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Abstract: Wild rice is a primary source of genes that can be utilized to generate rice cultivars
with advantageous traits. Chromosome segment substitution lines (CSSLs) are consisting of a set of
consecutive and overlapping donor chromosome segments in a recipient’s genetic background. CSSLs
are an ideal genetic population for mapping quantitative traits loci (QTLs). In this study, 59 CSSLs
from the common wild rice (Oryza rufipogon Griff.) accession DP15 under the indica rice cultivar
(O. sativa L. ssp. indica) variety 93-11 background were constructed through multiple backcrosses and
marker-assisted selection (MAS). Through high-throughput whole genome re-sequencing (WGRS)
of parental lines, 12,565 mapped InDels were identified and designed for polymorphic molecular
markers. The 59 CSSLs library covered 91.72% of the genome of common wild rice accession DP15.
The DP15-CSSLs displayed variation in six economic traits including grain length (GL), grain width
(GW), thousand-grain weight (TGW), grain length-width ratio (GLWR), plant height (PH), and leaf
margin color (LMC), which were finally attributed to 22 QTLs. A homozygous CSSL line and a
purple leave margin CSSL line were selected to construct two secondary genetic populations for
the QTLs mapping. Thus, the PH-controlling QTL qPH1.1 was mapped to a region of 4.31-Mb
on chromosome 1, and the LMC-controlling QTL qLMC6.1 was mapped to a region of 370-kb on
chromosome 6. Taken together, these identified novel QTLs/genes from common wild rice can
potentially promote theoretical knowledge and genetic applications to rice breeders worldwide.

Keywords: agronomic traits; chromosome segment substitution lines (CSSLs); common wild rice
(Oryza rufipogon); molecular markers; QTL mapping; qLMC6.1; qPH1.1

1. Introduction

Rice is a staple food for more than half of the world’s population, and improving its
yield is vital for food security. Wild rice (Oryza rufipogon Griff.) has always been recognized
as the ancestor species of Asian cultivated rice in the evolution, and a natural germplasm
resource for generating elite cultivated rice cultivars (O. sativa L.) [1,2]. During the process
of long-term domestication, many traits of cultivated rice have already been missed by
artificial and natural selection. The relatively complete genome of wild rice ensures its
wider phenotypic diversity in various traits [3,4].

Grain morphology encompasses grain length (GL), grain width (GW), thousand-
grain weight (TGW), which are key factors that affect directly rice yield and quality [5].
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The study of wild rice traits, especially grain characteristics, is promising for further
improvement of the yield and quality of cultivated rice [6]. To date, more than four genes
linked to grain shape have been cloned in rice [7–9]. GW2, the first major quantitative
traits loci (QTL) isolated through map-based cloning, controls the width and weight of
rice grains [10]. Similarly, the GS3 locus controls GL, TGW, GW, and grain plumpness [9],
while GW8/OsSPL16 and GW7/OsSPL16 are determinants of GW and grain quality [7,8].
Finally, the GW5 gene has been associated with greater seed vigor and grain yield [11]. The
temporary mapping populations such as F2 and F2:3 populations are sometimes limited by
their chaotic genome background and smaller progeny quantity [12], which can only be
used for the preliminary characterization and chromosome location of simple phenotypic
traits to a large extent [13,14]. With the gradual improvement of plant genetics and genomics
research, permanent mapping populations have overcome the shortcomings of temporary
populations. Chromosome segment substitution lines (CSSLs) consist of a set of consecutive
and overlapping donor chromosome segments in a recipient’s genetic background [15].
They are similar to the near-isogenic lines (NILs) in terms of the ease of identifying new
QTLs, since their removal of more genetic interference from the genetic background. Several
QTLs have been fine-mapped or cloned based on the NILs in rice [16], and CSSLs have
been recently used to clone the GL-controlling gene GL4 [17]. TGW is one of the major
factors determining rice yield, but the molecular and genetic factors that determine rice
grain weight is still unclear [18]. Identification and utilization of major QTLs associated
with rice TGW are of great significance [19]. In recent years, breakthroughs in the advanced
genome-wide association analysis (GWAS) methods promote the identification of several
new candidate genes and alleles linked to TGW in rice [20]. The GSK2-LARGE1/OML4
pathway controlling TGW in rice has been discovered, which revealed that the TGW is
determined by the interaction of many alleles and QTLs [21,22]. The GLWR is one of
the main determinants of the rice grain shape. At present, several GLWR-related genes
have been cloned from rice. For instance, the OsRA2 RNA interference plant showed an
increased grain length-width ratio (GLWR) [23]. Compared with wild-type rice, the GLWR
and TGW of OsGRF1 overexpression plants were higher than Osgrf1 [24]. Furthermore,
some grain quality-related genes have been cloned from common wild rice. For instance,
Bh4 was identified in the common wild rice line W1943 and controlled the black glume
color [25]. Gh1 encodes chalcone isomerase, and its mutation results in the golden glume
phenotype [26]. In addition, the reddish glume and internode gene Gh2, which encodes a
cinnamyl alcohol dehydrogenase (CAD), is a key enzyme in plant secondary metabolism
and lignin synthesis [27]. Pb (also known as Prp-b) and its complementary gene Pp (also
known as Prp-a) are responsible for the purple seed coat [28]. Ra and Rb genes with basic
helix-loop-helix (bHLH) structure and homology to Lc were isolated from the leaf cDNA
library of a purple leaf rice variety. The leaf margin color (LMC) is a distinctive trait in
wild rice compared to cultivated rice, and a potential phenotypic trait that can be used as a
marker by rice breeders to screen hybrids [29,30].

