in
microdomains associated with mitochondrial–SR contact sites [37–39]. In either the basal or
stimulatory condition, intramitochondrial Ca2+ levels remain low as long as mitochondria
remain coupled [37]. This form of calcium regulation is attributed to the mitochondrial
calcium buffering system. What makes mitochondria particularly relevant in this scenario
is their ability to store large amounts of calcium in their matrix [40].

This is of relevance in high–energy demand tissue as the mitochondrial membrane
potential, Ca2+, and Na+ are the main regulators of mitochondrial calcium homeostasis.
Additionally, while Ca2+ uptake is very sensitive to changes in membrane potential, Ca2+

efflux is less sensitive [41]. As a result, the MCU channel can load Ca2+ into the matrix at a
rate far exceeding the NCLX matrix calcium clearance (1400 and 20 nmol Ca2+ min−1 mg
mitochondrial protein−1, respectively) [42]. Hence, under conditions that disrupt cytosolic
calcium homeostasis, Ca2+ uptake through MCU floods the matrix of energized mito-
chondria with massive amounts of Ca2+ [8]. Left unchecked, membrane potential loss
precipitates a catastrophic collapse in energy homeostasis [2,43]. This phenomenon is often
ascribed to the permeability transition phenomenon and has detrimental consequences
for cell health and longevity [4,9,15,42,44]. This scenario places mitochondria in a vulnera-
ble position, leading some to view the permeability transition phenomenon as a calcium
overload release valve [45,46]. Regardless, the mitochondria Ca2+ uptake and removal
processes are highly regulated with compensatory mechanisms in place to ensure cellu-
lar homeostasis and survivability. When such regulatory mechanisms fail, mitochondria
become overloaded with calcium, and energy homeostasis collapses.

4. Calcium TCA and ETC

Calcium also influences mechanisms driving mitochondrial energy production and
metabolic activity. For example, calcium regulates the activity of metabolic enzymes in the
TCA cycle including pyruvate dehydrogenase, isocitrate dehydrogenase, and
α–ketoglutarate dehydrogenase [2]. The TCA cycle generates reducing equivalents (such as
NADH and UQH2) used by the proton pumps that establish the membrane potential and
alkalize the mitochondrial matrix relative to the cytoplasm [26]. This, in turn, biases ATP
synthase away from its more favorable ATP hydrolysis set point to an operating regime
conducive for ATP production via oxidative phosphorylation. Therefore, in high–energy
demanding tissue where cells are constantly exposed to transient Ca2+ signals, calcium
homeostasis is intrinsically linked to ATP production both through the TCA cycle and
oxidative phosphorylation (oxphos) to regulate cellular bioenergetics.
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Under most conditions, the membrane potential is the primary determinant of the ratio
of matrix ATP to ADP and inorganic phosphate (i.e., the matrix ATP/ADP/Pi ratio). As
Ca2+ is injected into mitochondria, matrix ATP/ADP ratios decline, the membrane potential
depolarizes to a degree, and matrix pH increases [44,47]. As the matrix pH becomes
more basic, dihydrogen phosphate (H2PO4

−) is effectively driven into the mitochondria
in symport with H+ in an electroneutral fashion. The phosphate carrier facilitates his
symport, and when H2PO4

− enters the matrix, it undergoes a deprotonation event and
forms HPO4

2− [48]. Under these conditions, elevated Pi levels in the matrix facilitate the
formation of calcium phosphate complexes. The formation of these complexes involves
the deprotonation of HPO4

2− into the phosphate trianion (PO4
3−) further releasing a H+.

This helps counteract the significant alkalizing effect of accelerated proton pumping and
charge replacement caused by Ca2+ uptake. Overall, a slight depolarization will alkalize
the matrix pH which has the net effect of enhancing mitochondrial Ca2+ sequestration [43].
However, when the current generated by Ca2+ uptake exceeds the proton pumping current,
thermodynamic driving forces reverse the F1FO ATP synthase activity and pumps protons
out of the matrix via ATP hydrolysis [6]. When ATP is hydrolyzed from this reversal,
the phosphate released can participate in phosphate precipitate formation until ATP is
exhausted and the metabolic system collapses [40,49]. This is just one possible scenario
as ATP hydrolysis is not a required source of inorganic phosphate during precipitate
formation. In the presence of oligomycin, ATP synthase is inhibited, and mitochondria still
possess the ability to take up massive amounts of Ca2+ when sufficient Pi is present [50].
Ultimately, when matrix Ca2+ concentrations exceed a threshold level, the formation of
calcium phosphate precipitates in the matrix has the effect of reducing the mitochondrial
free Ca2+ levels to manageable amounts via a type of buffering mechanism but at the
expense of oxidative phosphorylation capacity [1,21].