The economic traits identified from wild rice such as the plant height (PH) are impor-
tant plant architecture traits to improve rice yield and biomass [31]. Semi-dwarf (sd-1), a
defective gibberellin 20-oxidase gene in the gibberellin (GA) synthesis pathway, generated
semi-dwarf rice and set a new record of rice yield in Asia in the 1960s [32]. As a major
semi-dwarf gene, sd-1 is still widely used in modern rice varieties [33]. SLR1 gene encodes a
DELLA protein, which is a negative regulator in the process of gibberellin GA signal trans-
duction. Its slr1 mutant shows weak stems and elongated basal internodes [34]. As a BR
signal receptor, OsBRI1 is highly homologous with AtBRI1 gene in Arabidopsis. It regulates
rice internode elongation mainly by controlling cell division and elongation [35]. Internode
elongation in rice is mainly controlled by phytochromes, which can regulate the expression
of the GA biosynthetic gene OsGA3ox2 affecting the elongation of rice internodes [36,37].
Rice cultivars of higher PH are economic and environmental-friendly in maintaining both
plant production and animal husbandry in paddy fields [38–40]. Thus, many PH-related
QTLs of rice have been already detected by researchers worldwide [41,42].
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Aiming at improving the efficiency of novel QTLs detection and promoting the rice
breeding practice, the DP15-CSSLs were constructed by multiple backcrossing, self-crossing,
and marker-assisted selection (MAS) from the wild rice DP15 and 93-11 in this study [43].
The 255 pairs of molecular markers developed evenly distributed across 12 chromosomes
were to establish a set of CSSLs of wild rice covering the whole DP15 genome. In addition,
20 grain-related QTLs, one PH-related QTL qPH1.1, and one LMC-related QTL qLMC6.1
were detected according to the DP15-CSSLs, which were promising for the identification of
new QTLs/Genes. The dominant QTL locus qPH1.1 controlling higher PH was mapped
and characterized based on DP15-CSSLs and will be meaningful to explain the formation
mechanism of higher PH in wild rice. The qLMC6.1 associated with purple leaf margin
of wild rice was located in a region of 370-kb on chromosome 6 by the DP15-CSSLs, and
qLMC6.1 can also control the leaf sheath color (LSC), stigma color (SC), and apiculus
color (AC) was characterized to explore the distribution of anthocyanin in putative
tissues and cells. Taken together, the DP15-CSSLs are a repository of various traits of
Guangxi common wild rice, which can be effectively used as the introgression lines of
wild rice in generating improved hybrid rice cultivars and ideal genetic populations for
QTLs/genes mapping [44].

2. Materials and Methods
2.1. Plant Materials

In the present study, one elite wild rice accession DP15 was screened to establish wild
rice CSSLs from 2361 Guangxi common wild rice materials preserved in the nursery of
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources,
Nanning, Guangxi Province, China (Figures 1 and S1) [15]. As a representative Guangxi
common wild rice accession, DP15 shows various plant traits that are significantly different
from cultivated rice variety 93-11 (Figures 1 and S1, and Table S1). DP15 was used as a
donor parent and 93-11 receptor parent to develop DP15-CSSLs (Figures 1 and S2, Tables
S2 and S3). The DP15-CSSLs materials and its parental materials used for QTLs detection
and mapping were grown during 2020 (from 20 November 2019 to 10 May 2020) in Sanya,
China (109◦14′12′′ N, 18◦08′49′′ E), and 2021 (from 2 March 2021 to 10 July 2021) in Nanning,
Guangxi Province, China (109◦01′16′′ N, 22◦79′98′′ E), respectively.

2.2. Development of the DP15-CSSLs

The DP15 and 93-11 were respectively used as the donor and recipient parents to
develop a set of CSSLs [15]. The DP15-CSSSLs were constructed by MAS, backcrossing, phe-
notypic identification, and artificial selections, as described previously (Figures 1 and S2,
Tables S2 and S3) [43–46]. The F1 progeny derived from a cross between 93-11 and DP15
were then backcrossed with 93-11 to produce the BC1F1. The self-crossed progeny of BC2F1
were selected based on 255 polymorphic molecular markers evenly distributed across
12 chromosomes (Figures 1 and S2, Tables S2 and S3). BC2F1 plants were then backcrossed
with 93-11 to produce the BC3F1 progeny, and primary CSSLs were selected based on their
genotypes by MAS, which were then self-crossed to obtain the BC4F1 generation. Can-
didate CSSLs were screened from these progenies to detect the residual donor segments,
followed by the selection of BC5F1 lines. The latter were then backcrossed to generate
the BC6F1 progeny. Finally, the overlapping substitution segments across different lines
were also screened from the BC4F2, BC5F2, and BC6F2 progeny to obtain the definite CSSLs
(Figures 2 and S2, and Table S4).
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Figure 1. Phenotypic morphology of DP15 and 93-11. (a), plant phenotype of DP15 and 93-11, bar = 

20 cm; (b), panicle morphology of DP15 and 93-11, Bar = 5 cm; (c), phenotype of mature grain of 

DP15 and 93-11, bar = 1 cm; (d), length of brown rice of DP15 and 93-11, bar = 1 cm; (e), width of 

brown rice of DP15 and 93-11, bar = 1 cm. 
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Figure 1. Phenotypic morphology of DP15 and 93-11. (a), plant phenotype of DP15 and 93-11,
bar = 20 cm; (b), panicle morphology of DP15 and 93-11, Bar = 5 cm; (c), phenotype of mature grain
of DP15 and 93-11, bar = 1 cm; (d), length of brown rice of DP15 and 93-11, bar = 1 cm; (e), width of
brown rice of DP15 and 93-11, bar = 1 cm.
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Figure 2. Graphical genotypes of the 59 lines DP15-CSSLs. Note: Black bars indicate homozygous
chromosome substituted segments derived from DP15; Yellow bars indicate heterozygous substituted
segments derived from DP15; Grey bars indicate the genetic background of recipient parent 93-11.
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2.3. The Methods of Phenotypic Characterization of DP15-CSSLs

The DP15-CSSLs and its parent lines were planted with a 20-cm plant-spacing and a
30 cm row-spacing in the experimental field. Three randomly selected biological replicates
of each DP15-CSSLs line were statistically measured for the values of various traits. The
phenotypic characteristics of the DP15-CSSLs mature plants, including grain number (GN),
TGW, GL, GW, GLWR, PH, LMC, AC, and LSC, were recorded under natural conditions
in the experimental field during 2020 (from 20 November 2019 to 10 May 2020) in Sanya,
China, and 2021 (from 2 March 2021 to 10 July 2021) in Nanning, Guangxi Province, China,
respectively (Figures 3, S2 and S3, and Table S5). When the seeds were matured under natu-
ral conditions, the dry seeds of each line were selected to measure the values of grain traits
as previously described [47]. The tissue slices were processed by the frozen section machine
Hestion CM2850. The vascular bundle scanning pictures were captured by a scanning
electron microscope SEM refers to previous research [48]. The cell pictures were obtained by
paraffin section with a phloroglucinol staining according to established protocols [49]. The
anthocyanin fluorescence images of rice stigma protoplasts were captured by the confocal
microscope (Leica-TCS-SP8MP) in reference to previous experimental methods [50].
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Figure 3. Frequency distribution of 59 DP15-CSSLs and their two parents on four grain traits over two
years. Note: (a), phenotypic distribution of TGW in DP15, 93-11, and the DP15-CSSLs; (b), phenotypic
distribution of GL in DP15, 93-11, and the DP15-CSSLs; (c), phenotypic distributions of GW in DP15,
93-11, and the DP15-CSSLs; (d), phenotypic distribution of GLWR in DP15, 93-11, and the DP15-
CSSLs; The marked solid arrow lines and dotted arrow lines indicate the phenotypic distribution of
DP15 and 93-11 respectively.

2.4. Whole Genome Re-Sequencing (WGRS) and Bioinformatic Analysis of Genomic SSR, InDel,
and SNP Markers

The genomic DNA of DP15 and 93-11 were extracted using a kit (Rapid Plant Genomic
DNA Isolation Kit, Sangon Biotech). The SSR markers used in this research were refer-
enced to the SSR database of rice (https://archive.gramene.org/db/markers; accessed on
15 November 2016) (Tables S2 and S3). The whole genome re-sequencing (WGRS) was
performed on an Illumina HiSeq2500™ by Novogene Company (Beijing, China) refers

https://archive.gramene.org/db/markers
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to the standard Illumina protocol (Figures S5 and S6, and Table S6) [51]. The FASTQ
files were processed by the software of FASTQ version 0.6.0 to access the read quality
(https://github.com/OpenGene/fastp; accessed on 3 June 2019). The WGRS data were
then compared to design the whole genome SNP (Single nucleotide polymorphism) mark-
ers and InDel (Insertion-deletion) markers according to the website of BWA version 0.7.16
(http://bio-bwa.sourceforge.net/; accessed on 4 August 2019) (Figures S7 and S8). Polymor-
phic genomic sites were evenly selected and designed for InDel markers (Figures S7 and S8,
and Table S7). The Polymorphic regions (≥1 bp variation) with high sequencing depth
(DP15 ≥ 50 fold) were selected to design the SNP and InDel markers [52]. The circos
software online was also used to visualize the SNPs and InDels (http://www.circos.ca/
software/download/circos/; accessed on 6 August 2019). The primers were designed
by the online software Primer3 version 0.4.0 tools (https://bioinfo.ut.ee/primer3-0.4.0/;
accessed on 7 August 2019). The PCR product size was designed with a range from 200 to
500 bp (Figure S8, Tables S1–S3 and S7).

2.5. Genomic DNA Extraction and PCR Amplification

Genomic DNA of DP15-CSSLs was extracted using a modified version of the CTAB
method [53], and amplified by PCR according to established protocols [54]. The PCR prod-
ucts were separated in 7% polyacrylamide denaturing gels, and the bands were visualized
using the silver-staining method and genotyped as previously described (Figure S9) [55].

2.6. QTL Mapping and Data Analysis

The substituted segments in DP15-CSSLs were screened as described previously [15].
The DP15-CSSLs genomes were visualized graphically using the Graphical Geno-Types32
software (GGT32), and putative QTLs were identified based on the significance level of
p ≤ 0.001. If several CSSLs with overlapping substituted segments exhibit similar pheno-
types, the relevant QTL is likely localized to an inter-genomic interval (Figures 2 and S10,
and Table S4) [56]. Based on the SNP markers located in target regions of QTLs, a BSA
(Bulk segregation analysis) method based on GSR40K gene chip technology is used for
fine mapping and verification of target QTLs [57]. The QTL nomenclature was followed
as the previously described method [58], and the linkage map of QTLs was constructed
using the Map-Chart 2.2 software [59]. The phenotypes and genotypes of the CSSLs were
finally evaluated by the QTL Ici-Mapping 4.1.0 software, and the QTLs were mapped by a
permutation test (Permutations = 1000, p = 0.05) [60]. The additive effect of a QTL was cal-
culated as (Phenotypic value of CSSLs—phenotypic value of 93-11)/2, and the phenotypic
contribution ratio of the additive effect was calculated as (Additive effect value/phenotypic
value of 93-11) × 100 (Figures 2, 3, S10 and S11, and Table S4).

3. Results
3.1. Whole Genome Re-Sequencing (WGRS) of the Parental Materials

The parental material DP15 and 93-11 were re-sequenced by Illumina high-throughput
sequencing technology by Novogene Company (Beijing, China), and the resultant genome
sequence data were then mapped by the IRGSP-1.0 software. These high-quality sequenc-
ing data of 9.68 G and 9.8 G were obtained from DP15 and 93-11 genome re-sequencing
with average sequencing depths of 19.37× and 20.45×, respectively (Table S6). The num-
bers of mapped reads between DP15 and 93-11 genome were 52,922,056 and 50,987,541,
respectively (Figures S5 and S6). The GC content of mapped reads between DP15 and 93-11
was 45.3% and 44.2% (Table S6). The SNPs between DP15 and 93-11 genome are mainly
mapped to the coding regions (CDS) and the 5′, 3′ untranslated regions (5′, 3′ UTR) with a
total percentage of 95.11% to the whole genome variation (Figures S5 and S6). Compared
to the Nipponbare reference genome, the numbers of SNPs in the DP15 and 93-11 genomes
were 1,894,103 and 690,409, respectively (Figure S7 and Table S6).

https://github.com/OpenGene/fastp
http://bio-bwa.sourceforge.net/
http://www.circos.ca/software/download/circos/
http://www.circos.ca/software/download/circos/
https://bioinfo.ut.ee/primer3-0.4.0/
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3.2. Selection of Polymorphic Markers between DP15 and 93-11 Genome

The average genome SNPs density of DP15 and 93-11 were 0.51634603% and 0.182119873%,
respectively. The frequency distribution and density of polymorphic genome SNPs and
InDels between DP15 and 93-11 were detected, respectively. Based on the comparative
analysis of the whole genome re-sequencing data of the parent materials DP15 and 93-11,
15,691 polymorphic InDel loci were detected between the two parental genomes. Among
them, 12,565 mapped InDels were designed for polymorphic molecular markers by on-
line bioinformatic software Primer3-0.4.0 (https://bioinfo.ut.ee/primer3-0.4.0/; accessed
on 7 August 2019). The melting temperatures of the InDels were 55.02~61.24 ◦C, the GC
content was 26.9~72.2%, and the average product lengths of the InDel markers were from
100 bp to 500 bp (Figures S7 and S8, and Table S1). Combining the InDel primers with
the 2261 pairs of rice genomic SSR primers available in the laboratory, a total of 255 pairs
of polymorphic markers with an average distance of 1.47 Mb were developed (Figure S8;
Tables S1, S6, and S7). The representative electropherogram showed that there are polymor-
phic bands amplified with these developed InDels and SSR markers (Figure S9).