5. Mitochondrial Calcium Buffering

We know that the consequences of precipitate formation operate on a spectrum (Figure 1),
but we do not fully comprehend the mechanism. At low concentrations, calcium phosphate
precipitates can have a protective effect. Whereas at high concentrations, precipitates can
destabilize the mitochondrial cristae network [2,5]. This has been confirmed by others in
which mitochondria loaded with Ca2+ resulted in calcium phosphate precipitates occupying
more than 20% of the matrix volume [2]. One potential mechanism that leads to metabolic
dysfunction is that precipitates may mechanically destabilize membrane structures by
disrupting proteins involved in maintaining the cristae structure [5]. Another idea is that
precipitates may serve as physical barriers limiting metabolite and substrate diffusion
across the matrix [1]. The regulatory characteristics of the phosphate precipitation buffering
mechanism remain enigmatic, but one concept boils down precipitate formation to a simple
thermodynamic argument [40,49]. A second concept includes the idea that precipitate
formation requires nucleation sites [51]. Full occupancy of these sites might dampen
the extent of phosphate buffering within the mitochondrial matrix and send free Ca2+

high into pathological concentrations. The unknown nature of these potential nucleation
sites makes it challenging to devise effective genetic and pharmacological approaches to
manipulate mitochondrial calcium buffering. Thus, further study is required to resolve
some of these unknowns.

6. Potential Role of Annexins in Mitochondria

Under appropriate conditions, when the mitochondria are energized, and magnesium
and phosphate are present, adenine nucleotides are taken up with Ca2+ during precipitate
formation [52]. However, the mechanism as to how precipitate formation is accomplished
is yet to be elucidated but may be linked to annexins [53,54]. These proteins consist of a
multigene family of Ca2+–regulated proteins with a calcium and lipid–binding modules
known as the core domain. Some even possess GTP/ATP binding capabilities that enhance
Ca2+/lipid interactions [55,56]. Their ubiquitous nature covers a variety of cellular func-
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tions including membrane transport, membrane–domain organization, anti-inflammatory
and fibrinolytic activities, membrane repair, Ca2+ signaling pathways and even mitochon-
drial morphogenesis [57–60]. Others have theorized that annexins can act as a “lipid patch”
to aid in injury repair [61]. Additionally, while the various annexin affinities for Ca2+

are different, it was demonstrated that increased annexin Ca2+ binding is correlated with
plasma membrane repair [62]. Initially, annexins most sensitive to Ca2+ are bound and as
the healing process proceeds, Ca2+ concentrations increase and the annexins presented
are less sensitive to Ca2+. That said, annexins may also bind to the inner membrane and
form nucleation sites for precipitate growth [53]. In doing so, annexins can reduce free Ca2+

concentrations and prevent the activation of Ca2+–dependent degradation processes in the
matrix. Hence, annexins may be involved in signaling related to mitochondrial calcium
overload, but the extent of which is currently unknown. Perhaps the biggest question is
whether annexins are linked to the permeability transition phenomenon or the Ca2+ buffer-
ing system. Hence, functional studies, coupled with structural assessments, looking at the
expression and activity of annexins with respect to Ca2+ handling in cardiac mitochondria
could prove fruitful. However, the connection between mitochondrial ultrastructure and
energy transduction is an emerging field. That said, we are still quite limited today, but
cryo–EM has shed new light on the subject.