3.3. Chromosome Substitution Segments Analysis of DP15-CSSLs

In total, 255 pairs of genomic molecular markers have been developed with an average
distance of about 1.47 Mb between two adjacent markers to establish these DP15-CSSLs
(Tables S2 and S3). In this study, 59 CSSLs harboring targeted DP15 chromosomal segments
in the 93-11 genetic background were finally established. The estimated length of the
substituted chromosome segments in DP15-CSSLs ranged from 1.1 Mb to 15.9 Mb with
an average length of 7.5 Mb. The cumulative coverage length of DP15-CSSLs segments
is 344.34 Mb. Most of the complete genomes in each chromosome were covered by the
DP15-CSSLs except for chromosomes 1 (80.37%), 2 (92.89%), 3 (82.14%), 4 (89.63%), 5 (92%),
7 (88.56%), 9 (92.75%), and 12 (97.14%). The total coverage rate of substituted segments in a
genome was 91.72%, the average coverage rate of substitution segments in a chromosome
was 92.96%, and the highest and lowest coverage was seen with chromosomes 6 (100%)
and 1 (80.37%), respectively (Figures 2 and S10, Tables S3 and S4).

3.4. Characteristics of Four Grain Related Traits of the DP15-CSSLs

The phenotypic variations between the parent lines and DP15-CSSLs were recorded,
respectively, in Sanya and Naning during 2020 and 2021. The phenotypic values on four
grain traits GL, GW, TGW, and GLWR were statistically analyzed, and the results showed
that the phenotypic values collected from the two experimental sites over two years were
consistent except for slight variation. The phenotypic values of GL, GW, TGW, and GLWR
in DP15-CSSLs and its parents showed an extensive variation, which implied that there
might be potential QTLs to be identified (Figures 3 and S11, Tables S5 and S8). Compared to
their two parents, these DP15-CSSLs showed a higher GLWR over the two years, which will
also lay a foundation for the mapping of novel QTLs and the breeding of new cultivars. In
addition, DP15-CSSLs showed a higher GL and GW in Sanya during 2020 than in Nanning
during 2021, which may be affected by the environmental and ecological conditions. Based
on the phenotypic values recorded, QTLs analysis on DP15-CSSLs ware carried out for
the four grain traits TGW, GL, GW, and GLWR, about 20 QTLs were finally detected with
linked molecular markers in the DP15-CSSLs (Figures 3, 4, S10, and S11, Tables S5 and S8).

3.5. Identification and Detection of TGW-Related QTLs of DP15-CSSLs

Combing the genotypes and TGW phenotype of DP15-CSSLs, QTLs related to TGW
were screened in this research (Figures 3a, 4a, and S11, Tables S5 and S8). Most of the
TGW in DP15-CSSLs were significantly less than that of 93-11 over the two years of
2020 and 2021 (Table S5). Seven QTLs (qTGW1.1, qTGW3.1, qTGW4.1, qTGW10.1, qTGW11.1,
qTGW11.2, and qTGW12.1) related to TGW were identified with linked molecular markers
on Chromosome 1, 3, 4, 10, 11, and 12, respectively (Figures 4a and S11, and Table S8).
Furthermore, qTGW1.1 showed a linkage with a molecular marker DXB-1-3 in chromosome

https://bioinfo.ut.ee/primer3-0.4.0/


Biomolecules 2022, 12, 1850 8 of 24

one. The qTGW3.1 was identified in the overlapped substitution segments of ZN15, and
ZN16 between the SSR marker RM517 and RM251, where the previously cloned gene LPA1
is also located [61]. The qTGW4.1 was mapped between RM1018 and RM3288. Likewise,
qTGW10.1 was identified in the overlapping segment DP15-CSSLs of ZN49, and ZN50
within the RM6404 to RM216 region (Figures 4a and S11, and Table S8). There are two QTLs
related to TGW were detected in chromosome 11, named qTGW11.1 and qTGW11.2. The
qTGW12.1 detected in chromosome 12 was located in an overlapping segment of ZN57 and
ZN58 near the simple sequence repeat (SSR) marker RM313. The phenotypic contribution
ratios of the seven TGW-related QTLs ranged from 7.96~11.11% in 2020 and 9.24~12.61% in
2021 (Figures 3a, 4a, and S11, and Table S8).
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Figure 4. Detection of QTLs related to four grain traits in the DP15-CSSLs. (a), detection of QTLs
related to TGW in DP15-CSSLs; (b), detection of QTLs related to GL in DP15-CSSLs; (c), detection of
QTLs related to GW in DP15-CSSLs; (d), detection of QTLs related to GLWR in DP15-CSSLs.

3.6. Identification and Detection of GL-Related QTLs of DP15-CSSLs

Some of the DP15-CSSLs showed shorter GL than 93-11 over two years (Figure 3b and
Table S5). Five effective QTLs (qGL1.1, qGL2.1, qGL3.1, qGL5.1, and qGL6.1) related to GL
were respectively identified on Chromosome 1, 2, 3, 5, and 6 (Figures 4b and S11, Table S8).
The qGL1.1 were linked to the over lapping segment of ZN4 and ZN5. The qGL2.1 was
located at an interval between RM6842 and RM12355. The qGL3.1 in the DP15-CSSLs of
ZN18 is linked with the marker RM1164. The qGL5.1 was identified as co-segregated with
the RM1200 in the overlapping segment of ZN18 and ZN27. Finally, qGL6.1 was identified
in the ZN35 substituted region between RM6071 and RM400 (Figure S11 and Table S8). The
CP values of qGL3.1, qGL5.1, and qGL6.1 ranged from 11.52% to 6.5% in 2020 and from
11.94% to 6.5% in 2021 (Figures 4b and S11, Table S8).

3.7. Identification and Detection of GW-Related QTLs of DP15-CSSLs

The GW of five DP15-CSSLs (ZN6, ZN35, ZN39, ZN40, ZN46, and ZN51) were
significantly different from that of 93-11(Figure 3c, and Tables S5 and S9). Five QTLs
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(qGW1.1, qGW6.1, qGW7.1, qGW9.1, and qGW11.1) related to GW were identified that were
distributed on Chromosome 1, 6, 7, 9, and 11, respectively. While qGW1.1 was identified
between RM10159 and RM486, qGW6.1 was located between RM6071 to RM400, where
the previously cloned gene DSG1 is also located [62]. In addition, qGW7.1 was in the
substituted segments of ZN39 and near RM429, qGW9.1 was mapped to a substituted
region of ZN46 between RM257 and RM245, and qGW11.1 in ZN51 between RM167 and
RM120 (Figures 4c and S11, and Table S8). The CP values ranged from 7.96% to 6.89% in
2020 and from 6.35% to 5.37% in 2021 (Table S8).