7. Structure/Function Axis

Mitochondrial ultrastructure undergoes dramatic changes during metabolic perturba-
tions or in the presence of certain genetic modifications [63–70]. As such, calcium overload
is a way to induce mitochondrial structural modifications. The response of mitochondria
to Ca2+ was first reported about a half-century ago and was shown to decouple mito-
chondrial ATP production in extremely overloaded states via the permeability transition
phenomenon [71–82]. A different perspective on the matter involves the incorporation
of structural information with coincident function data which is summarized in Figure 1.
The idea linking structure to function is not new; however, the effect of Ca2+ on ultra-
structure is novel and warrants further investigation. The importance of this concept is
borne out through two simple facts. The first involves matrix contracture following ADP
binding [83]. This presumably enhances energy transduction, a theory yet to be experi-
mentally or computationally verified. The second encompasses ultrastructural changes
induced by the presence of excess Ca2+ [2,84,85]. From this mechanism, the intriguing
phenotypes reported in prior work can be explained by a metabolic flux imbalance caused
by Ca2+-induced cristae network disruption via metabolite permeability changes induced
by cristae junction modifications.

Following up on our previous modeling study [1], we have identified novel structural
changes associated with calcium overload and treatments known to protect against its
devastating effects [5]. We hypothesize that differential cristae junctional protein process-
ing underly the differences in these phenotypes. Figure 2 shows that as the Ca2+ load
increases, the ultrastructural changes become more and more pronounced. These changes
in ultrastructure are responsible for depressed ATP synthesis rates [7]. In the calcium over-
loaded state, the cristae network becomes “stringy”, and the matrix volume expands with
embedded Ca2+ phosphate precipitates located within the matrix near cristae junctions [2].
Intriguingly, the impact of cyclosporin A (CsA) on ultrastructure aligns with prior work
which shows that this compound causes cristae membrane condensation and enhances
metabolic flux [5,86]. These morphological changes are independent of the permeability
transition pore [7] and require new approaches capable of demystifying the links between
membrane morphology and energy transduction.
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Figure 2. Mitochondrial ultrastructural changes associated with calcium overload. From left to
right, IMOD [16] 3D mitochondrial reconstructions from cryo–electron tomography data where
mitochondria were exposed to zero Ca2+, a bolus of 25 µM CaCl2, a bolus of 50 µM CaCl2 [2], and
1µM CsA. Calcium causes a decrease in cristae volume in a titratable manner. CsA leads to an
expanded cristae volume and altered outer membrane morphology.

While these images reveal a striking effect of calcium and CsA on the ultrastructure of
isolated mitochondria, they only provide possible explanations for the observed reduction
of maximum rates in oxidative phosphorylation in the calcium overloaded state. One
clue lies within the O2 respiratory dynamics during oxidative phosphorylation in the
various conditions.

8. Oxygen Utilization in the Calcium Overloaded State

Prior studies have identified that when mitochondria are in a calcium overloaded
state, their ability to oxidatively phosphorylate ADP is compromised [7,87]. This could
be due to transient permeability transition events which decouples proton pumping from
ATP synthesis. Alternatively, ultrastructural changes could underly the altered respiratory
dynamics that occur during oxidative phosphorylation. One way to test this is to estimate
the amount of O2 utilized per ADP phosphorylated. Estimating these values is difficult and
requires the right protocols. Since we collected our data with a different objective in mind,
we developed a suitable alternative approach. Using the information of the time derivative
of the respiratory rate (JO2), we estimated the duration of oxidative phosphorylation in
a manner that is robust against experimental condition. The method is summarized in
Figure 3. At the time point when oxidative phosphorylation is winding down, there is
a transition that marks when the system is entering its final approach to a new steady
state. This method was robust with respect to environmental conditions and produced
ATP/O2 ratios close to the theoretical value. That said, the exact time or transition point in
the vicinity of our selection is not critical if the respiratory phase or transition is the same
between conditions.

Figure 4 summarizes the effect of calcium overload on oxygen utilization during
oxidative phosphorylation in the absence and presence of CsA. The apparent ATP produced
per O2 consumed for each condition are shown in Figure 4A. This was calculated based on
a total ADP bolus of 500 µM and assuming enough is converted to ATP before ATP cycling
occurs at an appreciable rate so that a reliable estimate of O2 cost may be calculated. CsA
has little to no effect on these values; therefore, the permeability transition phenomenon is
not relevant here. As the Ca2+ load increases, fewer ATP molecules are produced from the
same number of O2 molecules. This occurs because background cation cycling (H+, Na+,
K+, and Ca2+) draws current from the electron transport pumps and thus consumes O2.
Figure 4B shows the estimated ATP/O2 calculated using the following assumptions: i) Total
O2 cost only includes O2 used for oxidative phosphorylation and O2 used to power cation
cycles. The O2 consumed by the electrode is assumed to be negligible at these flux rates.
Assuming the average excess O2 utilization (waste) shown in Figure 4C is representative
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for each calcium load, this relationship was used to correct for total O2 utilization shown in
Figure 4A to remove O2 used to run futile cation cycles during oxidative phosphorylation.
This relationship was approximated from the actual O2 use and the theoretical amount
for the given bolus of ADP. Figure 4D shows how excess O2 utilization correlates strongly
with duration of oxidative phosphorylation, which supports the idea that the O2 waste
during oxidative phosphorylation occurs at a relatively constant, calcium load specific,
and predictable rate. Lastly, Figure 4E shows that after a threshold, calcium load begins to
impair oxidative phosphorylation rates and forces mitochondria to phosphorylate ADP at
a slower rate relative to when calcium is low or absent.
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Figure 3. Method used to calculate the duration of oxidative phosphorylation. The transition is
marked with an open circle and a shaded area for each condition that was used to estimate the point
the majority of the O2 flux switches from oxphos using the original ADP bolus to futile ATP cycling.
This ATP cycling occurs when the rate of mitochondrial ATP efflux matches the ATP hydrolysis rate
from extramitochondrial ATPase contaminants. All mitochondrial preparations when Mg2+ is present
contain these contaminants. The arrows point to the start and end of oxphos for each condition.

In addition, CsA tends to lower this duration back towards baseline, yet it did not
impact the apparent or estimated ATP/O2 ratio. This effect of CsA is intriguing and is not
likely to be related to its effect on the permeability transition phenomenon (i.e., pore gating).
The effect is still present at low calcium loads, albeit very subtly. An alternative explanation
of this effect ties into the role CsA plays in modulating mitochondrial ultrastructure [5].
Cryo–EM imaging reveals that CsA leads to a more condensed cristae network and pre-
sumably enhances energy transduction rates, and this observation lines up with the shorter
durations of oxidative phosphorylation. All that said, the inhibitory role calcium plays
during oxidative phosphorylation is becoming clearer and is still a potential target for
ischemia/reperfusion injury and other metabolic–related disorders.
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Figure 4. Analysis of O2 cost for each experimental condition. (A) Observed ADP consumed (ATP
produced) per O2 across a range of calcium loads with and without CsA. (B) Estimated ATP/O2 ratios
across a range of calcium loads with and without CsA. The theoretical PO2 value for NADH linked
substrates is approximately 5.46 assuming 8/3 + 1 H+ per ATP generated and exported and 20 H+

per O2 consumed. (C) Calculated mean O2 waste during the oxphos period used to correct apparent
ADP per O2 data shown in panel A to estimate the PO2 values shown in panel B. (D) Calculated
excess O2 cost plotted against oxphos duration from panel C. (E) Oxphos duration estimated from
data for each condition. Color key: blue, EGTA; orange, 40 nmol/mg, yellow, 250 nmol/mg, and
500 nmol/mg Ca2+ condition. Data are presented as the mean ± standard deviation for a sample size
of n ≥ 8.

9. Concluding Remarks

How exactly do calcium phosphate precipitates impair oxidative metabolism? Do they
directly or indirectly affect mitochondrial ultrastructure? Are the observed ultrastructural
changes causal to the reduced capacity of calcium loaded mitochondria to produce and
export ATP? These precipitates have been seen in rather tame cell culture conditions [88],
but do they exist in cardiac mitochondria in living cardiac tissue? They have been found
in infarcted cardiac tissue [89], but EM processing artifacts cannot be ruled out. As ex-
perimental techniques are limited, computational modeling is necessary to answer these
questions related to metabolic functional capacity and ultrastructural features. The results
presented herein reveal that the inhibition of oxidative phosphorylation is a calcium related
phenomenon and is not caused by a direct decoupling of energy metabolism. In the calcium
overloaded state, oxidative phosphorylation becomes rate limited by a yet to be determined
mechanism that point towards either enzyme activity changes [1], ultrastructural modifica-
tions [2,5], or a combination of the two. As these questions are quite challenging to answer
using today’s technology, detailed biophysical modeling of this phenomenon is the next
best approach. Fortunately, several promising models [2,90–92] are available to establish a
solid foundation from which to pursue the answer to these questions.
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