3.8. Identification and Detection of GLWR-Related QTLs of DP15-CSSLs

The GLWR of three CSSLs (ZN6, ZN40, and ZN43) was larger than that of 93-11 in
2020 (Figure 3d, Tables S5 and S8). Three QTLs (qGLWR1.1, qGlWR7.1, and qGLWR8.1)
related to GLWR were identified, of which qGLWR1.1 was located in the segment of ZN6
between RM297 and RM486. The average CP value of qGLWR1.1 was 7.9% in 2020 and
8.15% in 2021 (Table S8). In addition, qGlWR7.1 was located near RM429, and its CP values
were 8.51% in 2020 and 8.77% in 2021 (Figures 4d and S11, and Table S8). Finally, qGLWR8.1
was located in the overlapping segment of ZN43 and ZN53 between RM344 and RM5663,
and its mean CP values in 2020 and 2021 were 11.55% and 11.69%, respectively (Table S8).

3.9. Identification and Genetic Mapping of the qPH1.1
3.9.1. Characterization of the PH of a DP15-CSSL Line

ZN6 is a homozygous DP15-CSSL line, the chromosomal substitution segments of ZN6
were located on chromosome 1. The internode length of ZN6 and 93-11 were statistically
counted at the maturation stage. The typical phenotype of ZN6 is a higher stem, and its
PH is significantly higher than that of its recipient parent 93-11. Through the comparison
of phenotypic values between ZN6 and 93-11 on the internode traits, the results showed
that both the length and diameter of the first, second, third, and fourth internode of the
substitution line ZN6 significantly increased compared with the donor parent 93-11 except
for the panicle length (Figure 5 and Table S9). It can be inferred that the QTL controlling
the longer stem of wild rice is located between two pairs of primers RM5 and DXB-1-7 on
rice chromosome 1 (Figures 1 and 5, and Table S9).
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Figure 5. Phenotype of a PH-related DP15-CSSL line. (a), the plant architecture of ZN6 and 93-11 at
heading stage, bar = 50 cm; (b), the internode of ZN6 and 93-11 at heading stage, bar = 5 cm; (c), the
histogram of internode length of ZN6 and 93-11 at heading stage; the sign “*” in Figure 5c indicates a
p ≤ 0.05 level; The sign “**” in Figure 5c indicates a p ≤ 0.01 level.
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3.9.2. Characterization of the Cell Morphology in Culm

The length of rice stem is mainly determined by two main factors: cell length and cell
numbers in unit area [63]. Therefore, the internodes of ZN6 and 9311 at the grain-filling
stage were selected for tissue section analysis respectively. The results of the cell section
showed that there was no significant difference in cell size between ZN6 and the recipient
parent 93-11, but the cell density per unit area of ZN6 was significantly larger than that
of the donor parent 93-11. This result preliminarily shows that the cell density per unit
area of ZN6 was increased by genes that regulate the course of cell division, which finally
promotes a higher PH and a thickening stem phenotype (Figure 6 and Table S10).
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Figure 6. Tissue section, vessel scanning, and paraffin section figures of the uppermost internode at
the grain filling stage. (a), the tissue section figure of the uppermost internode of ZN6, bar = 100 µm;
(b), the tissue section figure of the uppermost internode of 93-11, bar = 100 µm; (c), the horizontal
paraffin section figure of the uppermost internode of ZN6, bar = 100 µm; (d), the horizontal paraffin
section figure of the uppermost internode of 93-11, bar = 100 µm; (e), the horizontal SEM section
figure of the uppermost internode of ZN6, bar = 100 µm; (f), the horizontal SEM section figure
of the uppermost internode of 93-11, bar = 100 µm; (g), the horizontal paraffin section figure of
the uppermost internode of ZN6 and 93-11 at heading stage, bar = 200 µm; (h), the horizontal
paraffin section figure of the uppermost internode of ZN6 and 93-11 at heading stage, bar = 200 µm;
(i), the longitudinal paraffin section figure of the uppermost internode of ZN6, bar = 100 µm (j), the
longitudinal paraffin section figure of the uppermost internode of 93-11, bar = 100 µm.

3.9.3. Genetic Analysis and Mapping of the qPH1.1

Through the genome background analysis of the ZN6, it can be inferred that the
QTL controlling the higher stem of wild rice is located between two pairs of primers
RM5~DXB-1-4 on rice chromosome 1 (Figure 7 and Table S2). For precise identification
and mapping of the qPH1.1 controlling long culm in ZN6, a secondary genetic population
was constructed by the backcross between ZN6 and recipient parent 93-11. The phenotype
and genotype of each individual in the secondary F1 and F2 population were statistically
recorded for the genetic mapping and fine mapping for the qPH1.1. The results showed
that all the individuals in the F1 generation exhibited a higher PH phenotype, and the
PH phenotype in the F2 population was obviously separated, then the phenotype data
of the F2 population were calculated for genetic analysis (Table S11). Almost 82 of the
106 F2 plants exhibited long culm phenotype, and 24 plants showed short culm phenotype,
which was consistent with the Mendelian 3:1 segregation ratio (χ2 = 0.101 ≤ χ2

0.05,1 = 3.84)
(Table S11). Thus, qPH1.1 is likely encoded by a single dominant QTL. qPH1.1 was further
located in an overlapping segment between SNP marker R0130491732 (30.49 Mb) and
F0138403159 (40.41 Mb) by a BSA method with 40K SNP microarrays Chips (Figure 7a and
Table S2). Based on the results of high-throughput sequencing, seven pairs of polymorphic
molecular markers identified from the 12,565 mapped InDels were selected to do a fine
mapping (Tables S1, S2, and S12). The genotypes and phenotypes of the F2 population
were identified, which confirmed that qPH1.1 was located in the 4.3-Mb region between
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RM11782 and RM11983, with a LOD value of 9.56, a PVE value of 79.9% (Figure 7b,c,
Tables S1 and S12).
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analysis for qPH1.1; (c), the recombinant identification and genetic mapping for qPH1.1.

3.10. Identification and Genetic Mapping of the qLMC6.1
3.10.1. Characterization of the LMC of a DP15 CSSLs Line

ZN32 is a homozygous DP15-CSSL line that contains DP15 substitution fragments in
chromosome 6. ZN32 shows a purple leaf margin phenotype that is significantly different
from 93-11 (Figures 8 and S11). Besides the LMC, the phenotypes related to plant archi-
tecture, leaf sheath, culm, auricle, apiculus, stigma, and basal shoot were identified. The
results showed that there are significant differences between ZN32 and the recipient parent
93-11 among the color of the leaf margin, basal shoot, pillar, auricle, apiculus, stigma, and
so on (Figures 8 and S11). These results show that the differences between ZN32 and 93-11
are significant and stable, which implies that there is a gene controlling LMC located in
chromosome 6 (Figures 2 and S11, and Table S4).

3.10.2. Characterization of the Cell Morphology in Stigma Cell

To investigate the distribution of anthocyanin that can generate the differentially
expressed cell morphology between ZN32 and 93-11. The stigma protoplast of ZN32
and 93-11 were extracted and evaluated by confocal microscopy according to previously
reported research [50]. The vacuole in ZN32 showed significant reddish fluorescence
coloration but no fluorescence signals were found in the nucleus, while no fluorescence
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signals were detected in the full cell in 93-11 (Figure 9). The results showed that anthocyanin,
which is a kind of water-soluble pigment, was mainly distributed in the vacuole of the
plant cell, which leads to the purple leaf margin phenotype in rice. In conclusion, this gene-
controlling LMC is related to the synthesis of anthocyanin. It can be expressed specifically
in some putative tissues, such as leaf margin, leaf sheath, stigma, apiculus, and so on
(Figures 8 and 9).
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Figure 8. Phenotype of ZN32, an LMC-related DP15-CSSL line. (a), the plant architecture of ZN32
and 93-11 at heading stage, bar = 20 cm; (b–d) in Figure 8 show the leaf margin morphology of ZN32
and 93-11 at heading stage, the red arrow in (b–d) indicates the leaf margin site, the bar in (b–d) are
1 cm, 5 mm, and 5 mm, respectively; (e), the ligule and auricle color of ZN32 and 93-11 at heading
stage, the red arrow in (e) shows the auricle site, the scale bar = 5 mm; (f), the basal shoot of ZN32
and 93-11 at heading stage, the red arrow in (f) shows the basal shoot region, bar = 5 cm; (g), the leaf
collar phenotype of ZN32 and 93-11 at heading stage, the red arrow in (g) shows the lamina joint site,
bar = 5 mm; (h), the apiculus color of ZN32 and 93-11 at heading stage, the yellow arrow in (h) shows
apiculus site; the red arrow shows stigma site, bar = 1 mm; (i), the stigma color of ZN32 and 93-11 at
heading stage; The red arrow shows stigma site, bar = 1 mm; (j), the rice basal culm with leaf sheath
surrounded of ZN32 and 93-11 at heading stage, the white arrow in (j) shows the zone of inner leaf
sheath, bar = 5 mm; (k), the rice basal culm of ZN32 and 93-11 at heading stage, the white arrow in
Figure 8k shows the borders of the culm, bar = 5 mm.
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Figure 9. Phenotypic comparison of protoplasts extracted from ZN32 and 93-11 stigma under confocal
microscopy. Note: (a–f), the protoplast of ZN32 showing fluorescence; (g–l), the protoplast of 93-11
showing no fluorescence; V indicates the position of vacuole; N indicates the position of nucleus in
protoplast, bar = 5 µm.

3.10.3. Genetic Analysis and Mapping of the qLMC6.1

The chromosome segment substitution line ZN32, a homozygous CSSL with a purple
leaf margin, is significantly different from that of the recipient parent 93-11. Through
the genome background analysis of ZN32, it can be inferred that the gene locus qLMC6.1
controlling the LMC is located in the interval of RM19381~DXB-6-4 on chromosome 6
(Table S15). The qLMC6.1 was further mapped to the RM225~DXB-6-1 region by analyzing
the substitution fragments of the adjacent substitution lines ZN31 and ZN33 that were con-
sistent with its phenotypes (Figure 10). The secondary mapping population was constructed
by backcrossing the substitution line ZN32 with the recipient parent 93-11. The results
showed that the LMC of all the F1 generation was purple, while the LMC phenotypes in
the F2 population were obviously separated. The phenotype data of the F2 population were
recorded and analyzed by a Chi-square test (Table S13). The results showed that among
the total 91 plants of the F2 population, 66 individuals showed purple leaf margin pheno-
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type and 29 showed white leaf margin phenotype, which was consistent with the Mendel
3:1 segregation ratio (χ2 = 0.18 ≤ χ2

0.05,1 = 3.84) (Table S13). Therefore, qLMC6.1 may be
encoded by a single locus. Through the 40K SNP microarray chip BSA method, qLMC6.1
was further located in the overlapping fragments between the SNP molecular markers
R0601663377 (1.66 Mb) and R0605432762TC (5.43 Mb) (Figure 10a, Tables S14 and S15).
Through genetic linkage analysis of a secondary F2 population of 93-11/ZN32 by 12 SSR
markers of Chromosome 6, qLMC6.1 was initially mapped to the region of RM225~RM253
on the short arm of chromosome 6. The two linked markers, RM225 and RM253, were
then used to screen recombinants of heterozygous type in the segregation populations of
F2, the selected heterozygous recombinants ware subsequently self-crossing to obtain F3
segregation populations. Based on the results of high-throughput sequencing, six new
polymorphic InDel markers between RM225 and RM253 were developed to conduct a
fine mapping of qLMC6.1. Through the identification and analysis of the genotype and
phenotype of 464 individuals of the F3 segregation population, it is confirmed that qLMC6.1
is located in the 370 Kb region between marker RM1163 and Z6-2, with a LOD value of
45.6 and a PVE value of 82.4% (Figure 10b,c and Table S15).
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bulk segregation analysis for the qLMC6.1; (c), the recombinants identification and genetic mapping
for the qLMC6.1; (I), simple model of Chromosome 6; (II), the distribution of primers used for primary
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4. Discussion

As one of the earliest domesticated cereal crops, rice feeds half of the world’s popula-
tion. During the long-term domestication and natural selection, the presently cultivated
rice showed remarkable morphological changes compared to common wild rice in evolu-
tion [64]. Through long-term artificial and natural selection in history, various genes of the
cultivated rice have already been missed during the domestication courses, the relatively
complete genome of wild rice ensures its wider phenotypic diversity in various traits.
Although several novel QTLs were identified using CSSLs/SSSLs of cultivated rice [65–67],
few wild rice CSSLs/SSSLs were developed for the mining of new genes [68,69]. Located
in the subtropical zone, Guangxi is rich in wild rice resources [70,71]. Rice domestication
through artificial and natural selection led to the reduction of several important agronomic
traits that can be found in wild rice. Based on the extensive germplasm resources of
Guangxi, a typical common wild rice accession DP15 with several important economic
traits was identified and selected to develop a set of CSSLs (Figure S1). Our investigation
revealed the significant phenotypic difference in various morphological traits observed
between DP15 and the indica rice variety 93-11, including PH, awn length, leaf width,
LMC, tiller number, tiller angle, spreading panicle, seed color, seed shattering, seed dor-
mancy, GN, GL, GW, TGW, GLWR, and so on [72]. Through the WGRS, the genomic
differences were highlighted by the bioinformatic analysis in this study, and 12,565 pairs of
polymorphic InDel markers were designed to establish DP15-CSSLs and mining for novel
genome QTLs. Both the extensive phenotypic and genetic variation make this DP15-CSSL a
natural gene pool that can be utilized to identify new QTLs and generate rice cultivars with
advantageous traits. As is known, CSSLs consist of a set of consecutive and overlapping
donor chromosome segments in a recipient genetic background, which is an ideal genetic
population for the mapping of QTLs [73,74]. In this study, 59 CSSLs from the common wild
rice (O. rufipogon Griff.) accession DP15 under indica rice cultivar (O. sativa L. ssp. indica)
variety 93-11 backgrounds were constructed through whole genome re-sequencing, mul-
tiple backcrosses, self-crossing, and MAS. The total genome substitution segment length
of this DP15-CSSLs library was 344.34 Mb, and the average coverage rate of substitution
segments in the chromosome was 91.72%. The genome coverage rate of the DP15-CSSLs
can be increased with the expanded screening of CSSLs from the progeny of BC4F2, BC5F2,
and BC6F2 progeny. In contrast to previous research on CSSLs, the DP15-CSSLs showed
a higher coverage rate, which was mainly defined by the density and amounts of poly-
morphic molecular markers [75,76]. Moreover, our DP15-CSSLs library was constructed
under the indica rice background, which will be complementary to the wild rice CSSLs
research [77]. In recent years, several genes controlling the resistance to both biological
stress and abiotic stress have been identified [78–80]. However, novel genes related to
agronomy traits such as grain appearance, leaf color, and PH remain to be exploited. The
molecular mechanisms of how these traits function are still largely unknown.

Besides the significant difference in phenotype, there are a large number of genomic
variations between common wild rice and cultivated rice, which is of great convenience for
the detection of QTLs. Parental materials that show phenotypic variation in the target traits
due to variations in the genome are necessary for genetic QTL mapping [81]. With the rapid
development in the technology of bioinformatic analysis and genome sequencing, extensive
genomic SNPs and InDels can be well detected and applied to gene mapping and prediction.
SSSLs/CSSLs with both higher genetic and phenotypic differences are effective tools for
fine mapping, cloning, and analysis of novel QTLs [82,83]. CSSLs/SSSLs have previously
promoted the identification of novel QTLs related to grain traits in Yuanjiang common
wild rice species [84–86]. A set of SSSLs harboring the C563~C63 region encoding for long
stigma was identified from Nipponbare/Kasalath-SSSLs and a secondary F2 population
of SSSL14/Nipponbare was successfully used to fine-map the qSTL3, which identified
LOC_Os03g14850, LOC_Os03g14860, and LOC_Os03g14880 as the candidate genes con-
trolling stigma length [87]. The study of wild rice traits, especially grain-related traits, is
promising for further improvements in the yield and quality of cultivated rice [83]. Agron-
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omy traits such as the GL, GW, and TGW are the major determinant of yield potential [88].
Through the phenotype screening of DP15-CSSLs, four-grain traits including GL, GW,
TGW, and GLWR that are significantly different from 93-11 were selected for the detection,
of novel QTLs. To decrease the influence of variation in the phenotypic values for QTLs
detection, these four traits were recorded in different experiment fields over two years [89].
Thus, a total number of 20 QTLs were detected. Among them, seven QTLs controlling TGW
were detected by the whole genome screening, of which qTGW3.1 is near the gene LPA1
(LOC_Os03g13400), which encodes a plant-specific transcriptional inhibitor associated with
shorter grains and decreased TGW, the other QTLs are new QTLs without any previous
report [82]. Based on the genotype and phenotypic values of these DP15-CSSLs on GL,
five QTLs on GL were identified. The GL that often shows a positive correlation with
GLWR is an important agronomy trait for grain appearance [90]. The qGL3.1 detected in
this research is near the long kernel controlling gene OsGS3, and OsGS3 is the main factor
controlling rice GL and TGW [91]. But the other four QTLs of GL are distributed in new
regions according to the previously reported QTLs on GL [92]. Five QTLs related to GW
were also detected by the whole genome screening, of which the qGW6.1 detected in this
DP15-CSSLs is near the previously cloned DSG1 (LOC_Os06g06090) gene, DSG1 belongs
to the OsMAPK6 family and results in dwarfing, shorter internodes, erect leaves, smaller
anthers and grains, and a significant decrease in GL, GW, and TGW [93,94]. In addition,
Three QTLs related to GLWR were detected through the whole genome screening of QTLs
in this DP15-CSSLs. The qGLWR7.1 detected in a region from RM6071 to RM400 was near
the OsGL7 gene, GL7 encodes a LONGIFOLIA protein and results in an increased GLWR,
larger and more dense starch granules [95]. However, the other two QTLs related to GLWR
were novel QTLs according to previous studies [96]. The traits of grain morphology such
as GL, and GW often show significant correlations with TGW in cereal crops. Interestingly,
the QTLs qGL1.1 and qTGW1.1 were detected in a similar region that may be the same
QTL. The qGLWR1.1 and qGW1.1 were detected in an overlapping region on chromosome
1, which may be affected by the significant correlations between GW and GLWR in cereal
crops [97]. The qGLWR7.1 and qGW7.1 detected in chromosome 7 were linked to the same
region near the RM429. Further experiments are being carried out for elucidation.

Besides the 20 QTLs related to grain traits, one dominant QTL qPH1.1 controlling
the PH on chromosome 1 and one novel dominant QTL qLMC6.1 controlling LMC on
chromosome 6 were detected. As the traits of long awn and shattering, higher PH and
purple leaf margin are often typical characterizations of wild rice [98–100]. A homozygous
long-culm DP15-CSSL line and a purple leaf margin DP15-CSSL line were selected to
construct secondary genetic populations for the mapping of qPH1.1 and qLMC6.1. Based
on the genotype and phenotypic values of the secondary populations, the qPH1.1 con-
trolling higher PH was successfully validated and mapped to a region of 4.31 Mb and
qLMC6.1 associated with purple leave margin was located in a region of 370 kb. The
qPH1.1-containing plants showed a long culm phenotype with a significantly increased
length on the internodes of rice. The genetic basis of PH can mainly be affected by cell
elongation and cell density in the unit area of stem cells [101]. To verify the underlying
mechanism in the generation of the longer internode, the frozen and paraffin section of
rice culm were conducted to detect the cell morphology in stems. The results of this
research showed that qPH1.1 can significantly promote cell proliferation in the stem to
generate an increased PH. Our previous research revealed sd1 gene controlling the PH
mainly by the increase in cell size and cell layers was nearly located in the same region on
chromosome 1 with qPH1.1. However, qPH1.1 showed a higher PH than the sd1 mutants,
which implied that qPH1.1 may be a novel allele controlling higher PH [102]. In terms of
phenotype, the qPH1.1 detected from DP15-CSSLs is novel compared to these previously
mapped QTLs of PH in rice [103]. The OsBRI1, which showed a close linkage with the
RFLP marker C1370, was also located near this region [104]. The mutant plants of OsBRI1
showed a BR signal transduction inhibition, which caused the elongation limitation of
specific internodes, the leaf angle decreased, the leaf blade was upright, and the leaf sheath
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was shorter than that of wild-type, the spike neck was longer than that of wild-type [105].
In contrast to OsBRI1, qPH1.1 showed no significant difference in leaf sheath, leaf angle,
and longitudinal cell elongation, which implied that the BR signal transduction pathway
showed less effect on qPH1.1 [106]. Our ongoing exploration of this qPH1.1 will focus on
the gene regulatory network by gene prediction and RNA-sequencing, which may disclose
the potential mechanism [107]. The stem diameter of ZN6 is significantly larger than 93-11,
which makes the ZN6 higher biomass and is resistant to lodging to a certain extent. The
long-culm DP15-CSSL line ZN6 of higher biomass will provide an economic material for
the animal husbandry industry such as frog farming, crab aquaculture, duck, and livestock
breeding [38–40,108]. Many biomass-related QTLs of rice have already been detected by
researchers worldwide [41,42]. Anthocyanin is attractive for its innate coloring, antioxidant
capacity, and biological potential in food additives and functional foodstuffs [109,110].
The mining of qLMC6.1 from wild rice will promote the exploration of the anthocyanin
distribution in specific tissues. Up to now, several anthocyanin-related genes have already
been cloned by researchers worldwide in plants [50,111]. Compared to the already mapped
QTLs related to anthocyanin, the qLMC6.1 detected in this research is located near the
OsC1 gene. The OsC1 is critical for anthocyanin production in rice [111–113]. The qLMC6.1
will be an important tool in selective breeding for pure varieties. To verify the underlying
mechanism in the generation of the color, the stigma protoplast of ZN32 and 93-11 were
isolated and evaluated by confocal microscopy to detect the distribution of anthocyanin
in the plant cell. The results showed that anthocyanin which is a water-soluble pigment
was mainly distributed in the vacuole of the plant cell may lead to the purple leaf mar-
gin phenotype in rice, which is consistent with previous studies [28,111]. The qLMC6.1
controlling LMC is related to the synthesis of anthocyanin and tissue-specific expressed
specifically in some putative tissues, such as leaf margin, leaf sheath, stigma, apiculus,
and so on (Figures 8 and S11). Our ongoing experiment on qLMC6.1 will focus on gene
prediction and cloning, the gene, and promoter of qLMC6.1 are promising to explain the
underlying the mechanism of anthocyanin regulatory network (Figure S15). SSSLs/CSSLs
of wild rice, which possess great potential for further exploitation and utilization, are good
breeding materials for future rice breeding and improvement [15,82]. In all, these 22 QTLs
identified from Guangxi common wild rice can potentially promote theoretical knowledge
and genetic applications to rice breeders worldwide.

5. Conclusions

In this research, a set of 59 CSSLs covering 91.72% of the wild rice DP15 genome
with the indica rice cultivar 93-11 backgrounds were constructed. Significant differences
in four grain-related traits, PH, and LMC phenotypes between the Guangxi wild rice
DP15 and the 93-11 were identified for the QTL detection in this research. About 20 QTLs
associated with grain-related traits, one PH-controlling QTL, and one LMC-regulating
QTL were detected. Furthermore, 12,565 mapped InDels were identified and designed
for polymorphic molecular markers by high-throughput genome re-sequencing between
wild rice accession DP15 and indica rice cultivar 93-11, which are well-identified and
designed for polymorphic molecular markers. The PH-controlling QTL qPH1.1 and the
LMC-regulating QTL qLMC6.1 were fine-mapped by the construction of two secondary
genetic populations, which are of great significance for breeding and gene cloning. Thus,
the DP15-CSSLs are a promising tool for novel gene discovery and rice breeding. Our
ongoing experiments aim to investigate the grain-size-related QTLs in wild rice and clone
the novel QTLs mapped in this research.
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CTAB Hexadecyl Trimethyl Ammonium Bromide
PH Plant Height
GW Grain Width
GL Grain Length
GN Grain Number
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GLWR Grain Length-width Ratio
LMC Leaf Margin Color
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AC Apiculus Color
SC Stigma Color
LSC Leaf Sheath Color
SSR Simple Sequence Repeats
SNP Single Nucleotide Polymorphism
InDel Insertion-Deletion
RFLP Restriction Fragment Length Polymorphism
MAS Marker-assisted Selection
PAGE Polyacrylamide Gel Electrophoresis
PCR Polymerase Chain Reaction
CSSLs Chromosome Segment Substitution Lines
SSSLs Single Segment Substitution Lines
NILs Near Iso-genic Lines
DHs Double Haploid Lines
LOD Logarithm of The Odds
PVE Phenotypic Variation Explained
QTL Quantitative Trait Locus
BSA Bulked Segregants Analysis Sequencing
Chr. Chromosome
RNA-seq RNA-Sequencing
WGRS Whole Genome Re-sequencing
GWAS Genome Wide Association Study
BSA Bulked Segregants Analysis
GA Gibberellin Acid
SEM Scanning Electron Microscope
MAPK Mitogen-activated protein kinase
bHLH Basic Helix-loop-helix Transcription Factor
UTR Untranslated Regions
CDS Coding DNA sequence
ncRNA Non-coding RNA
CAD Cinnamyl Alcohol Dehydrogenase
Mt Mitochondrion
Pt Chloroplast
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